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ABSTRACT. Calculations of the number of equivalence classes of Sudoku boards
has to this point been done only with the aid of a computer, in part because of
the unnecessarily large symmetry group used to form the classes. In particu-
lar, the relationship between relabeling symmetries and positional symmetries
such as row/column swaps is complicated. In this paper we focus first on the
smaller Shidoku case and show first by computation and then by using connec-
tivity properties of simple graphs that the usual symmetry group can in fact be
reduced to various minimal subgroups that induce the same action. This is the
first step in finding a similar reduction in the larger Sudoku case and for other
variants of Sudoku.

1. INTRODUCTION: SUDOKU AND SHIDOKU

A growing body of mathematical research has demonstrated that one of the
most popular logic puzzles in the world, Sudoku, has a rich underlying structure.
In Sudoku, one places the digits from one to nine in a nine by nine grid with the
constraint that no number is repeated in any row, column, or smaller three by three
block. We call these groups of nine elements regions, and the completed grid a
Sudoku board. A subset of a Sudoku board that uniquely determines the rest of the
board is a Sudoku puzzle, as illustrated in Figure 1, taken from [8]. Note that this
puzzle contains only eighteen starting clues, which is the conjectured minimum
number of clues for a 180-degree rotationally symmetric Sudoku puzzle.

The current body of work on Sudoku ranges from popular interest monographs
such as Wilson [12] and appeals to the mathematical interest in Sudoku and its
variants for an undergraduate math audience as in Taalman [11] to a wide range of
more theoretical papers. For example Bailey, Cameron and Connelly [2] explore
mutually orthogonal collections of Sudoku boards, Arnold et al. [1] and Sato et
al. [10] apply Gröbner basis techniques to Sudoku, and Newton and DeSalvo [6]
investigate the Shannon entropy of collections of Sudoku matrices. Most relevant
to our current research is a sophisticated piece of computation by Felgenhauer and
Jarvis [4] showing that there are 6,670,903,752,021,072,936,960 different Sudoku
boards and a related paper by Russell and Jarvis [9] that showed that these boards
split into 5,472,730,538 equivalence classes under the action of the standard Su-
doku symmetry group.
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FIGURE 1. An 18-clue Sudoku puzzle and its unique solution board.

In this paper, we consider various symmetry groups for the more accessible
variant of Sudoku known as Shidoku. A Shidoku board is a 4 × 4 Latin square
whose regions (rows, columns, and designated 2 × 2 blocks) each contain the
integers one to four exactly once. In this smaller universe it is not too difficult to
show that there are 288 different Shidoku boards [11]. There are a small number of
generating symmetries for Shidoku and while the full Shidoku symmetry group
is well known to be relatively large, we establish several different subgroups of
minimal size which generate the same equivalence relation among Shidoku boards
as the full group of symmetries. We follow this with a discussion of Burnside’s
lemma (as used in [9]) where we demonstrate one practical application of such
minimal symmetry groups. Finally, we show how all minimal symmetry groups
satisfying various conditions may be attained by considering equivalence classes
of group actions on graphs. The Russell and Jarvis computation [9] involved
computer methods in part because of the large size of the Sudoku symmetry group.
Our work is a first step in simplifying such a calculation by reducing to a smaller,
but still complete Sudoku symmetry group.

2. THE FULL SHIDOKU SYMMETRY GROUP

A Shidoku symmetry is a map from the set S of Shidoku boards to itself. We
will call elements of S4 that permute the values {1, 2, 3, 4} on the board relabeling
symmetries, and elements of S16 that permute the cells of the board while preserv-
ing the Shidoku conditions on every possible board position symmetries. Note that
every element of S4 defines a valid relabeling symmetry, but not every element of
S16 defines a valid position symmetry. For example, swapping the first and sec-
ond rows of any Shidoku board preserves the Shidoku conditions, but swapping
the second and third rows does not always preserve the Shidoku conditions.
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Every Shidoku symmetry is a combination of the set S4 of relabeling symme-
tries and the set H4 of position symmetries described above. Therefore the full
Shidoku symmetry group is the direct product G4 = H4 × S4. The action of this
group partitions the set S of Shidoku boards into two orbits, and we call two Shi-
doku boards are equivalent if they are in the same orbit under the action of the
full Shidoku symmetry group G4. The 288 Shidoku boards split into two such
equivalence classes, one with 96 boards which we refer to as Type 1 boards, one
of which is on the left in Figure 2, and one with 192 boards, called Type 2 boards,
one of which is given on the right in Figure 2 ([1], [11]).

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3

FIGURE 2. Type 1 and Type 2 Shidoku representatives.

The position symmetry group H4 is generated by the following symmetries,
where a band is the combination of either the first and second or the third and
fourth rows, and a pillar is an analogous combination of columns (see [4]):

• swapping rows/columns within bands/pillars

• swapping bands/pillars

• rotation r of the board by a quarter turn clockwise

• transpose t of the board

Fortunately, we can obtain a much smaller set of generators for H4. In fact,
we need only rotation, transpose, and one row swap: let s to be the swap of the
third and fourth rows of a Shidoku board, thenH4 is generated by r, s, and t. (For
example, to swap the first and second columns we can apply r−1, then s, then
r.) There are relations among these three generators; the easiest to see being the
orders of the generators and a few other relations, such as trtr = id. The full
presentation of the position symmetry group is

H4 = 〈r, s, t | r4, s2, t2, trtr, rsr2tsr3t, tstststs, srsr3srsr3〉.
We will use the more compact notationH4 = 〈r, s, t〉. This is a non-abelian group
of order 128 (see [3, 5]), so the full Shidoku symmetry group G4 = H4 × S4 has
order 128(4!) = 3072.

Note that we have now defined a group of relatively large order, |G4| = 3072,
acting on a set of much smaller order, |S| = 288, to make two orbits, the largest
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of which is size 192. We will say that a group of Shidoku symmetries is complete
if its action partitions the set of Shidoku boards into the same Type 1 and Type
2 orbits. The natural question to ask is whether we can find a complete group of
Shidoku symmetries with order smaller than 3072? The minimum possible order
that such a group could have is the size 192 of the largest orbit, so can we find a
complete Shidoku symmetry group with this minimum order?

We will start with a heuristic investigation using MATLAB [7], GAP [3], and the
graph visualization program yEd [13]. The action of the full groupG4 = H4×S4

on the set S of Shidoku boards can be represented with the graph in Figure 3,
where each vertex is one of the 288 Shidoku boards and each edge corresponds to
one of the generators r, s, t, (12), (23), (34), and (14). (We use more generators
of S4 than necessary for symmetry.)

FIGURE 3. The action of G4 = H4 × S4 on S.

This graph clearly shows the smaller Type 1 orbit (on the right) and the larger
Type 2 orbit (on the left). Given the high degree of connectivity in this graph, it is
reasonable to hope that we can remove the edges for one or more generators and
still retain a two-component graph.

3. MINIMAL COMPLETE SHIDOKU SYMMETRY GROUPS

Via a sequence of examples we now show that it is possible to construct mini-
mal complete Shidoku symmetry groups. We will return to this in Section 5 from
a more algebraic perspective that is better suited for future generalization to the
9× 9 Sudoku case.
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Theorem 1. There exist complete Shidoku symmetry groups of minimal order 192.

Notice that since the minimum possible order of any complete Shidoku sym-
metry group is 192, any complete Shidoku symmetry group will need to include a
mix of position and relabeling symmetries as the groups S4 and H4 are each too
small on their own.

Example 1: 〈r, t〉 × S4

Removing the row swap s leaves the remaining position symmetry group denoted
〈r, t〉. This is the order 8 subgroup 〈r, t | r4, t2, trtr〉 ⊆ H4. Therefore 〈r, t〉×S4

has order 192, precisely the minimum order we wish to obtain. Unfortunately, as
seen in Figure 4, the action of this group has five orbits and therefore this subgroup
is not a complete Shidoku symmetry group.

FIGURE 4. The action of 〈r, t〉 × S4 on S.

Example 2: 〈r, s〉 × S4 and 〈r, s〉 × 〈(123)〉
Removing the transpose symmetry t leaves the position symmetry subgroup 〈r, s〉 ⊆
H4. Since this subgroup has order 64, we can obtain a complete Shidoku sym-
metry group 〈r, s〉 × S4 of order 64(4!) = 1536. A group fo minimal size can
be obtained by extending 〈r, s〉 by an order three subgroup of S4, for example
〈(123)〉 ⊆ S4, and this does combine with 〈r, s〉 to form a minimal complete
Shidoku symmetry group, as shown in Figure 5. Note the somewhat surprising
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corollary that any valid Shidoku board can be transformed into any other equiva-
lent board using nothing more than rotation, a single row swap, and a single cyclic
permutation of order three.

FIGURE 5. The action of 〈r, s〉 × 〈(123)〉 on S.

Example 3: 〈s, t〉 × S4

In Examples 2 and 3, we saw that removing the swap symmetry s from H4 results
in a Shidoku symmetry group that is minimal but not complete, and removing the
transpose symmetry t results in a Shidoku symmetry group that is complete but
not minimal (unless we also pass to a subgroup of S4). Removing the rotation
symmetry r gives us the best of both worlds. The position symmetry subgroup
〈s, t〉 has order 8 so 〈s, t〉 × S4 has order 192 and therefore is minimal. As shown
in Figure 6, this group induces two orbits on S and therefore is complete.

Example 4: H4 × 〈(123)〉 and 〈r2, s, t〉 × 〈(123)〉
Finally, we try passing to a subgroup of S4 while keeping all of the position sym-
metries. The full position symmetry group H4 has order 128, and 384 is the
smallest multiple of 128 that is divisible by 192. Therefore, a complete Shidoku
symmetry group containing all of H4 must contain a subgroup of S4 whose order
is a multiple of 3. An obvious candidate is 〈(123)〉 ∈ S4. Combining these rela-
belings with all of H4 does result in a graph with the two desired orbits, as shown
in Figure 7.

Although H4 × 〈(123)〉 is a complete Shidoku symmetry group, it has order
384 and therefore is not minimal. However, we saw in Example 3 that the rota-
tion symmetry r is, in some sense, redundant. Namely, given any board A ∈ S ,
the board r(A) can be obtained by the composition of s, t and a relabeling sym-
metry that depends on the board A. Replacing r (rotation by 90 degrees) with
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FIGURE 6. The action of 〈s, t〉 × S4 on S.

FIGURE 7. Figure 7: The action of H4 × 〈(123)〉 on S.

r2 (rotation by 180 degrees) results in the complete minimal symmetry group
〈r2, s, t〉 × 〈(123)〉.

4. USING BURNSIDE’S LEMMA TO COUNT ORBITS

The number of equivalence classes of Sudoku boards can be calculated by ap-
plying Burnside’s Lemma, which states that if a finite group acts on a set, then the
number of orbits is the average size of the fixed point sets for the elements of the
group. For Shidoku, this means that the number of orbits under the action of the
group of Sudoku symmetries is the average of the number of Sudoku boards fixed
by each symmetry group element.

Russell and Jarvis applied Burnside’s Lemma to the full group of all possible
Sudoku symmetries in [9] using a computer. Their brute-force computation found
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5,472,730,538 equivalence classes of Sudoku boards via 275 conjugacy classes in
a Sudoku position symmetry group of size 3359232(9!). If a smaller but complete
group of Sudoku symmetries were known, then this calculation could be greatly
simplified. For Shidoku, the reduction of the symmetry group fromH4×S4 to the
minimal 〈s, t〉 × S4 will allow us to easily perform this calculation by hand. As
seen in Figure 6, there are two orbits of Shidoku boards under the action of this
subgroup; our goal here is to illustrate how tractable the problem becomes when
we work with a minimal Shidoku symmetry group, and thus motivate the search
for such groups.

We will say that a Shidoku board B is invariant under a position symmetry x
if we can undo the action of x with a relabeling symmetry; that is, if there exists
a relabeling symmetry σ so that σ(x(B)) = B. If a board B is invariant under a
symmetry x then x(B) differs from B by a relabeling.

More precisely, a Shidoku boardB is an ordered list of values (b1, b2, b3, . . . , b16),
reading left to right and then top to bottom. A Shidoku symmetry x is then an el-
ement of S16 that produces another valid Shidoku board. For each i, a symmetry
x takes the value bi that is in the ith cell of B and moves it to the x(i)th cell of
x(B).

Example 5: Invariance under transpose
Let t be the position symmetry taking the transpose of a Shidoku board. In per-
mutation notation, t = (2 5)(3 9)(4 13)(7 10)(8 14)(12 15). The action of t
is pictured on the right in Figure 8. Notice that, for example, the value b8 in the
8th cell of B moves to the t(8) = 14th cell of t(B).

B

b1 b2 b3 b4

b5 b6 b7 b8

b9 b10 b11 b12

b13 b14 b15 b16

t−→
←−
σ?

t(B)

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

FIGURE 8. If σ ∈ S4 exists then board B is invariant under t.

A board B is invariant under t if there exists some relabeling σ that returns t(B)
to B. In general, a Shidoku board B is invariant under a symmetry x if there is
some relabeling permutation σ so that for each i we have bx(i) = σ(bi). Notice
that σ will depend on values of the bi; for example, in this case, since t(8) = 14,
we must have bt(8) = σ(b8). Figure 9 illustrates that for this particular board B,
the relabeling that returns t(B) to the original board B is σ = (2 3).

Let us now revisit the minimal Shidoku symmetry group 〈s, t〉 × S4. The sub-
group
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B

1 2 4 3

3 4 2 1

4 3 1 2

2 1 3 4

t−→
←−
(2 3)

t(B)

1 3 4 2

2 4 3 1

4 2 1 3

3 1 2 4

FIGURE 9. Board B is invariant under the action of t, up to relabeling.

〈s, t〉 = {id, s, t, st, ts, sts, tst, stst} ⊆ H is the Coxeter group with presen-
tation 〈s, t | s2, t2, (st)4〉, where the last relation is equivalent to the relation
s(tst) = (tst)s that follows from the fact that the row swap s commutes with
the column swap tst. This subgroup partitions into five conjugacy classes, with
representatives id, s, t, st, and stst. Within each class, each position symmetry
has the same number of invariant boards. The number of invariant Shidoku boards
for each element of each conjugacy class is given in Table 1.

Class Representative Invariant
Cid = {id} () 12 · 4!
Cs = {s, tst} (9 13)(10 14)(11 15)(12 16) 0 · 4!
Ct = {t, sts} (2 5)(3 9)(4 13)(7 10)(8 14)(12 15) 2 · 4!
Cst = {st, ts} (2 5)(3 9 4 13)(7 19 8 4)(11 12 16 15) 0 · 4!
Cstst = {stst} (3 4)(7 8)(9 13)(10 14)(11 16)(12 15) 0 · 4!

TABLE 1. Number of invariant boards for each conjugacy class
of 〈s, t〉.

Note that the identity element fixes all 12 · 4! Shidoku boards. On the other
hand, the element s fixes no Shidoku boards up to permutation; that is, there is no
board B for which a relabeling symmetry can undo the action of the row swap s.
Now consider the transpose symmetry t in the third row of Table 1. In Example
5 we saw that a Shidoku board can only be invariant under this symmetry if the
returning relabeling fixes the values on the main diagonal and swaps the remaining
two values in the upper-left block. It is easy to show that for any given labeling
of elements in the upper-left block there are only two Shidoku boards that are
invariant under transposition; thus there are 2 ·4! Shidoku boards that are invariant
under the action of t.

In general, in order to construct a Burnside’s table for a given Shidoku or Su-
doku symmetry group, we need to consider various relationships between position
and relabeling symmetries such those in the following “Fixing Lemmas.”
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Fixing Lemmas. Suppose B is a Shidoku board that is invariant under the ac-
tion of a Sudoku symmetry x via a relabeling permutation σ. Then we have the
following relationships:

i. Value-Fixing: If x fixes a cell whose value is n, then σ must fix that n. In
other words, if x(i) = i and bi = n then σ(n) = n.

ii. Block-Fixing: If x fixes any entire row, column, or block of B, then σ
must be the identity relabeling.

iii. Fixed Points: If σ fixes n, then x must take every cell of B whose value
is n to another cell whose value is n. In other words, if σ(n) = n and
bi = n, then bx(i) = n.

Proof. Let B be a Shidoku or Sudoku board, x a Shidoku or Sudoku symmetry,
and σ a relabeling symmetry such that σ(x(B)) = B. To prove (i), suppose
x(i) = i and bi = n for some index i and value n. Combining this information
with the definition of invariance we have

σ(n) = σ(bi) = bx(i) = bi = n.

Since every row, column, or block region contains all of the numbers 1–4 we
immediately obtain (ii) as a corollary to (i).

Finally, to prove (iii), suppose σ(n) = n and bi = n. Combining this informa-
tion with the definition of invariance we have

bx(i) = σ(bi) = σ(n) = n. �

There are many other “fixing lemmas” that we can use to develop techniques
for counting invariant boards for other symmetry groups. Applying these tech-
niques to the full Shidoku symmetry group H4 × S4 we can produce a table of
invariant board counts similar to Table 1, although with twenty rows of conjugacy
classes instead of just five.

BothH4×S4 and 〈s, t〉×S4 are complete symmetry groups, and therefore have
two orbits in S. Thus by Burnside’s Lemma, the average over all group elements
of the number of invariant boards must be two. Applying Burnside’s Lemma to the
invariance data in Table 1 we see that for the minimal Shidoku symmetry group
〈s, t〉 × S4 the number of orbits is indeed

1(12 · 4!) + 2(0) + 2(2 · 4!) + 2(0) + 1(0)
8 · 4!

= 2.

For 4×4 Shidoku we can do these invariance calculations by hand. For 9×9 Su-
doku there are 275 conjugacy classes of the full position Sudoku symmetry group
of order 3,359,232 (see [9]). In this case finding the conjugacy classes, the in-
variance calculations, and even the final Burnside’s Lemma computation must be
done by computer. Reducing the size of the Sudoku symmetry group and extend-
ing the Fixing Lemma techniques could pave the way to a more straightforward
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non-computer calculation of the number of equivalence classes of 9 × 9 Sudoku
boards.

All of the above information on invariant boards and orbits is contained in
the graph for 〈s, t〉 × S4 acting on S from Figure 6. However, with so many
vertices and edges we cannot readily read this information from the graph, and
any extension to Sudoku would be far worse. In the next section we develop
a method of organizing this information that clarifies the action of the position
symmetries up to relabeling permutations.

5. VISUALIZING SHIDOKU SYMMETRIES WITH S4-NESTS

The work in the previous section suggests that it might be helpful to consider
the action of position symmetries separately from the action of relabeling sym-
metries. If we group the 288 Shidoku boards into orbits under the action of S4,
we can restrict our attention to the action of the position symmetries on these or-
bits. We will call each orbit an S4-nest, and use these nests as the vertices of a
simplified graph.

We can easily define a unique representative of each S4-nest by choosing the
unique board in the nest whose upper-left corner is labeled in the order shown in
Figure 10.

1 2 ∗ ∗

3 4 ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

FIGURE 10. Representative label ordering for the upper-left block.

There are exactly twelve such representatives, which we name A–L as shown
in Figure 11. Each of the twelve corresponding S4-nests will also be denoted by
A–L.

We can now form the S4-nest graph whose vertices are these twelve S4-nests
and whose edges are given by the induced action of the position symmetries r,
s, and t on those S4-nests. As usual, this graph the edges represent our choice
of generators for H4 with the action of other group elements such as st or stst
appearing as paths.

Theorem 2. Every Shidoku board is represented by exactly one of the twelve
boards A–L in Figure 11, and the group action of H4 = 〈r, s, t〉 on this set of
representatives is given as in the diagram in Figure 12. Moreover, if H ′ is a
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subgroup of H4 = 〈r, s, t〉 then H ′ × S4 is a complete Shidoku symmetry group
if and only if the edges corresponding to a set of generators of H ′ form a two-
component graph on the vertices A–L.

A B C D

1 2 3 4

3 4 1 2

4 1 2 3

2 3 4 1

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

1 2 4 3

3 4 1 2

2 1 3 4

4 3 2 1

1 2 4 3

3 4 2 1

4 1 3 2

2 3 1 4

E F G H

1 2 3 4

3 4 2 1

2 1 4 3

4 3 1 2

1 2 4 3

3 4 2 1

2 1 3 4

4 3 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2 4 3

3 4 1 2

4 3 2 1

2 1 3 4

I J K L

1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3

1 2 3 4

3 4 2 1

4 3 1 2

2 1 4 3

1 2 4 3

3 4 2 1

4 3 1 2

2 1 3 4

1 2 4 3

3 4 2 1

2 3 1 4

4 1 3 2

FIGURE 11. The sixteen S4-nest representatives.

Notice that the S4-nest graph has two components because there are two equiv-
alence classes of Shidoku boards with respect to the Shidoku symmetry group.
Each of the S4-nests contains 4! different Shidoku boards, and thus the larger
component of this graph represents 8(4!) = 192 Shidoku boards and the smaller
component represents 4(4!) = 96 Shidoku boards, as expected.

Proof. By construction, the action of H4 = 〈r, s, t〉 on the nests A–L is well-
defined. If H ′ is some subset of H = 〈r, s, t〉 then the condition of being a
complete Shidoku symmetry group is equivalent to having two orbits under the
action of this group, which in turn means that the associated graph on A–L will
have two components.

Proving that the diagram in Figure 12 holds is a simple matter of applying r, s,
and t to each of the twelve representative boards and then, if necessary, applying
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FIGURE 12. Group action of H4 on the set of S4-nests.

a relabeling symmetry in order to obtain one of the twelve representative boards
A–L. �

The edge labeled t between nests A and C indicates that there is some relabel-
ing symmetry σ ∈ S4 such that σ(t(A)) = C. Because of the way we chose our
representatives A–L, the relabeling for t is always (2 3). The position symmetry
s, on the other hand, does not affect the first block so no relabeling is needed after
applying s (e.g. s(C) = H). Note also that t and s are their own inverses and
therefore their edges do not have directional arrows.

The double arrows represent application of the position rotation symmetry r
followed by whichever labeling is needed to get the top left square in the 1, 2, 3, 4
order. This relabeling symmetry is different for different boards. Notice that for
some S4-nests the action of r is its own inverse, and for others it is not.

Example 6: 〈s, t〉 on S4-nests
From the S4-nest graph we can immediately see that removing the edges labeled
r preserves the number of components, so the subgroup 〈s, t〉 × S4 (first seen in
Example 3) is a minimal complete Shidoku symmetry group, as shown in Figure
13.

Example 7: 〈r, t〉 on S4-nests
Similarly, we can see that removing the edges labeled s results in a five-component
graph, and thus that 〈r, t〉 × S4 is not a complete Shidoku symmetry group, as we
saw in Example 1; see Figure 14.

We can also use the S4-nest graph in Figure 12 to immediately obtain the in-
variance data in Table 1 used for Burnside’s Lemma. For example, since the edges
labeled s never form loops at any S4-nest, there is no Shidoku board that is invari-
ant under the action of s up to relabeling. Similarly, there are two S4-nests for
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FIGURE 13. The action of 〈s, t〉 on S4-nests.
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FIGURE 14. Action of 〈r, t〉 on S4-nests (too many components).

which the action of t forms a loop, so 2(4!) Shidoku boards that are invariant
under the action of t up to relabeling.

6. VISUALIZING SHIDOKU SYMMETRIES WITH H4-NESTS

The S4-nest graph can only be used to investigate Shidoku symmetry sub-
groups of the formH ′×S4. To investigate subgroups of the formH4×S′ for sub-
groups S′ ⊂ S4, we follow a dual procedure. The first step is to partition the 288
Shidoku boards into nests according to the orbits of the action of H4 = 〈r, s, t〉
on those boards. We can then create a graph whose vertices correspond to nests of
the group of position symmetries H4 and whose edges correspond to elements of
S4. The process will be similar to, but less straightforward than, the process we
used to find S4-nests.

Using yEd we can make a graph with 288 vertices for the Shidoku boards, and
edges drawn only for position symmetries in H4 = 〈r, s, t〉 as shown in Figure
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15. From this graph we can see that there should be six H4-nests, three of which
are large and three of which are small. This makes sense as some Shidoku boards
are invariant under certain position symmetries (for example, some boards are
preserved under transpose), so nests containing such boards should be smaller.

FIGURE 15. H4-nests arising from the action of H4 on S.

We must now find a way to choose a unique representative Shidoku board for
each H4-nest. When we partitioned the 288 Shidoku boards into S4-nests we
chose one unique representative A–L for each S4-nest by fixing the form of the
upper-left block of the board. This very neatly used all of the S4 part of the
action of H4 × S4. With the S4-nests it is very easy to take any Shidoku board
and immediately find its unique representative, and it is also easy to show that
there are twelve such representatives and thus twelve S4-nests, each containing 4!
Shidoku boards.

Similarly, the process of finding such a representative for the H4-nests should
use all of the H4 part of the action of H4 × S4, and it should be easy to take any
Shidoku board and find its unique representative. The difficulty lies in the fact
that we must find this representative by position symmetries only.

Theorem 3. Each H4-nest has a unique representative of the form shown in Fig-
ure 16, where a ≤ b and c < d. Moreover, there are six H4-nests, three of size 32
and three of size 64.
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1 c ∗ ∗

d a 1 ∗

∗ 1 b ∗

∗ ∗ ∗ 1

FIGURE 16. Form of H4-nest representatives.

Proof. Given any Shidoku board we can perform a sequence of row and column
swaps to obtain a board whose configuration of 1s is the same as in Figure 16.
A calculation similar to the one commonly used for enumerating Shidoku boards
([1], [11]) shows that there are 18 Shidoku boards that have this particular config-
uration of 1s.

Now via the possible application of the 180◦ rotation symmetry r2 we can force
the inequality a ≤ b in the 6th and 11th cells of the board as ordered in Figure
8. Note that this rotation does not change the configuration of 1s we had already
established. The equality a = b holds for Type 1 boards (see Figure 2). In each of
the three cases a = b = 2, 3, and 4 there are two possible Shidoku completions.
We have strict inequality a < b for Type 2 boards, and it is a simple calculation
to verify that in each of the three possible cases 2 < 3, 2 < 4, and 3 < 4 we will
also have two Shidoku completions. Therefore there are six Shidoku boards that
satisfy both the 1s configuration and the a = b condition, and six Shidoku boards
that satisfy both the 1s configuration and the a < b condition.

Finally, by applying the transpose symmetry t if necessary, we can require that
c < d in the 2nd and 5th cells. It is a simple matter to check that any board
with configuration of 1s as given in Figure 16 that satisfies a ≤ b, c < d in the
relevant cells can have only one possible completion. Since there are six ways to
select a and b from the set {2, 3, 4} with a ≤ b, and for each of these choices
there is only one way to complete the first block with c < d, there are six H4-nest
representatives.

The six H4-nest representatives constructed above are shown in Figure 17 and
labeled a–f based on their lexicographical order.

There are two possible sizes of nests. Nests b, d, and e contain 64 Shidoku
boards. The remaining nests a, c, and f are rotationally symmetric and therefore
contain only 32 Shidoku boards. �

Note that we never used r in the proof of Theorem 3; we used only r2 and row
and column swaps. In fact, the position symmetry r does not increase the size
of the orbits and 〈r2, s, t〉-nests are the same as the 〈r, s, t〉 = H4-nests. This is
despite the fact that the two groups are not equal (for example, 〈r2, s, t〉 does not
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a b c

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

1 2 3 4

4 3 1 2

2 1 4 3

3 4 2 1

1 2 4 3

4 3 1 2

2 1 3 4

3 4 2 1

d e f

1 3 2 4

4 2 1 3

3 1 4 2

2 4 3 1

1 3 4 2

4 2 1 3

2 1 3 4

3 4 2 1

1 3 4 2

4 2 1 3

3 1 2 4

2 4 3 1

FIGURE 17. The six H4-nest representatives.

contain the position symmetries of band or pillar swaps). This will be important
later in the section.

We can now form the H4-nest graph whose vertices are the six H4-nests a–
f and whose edges are given by the action of the relabeling symmetries (12),
(23), (34), and (14). Once again we use the same names for the H4-nests as for
their representatives and choose an overdetermined set of generators for S4 for
symmetry.

Theorem 4. Every Shidoku board is represented by one of the six boards a–f
in Figure 17, and the group action of S4 = 〈(12), (23), (34), (14)〉 on this set
of representatives is given as in the diagram in Figure 18. Moreover, if S′ is a
subgroup of S4 and H4 = 〈r, s, t〉, then H4 × S′ is a complete Shidoku symmetry
group if and only if the edges corresponding to a set of generators from S′ form a
two-component graph on the vertices a–f .

The proof of Theorem 4 is entirely similar to the proof to Theorem 2, with
the details of the H4-nest representatives established by Theorem 3. We give
two examples: applying the transposition (34) to the representative board a gives
us the representative board c directly; so (34)(a) = c. Applying (23) to the
board a gives us us a board which after transposing is once again equal to a or
t((23)(a)) = a.

Just as the S4-nest graph allowed us to immediately identify ways to reduce
the size of H4 × S4 by eliminating position symmetries in H4, this dual H4-nest
graph allows us to immediately identify redundant relabeling symmetries.

Example 8: 〈(12), (23)〉 on H4-nests
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?>=<89:;a(14)

(23)

(34)

(12)
?>=<89:;c

(14)

(23)

?>=<89:;b(14)

(23)

(34)

(12)
?>=<89:;d

(14)

(23)

?>=<89:;f(12)

(34)

?>=<89:;e(12)

(34)

FIGURE 18. Group action of S4 on the set of H4-nests.

Removing the transpositions (14) and (34) from the H4-nest graph in Figure
18 preserves the number of components and therefore the 384-element subgroup
H4 × 〈(12), (23)〉 is a full Shidoku symmetry group, although not minimal; see
Figure 19.

?>=<89:;a
(23)

(12)
?>=<89:;c

(23)

?>=<89:;b
(23)

(12)
?>=<89:;d

(23)

?>=<89:;f(12) ?>=<89:;e(12)

(34)

FIGURE 19. The action of 〈(12), (23)〉 on H4-nests.

Example 9: 〈(123)〉 on H4-nests
There is a smaller class of subgroups of S4 which also produce complete Shidoku
symmetry groups: the ones of order three. The example of 〈(123)〉 is given in
Figure 20.

Note that in this case our choice of generator (123) forces us to use a different
edge set than we used in the H4-nest graph shown in Theorem 4. With the ver-
tices as H4-nests, this does not produce a minimal Shidoku symmetry group as
|H4 × 〈(123)〉| = 384. However, as noted in Remark 4, H4-nests are the same as
〈r2, s, t〉-nests, and the order of 〈r2, s, t〉 × 〈(123)〉 is 192 as desired. This is the
same Shidoku symmetry group we found in Example 4 using GAP and yEd, but
it is not the only example of a complete minimal Shidoku symmetry group with
〈(123)〉 for its relabeling symmetries. In Example 2 we saw that 〈r, s〉 × 〈(123)〉
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?>=<89:;a
(123)

��=========
?>=<89:;c(123)oo ?>=<89:;b

(123)
��=========

?>=<89:;d(123)

?>=<89:;f
(123)

@@��������� ?>=<89:;e
(123)

@@���������

FIGURE 20. Action of 〈(123)〉 on H4-nests.

form a complete minimal Shidoku symmetry group. In fact, H4-nests are not
the same as 〈r, s〉-nests even though the graph for 〈r, s〉-nests under the action of
(123) looks identical that in Figure 20. The 〈r, s〉-nests simply contain different
boards than the H4-nests.

7. FUTURE DIRECTIONS FOR SUDOKU SYMMETRY GROUPS

Using H4-nests or S4-nests we can quickly see by hand what previously re-
quired computing with yEd and GAP software.

In [9], Russell and Jarvis use a conjugacy class table to find the number of
equivalence classes of 9× 9 Sudoku boards using Burnside’s Lemma. GAP quite
easily computes the full Sudoku symmetry group generated by all of the position
symmetries described in [4] and [9]. The size of the full position symmetry group
H9 is 3,359,232. The full Sudoku symmetry group G9 = H9 × S9 has order
1,218,998,108,160. Since this is the full Sudoku symmetry group, it is complete.
But is it minimal?

Jarvis and Russell compute that there are 5,472,730,538 equivalence classes
of Sudoku boards. They use a computer to find the number of invariant boards
for each conjugacy class. The number of conjugacy classes of the full Sudoku
symmetry group is intractable to work with by hand, but with nests and reduced
complete Sudoku symmetry groups there may be a less computational way to
compute this number of equivalence classes. However, there are important dif-
ferences between Shidoku and Sudoku. In the 9 × 9 Sudoku case, the size of the
full symmetry group is smaller than the number of Sudoku boards, while in the
4 × 4 Shidoku case, the size of the full symmetry group is significantly larger
than the size of the largest orbit. For Sudoku we do not even know the size of
the largest orbit. It is even possible that the full symmetry group for Sudoku is
actually minimal.

Some problems lie between Shidoku and Sudoku, for example various modu-
lar or magic Sudoku-type boards, the 6× 6 Roku-Doku boards, and boards whose
nonlinear regions are built from polyominoes (for example the CrossDoku vari-
ation from [2]). Applying orbit graphs and nest techniques could lead to finding
minimal complete symmetry groups for these intermediate examples, and bring
insight and understanding to the larger Sudoku symmetry group.
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