For this assignment, you should copy this document as closely as possible. Put your name in the top right corner. These are some concepts from Chapter 0 that you should already know.

1. **Definition** (The Well Ordering Principle) - Every nonempty set of positive integers contains a smallest member.

2. **Theorem** (The Division Algorithm) - Let a and b be integers with $b > 0$. Then there exist unique integers q and r with the property that $a = bq + r$, where $0 \leq r < b$.

3. **Definition** - The Greatest Common Divisor of two nonzero integers a and b is the largest of all common divisors of a and b. We denote this integer by $\gcd(a, b)$. When $\gcd(a, b) = 1$, we say a and b are relatively prime.

4. **Theorem** For any nonzero integers a and b, there exist integers s and t such that $\gcd(a, b) = as + bt$. Moreover, $\gcd(a, b)$ is the smallest positive integer of the form $as + bt$.

5. **Corollary** If a and b are relatively prime, then there exist integers s and t such that $as + bt = 1$.

6. **Theorem** (Euclid’s Lemma) If p is a prime that divides ab, then p divides a or p divides b (or both).
 Proof: Suppose that p is a prime that divides ab, but without loss of generality (WLOG) does not divide a. Then we must show that p divides b. Since p does not divide a, then a and p are relatively prime. So there exist integers s and t such that $1 = as + pt$. Multiply through by b to get $b = abs + pbt$. Since p divides ab and p divides itself, p divides the right hand side of the equation. Hence p divides the left as well. So p divides b. □

7. **Theorem** (Fundamental Theorem of Arithmetic) Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear. That is, if $n = p_1p_2\ldots p_r$ and $n = q_1q_2\ldots q_s$, where the p_i’s and q_i’s are primes, then $r = s$ and, after renumbering the q_i’s, we have $p_i = q_i$ for all i.

8. **Definition** The least common multiple of two nonzero integers a and b is the smallest positive integer that is a multiple of both a and b. We denote this integer by $\text{lcm}(a, b)$.

9. **Theorem** (The First Principle of Mathematical Induction) Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \geq a$ belongs to S, then the integer $n + 1$ belongs to S. Then S contains every integer greater than or equal to a.

10. **Theorem** (DeMoivre’s Theorem) For every positive integer n and every real number θ, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, where i is the complex number $\sqrt{-1}$.
 Proof: Base Step: The statement is clearly true for $n = 1$.
 Inductive Step: Assume true for $n = 1$. She the statement is true for $n + 1$. In other words, assume $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, prove $(\cos \theta + i \sin \theta)^{(n+1)} = \cos(n+1)\theta + i \sin(n+1)\theta$.
 We see that
 \[
 (\cos \theta + i \sin \theta)^n = (\cos \theta + i \sin \theta)^{(n+1)} (\cos \theta + i \sin \theta)
 = (\cos n\theta + i \sin n\theta) (\cos \theta + i \sin \theta)
 = \cos n\theta \cos \theta + i (\sin n\theta \cos \theta + \sin \theta \cos n\theta) - \sin n\theta \sin \theta.
 \]
 Now, using trig identities for $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$, we see that this last term is $\cos(n+1)\theta + i \sin(n+1)\theta$. So, by induction, the statement is true for all positive integers. □

11. **Theorem** (The Second (Strong) Principle of Mathematical Induction) Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S. Then S contains every integer greater than or equal to a.

12. **Definition** An *equivalence relation* on a set S is a set R of ordered pairs of elements of S such that

(a) $(a, a) \in R$ for all $a \in S$. (reflexive property)
(b) $(a, b) \in R$ implies $(b, a) \in R$ (symmetric property)
(c) $(a, b) \in R$ and $(b, c) \in R$ imply $(a, c) \in R$ (transitive property)

13. **Definition** A *partition* of a set S is a collection of nonempty disjoint subsets of S whose union is S.

14. **Theorem** The equivalence classes of an equivalence relation on a set S constitute a partition of S. Conversely, for any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.