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algorithms for Gröbner bases. In her spare time, she enjoys
spending time with her family and riding horses.

Stephen Lucas received his B.Math from the University of
Wollongong in 1989 and his PhD from the University of
Sydney in 1994. In 2002 he received the Michell Medal for
Outstanding New Researchers from ANZIAM, Australia. He
is currently an associate professor at James Madison
University, after a postdoc at Harvard and a faculty position
at the University of South Australia. His research interests
span a wide range of topics in applied and pure
mathematics, usually with a numerical bent.

Laura Taalman received her B.S. in mathematics from the
University of Chicago in 1990, and her Ph.D in
mathematics from Duke University in 2000. Her research
includes singular algebraic geometry, knot theory, and the
mathematics of puzzles. She is currently an associate
professor at James Madison University, and is a recipient of
the MAA Trevor Evans award and the MAA Alder Award.
Laura is the author of the textbook Integrated Calculus and
the puzzle books Color Sudoku and Naked Sudoku. In her
spare time she is a total geek.

A Sudoku board is a 9 × 9 Latin square with an additional block condition. Specifi-
cally, the 81 cells of a Sudoku board are filled with the integers 1–9 in such a way that
no row, column, or designated 3 × 3 block contains repeated entries. We will refer to
these rows, columns and blocks as regions. A Sudoku puzzle is a subset of a Sudoku
board that uniquely determines the rest of the board. For example, the Sudoku puzzle
in Figure 1 is one of many puzzles whose unique solution is the Sudoku board on the
right in the same figure.

The number of possible Sudoku boards is larger than the number of stars thought
to be in the universe. Felgenhauer and Jarvis [7] showed that there are 6,670,903,752,
021,072,936,960 different Sudoku boards. Even if we wanted to count only essentially
different, nonequivalent Sudoku boards, Russell and Jarvis [13] showed that this num-
ber is also rather large, namely 5,472,730,538.

For the purposes of illustration, in this paper it will be convenient for us to work
with a simpler version of Sudoku called Shidoku. A Shidoku board is a 4 × 4 Latin
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7 1 5
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1 2 9
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1 7 3
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3 4 1
9 7 5

6 3 2

7 6 9 8 1 3 2 4 5
3 4 5 2 9 7 6 8 1
8 1 2 6 4 5 3 9 7
5 7 6 3 8 4 1 2 9
1 2 4 9 7 6 8 5 3
9 8 3 5 2 1 7 6 4
2 3 8 7 5 9 4 1 6
4 9 7 1 6 2 5 3 8
6 5 1 4 3 8 9 7 2

Figure 1. Sudoku puzzle and board.

square whose regions (rows, columns, and designated 2 × 2 blocks) each contain the
integers 1–4 exactly once. In this smaller universe, it is not that difficult to show that
there are 288 different Shidoku boards [17]. One of the things this paper will discuss
is the use of Gröbner bases as an alternate method of counting Sudoku and Shidoku
boards.

A Shidoku puzzle is a subset of a Shidoku board that uniquely determines the rest
of the board. For example, Figure 2 shows a Shidoku puzzle whose unique solution is
the Shidoku board in the center. The Shidoku board on the right shows the variable-
assignments we use for the cells of a Shidoku board throughout this paper.

4
4 2

3 1
1

3 2 1 4
4 1 2 3
2 3 4 1
1 4 3 2

a b c d
e f g h
i j k l
m n o p

Figure 2. Shidoku puzzle, board, and variables.

Many different Sudoku solving strategies have been developed and numerous com-
puter programs have been written using these strategies to solve, generate, and rate the
difficulty level of Sudoku puzzles. The Sudopedia website [16] is an excellent resource
for all things Sudoku, and includes dozens of strategies of various levels of sophistica-
tion. However, in this paper we are not interested in solution techniques, but rather in
the inherent structure of Shidoku and Sudoku puzzles and boards.

In what follows, we develop three different ways of representing the constraints of
Shidoku with a system of polynomial equations. In one case, we will explicitly show
how a Gröbner basis can be used to obtain a more meaningful representation of the
constraints. The Gröbner basis representation can be used to find puzzle solutions or
count numbers of boards.

Polynomial representations of Shidoku
There are various ways to represent the constraints in a Shidoku board as a system of
polynomials.

Sum-product Shidoku system We start with a simple, but nonetheless new, rep-
resentation based on the regions of the board. Think of the 16 cells on a Shidoku board
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as 16 variables that can each take on only the values 1, 2, 3, or 4. For each of these
variables w, we can encode this fact with a polynomial equation of the form

(w − 1)(w − 2)(w − 3)(w − 4) = 0. (1)

Now suppose that {w, x, y, z} is a set of four cells that make up a region of the Shidoku
board, that is, a row, column, or 2 × 2 block. We need to assign four different values
to these cells. It turns out that the only way to choose four numbers that sum to 10
and multiply to 24 from the set {1, 2, 3, 4} is to choose each number exactly once.
This means that we can represent the row, column, and block conditions of Shidoku
by pairs of polynomial equations of the form

w + x + y + z − 10 = 0 and wxyz − 24 = 0. (2)

Together with the previous 16 equations, this gives us a total of 40 polynomial equa-
tions that encompass the rules of Shidoku. We will call this representation of Shidoku
by polynomial equations (1) and (2) the sum-product Shidoku system. To represent a
given Shidoku puzzle using these polynomials, we simply add more equations as nec-
essary to specify any given cell values. For example, using the variable-assignments
in Figure 2 (right), we would add the equations d − 4 = 0, e − 4 = 0, g − 2 = 0,
j − 3 = 0, l − 1 = 0, and m − 1 = 0 to encode the Shidoku puzzle shown in Figure 2
(left).

Roots of unity Shidoku system We can represent Shidoku as a system of polyno-
mial equations another way, by considering pairs of cells that share a region rather than
by considering entire regions at a time. This is related to the graph coloring problem
[11]: Given a graph (a set of vertices connected by edges), assign each vertex a color
so that each pair of vertices joined by an edge has different colors. We think of each
cell of a Shidoku board as a vertex, and connect the vertices for two cells exactly when
those cells lie in a common region of the board. Now, consider a proper 4-coloring of
the vertices of this graph and think of each color as a number in the set {1, 2, 3, 4}.
This corresponds to a valid variable-assignment in Shidoku since in the graph, no two
vertices connected by an edge will be assigned the same color, and therefore on the
Shidoku board, no two cells sharing a region will be assigned the same number. Figure
3 shows the part of the graph determined by the upper-left cell on the board, and a
corresponding partial variable-assignment for Shidoku.

1 2 3 4
3 4
2
4

Figure 3. Part of the graph associated to Shidoku.

To represent Shidoku as a system of polynomial equations based on pairs of cells
that share a region (i.e., pairs of vertices connected by an edge in Figure 3), we follow
the graph coloring method of Bayer described in [11]. We start by replacing the entries
1, 2, 3 and 4 by the fourth roots of unity ±1 and ±i . (Note that the actual symbols used
on a Shidoku board have no effect on the rules or the solution.) We can now easily
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encode the fact that each cell w takes on values from the fourth roots of unity with 16
polynomial equations of the form:

w4 − 1 = 0. (3)

Now consider any two cells w and x on the Shidoku board that lie in the same row,
column, or block. We already have w4 − 1 = 0 and x4 − 1 = 0, and therefore w4 −
x4 = 0. Factoring gives (w − x)(w + x)(w2 + x2) = 0. To force w and x to take on
different values, we must have w − x �= 0, which means that we have a polynomial
equation of the form:

(w + x)(w2 + x2) = 0. (4)

Combining the 56 equations of this form with the previous 16 equations, we obtain a
total of 72 polynomial equations that represent the structure of Shidoku. We call the
representation from (3) and (4) the roots-of-unity Shidoku system. Gago-Vargas et al.
[9] take a similar approach, but their system uses integers instead of roots of unity.

Boolean Shidoku system Yet another approach is to introduce four Boolean vari-
ables w1, w2, w3, w4 for each cell on the Shidoku board, where we set wk = 1 when
cell w takes the value k, and wk = 0 otherwise. Note that we have now increased from
16 to 64 variables, each satisfying the polynomial equation:

wk(wk − 1) = 0. (5)

This actually simplifies matters, because (5) implies that w2 = w, and therefore any
power of wk can be replaced by wk during the computation of the solution of the
system of equations. Since each cell on the board can only hold one value, for any
cell w, we must have exactly one of the four associated variables wk equal to 1 and
the other three equal to 0. Because each wk can take on only the values 0 and 1, this
Boolean condition can be encoded using 16 polynomial equations of the form:

w1 + w2 + w3 + w4 = 1. (6)

Finally, we must require that any two cells w and x that lie in a common region have
different values. This means that for each possible k, at least one of xk or wk must be
0. Because we are dealing with Boolean variables, we can express this requirement on
each of the 56 pairs of cells that share a region with polynomial equations of the form:

x1w1 + x2w2 + x3w3 + x4w4 = 0. (7)

We call the system of 136 polynomials defined by (5), (6), and (7) the Boolean Shi-
doku system. Although this system involves many more variables and polynomials than
the previous two systems, there are advantages to computing in the Boolean setting.
Recent work has been done concerning these methods, in particular [3, 15].

This Boolean Shidoku system is derived from the exact cover problem [10]: Given
a set and a collection of its subsets, choose some of the subsets so that every element in
the original set is in exactly one of the subsets. Consider building a matrix where each
column is associated with an element of the original set, and each row corresponds
to a subset with xi j = 1 if element j is in subset i . Then the exact cover problem is
equivalent to choosing a collection of rows such that each column has exactly one 1
in it. One of the most efficient algorithms to solve exact cover problems is Donald
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Knuth’s Algorithm X, as implemented in an algorithm known as dancing links [12]. It
uses a backtracking, depth first, recursive approach with a particularly efficient data
structure, and has been used to construct particularly fast Sudoku solvers.

There are of course many other ways to represent Shidoku, and, similarly, Sudoku,
with systems of polynomials. For example, equations (2) can be replaced with the one
polynomial xy + xz + xw + yz + yw + zw = 35 [1]. It is Gröbner bases that will
allow us to handle these large systems of polynomials.

Gröbner basics
A Gröbner basis for a system of polynomials is a new system of polynomials with the
same solutions as the original, but which is easier to solve and often has additional
“nice” properties. An algorithm for computing Gröbner bases was first published by
Bruno Buchberger in 1965 in his Ph.D. thesis [4]. Gröbner was Buchberger’s thesis
advisor.

To define Gröbner bases precisely, we need some abstract algebra. A polynomial
ring is a set of polynomials in a certain number of variables where addition and multi-
plication of polynomials are defined in the usual way. For our purposes, the coefficients
of polynomials will come from the field Q of rational numbers. An ideal in a polyno-
mial ring is a subset of the ring that is closed under polynomial addition and closed
under multiplication by all polynomials in the ring. In other words, if I is an ideal in
a polynomial ring R, then for any polynomials f and g in I and any polynomial r in
R, the polynomials f + g and r f are also in the ideal I . An ideal can be generated by
a set of polynomials just like a vector space can be spanned by a set of vectors. For
example, if I = {r f + sg + th | r, s, t ∈ R}, then we say that f , g, and h generate I ,
and write I = 〈 f, g, h〉.

Now, given a system of polynomials, we can look at the ideal generated by these
polynomials in the polynomial ring. A Gröbner basis is a “better” generating set for
this ideal. Undergraduate mathematics students are familiar with Gröbner bases in two
simple cases. If the polynomials in the system are all linear, then the Gröbner basis for
the ideal generated by these polynomials is the new system of polynomials in eche-
lon form derived by Gauss-Jordon elimination. The new system has the same solution
set as the original system, but it is easier to solve. Also, from the new system we can
tell right away whether or not the system has one, infinitely many, or no solutions.
Buchberger’s algorithm actually generalizes the well-known process of transforming
the matrix into echelon form. A second commonly understood example of Gröbner
bases is the one-variable case. Suppose we have a system of polynomials in one vari-
able. The greatest common divisor of these polynomials is a single polynomial whose
roots encompass all common solutions to the original system. This greatest common
divisor is the Gröbner basis of the ideal generated by the original system of polynomi-
als, and once again, Buchberger’s algorithm generalizes the Euclidean algorithm for
computing the greatest common divisor.

Our Shidoku polynomial systems are more complicated, involving non-linear poly-
nomials in several variables. The first step towards finding a Gröbner bases is to es-
tablish a term ordering on the monomials. Establishing an order is also the first step in
the linear case with Gauss-Jordan elimination. When performing row reduction with
two rows, we use the leading non-zero term (pivot) of one of the polynomials to com-
bine with the other. In Gröbner basis theory we call this the leading term. Likewise, in
the one-variable case there is a natural ordering for the monomials: that of degree. In
the Euclidean algorithm, when we divide one polynomial by another, we only divide
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the first (leading) term of the polynomial with the larger degree by the first term of the
polynomial with the smaller degree; the lower-degree terms just follow along for the
ride. For general Gröbner bases computations we need to divide one multivariate poly-
nomial by another. We do this in the same way as in the one-variable case, by dividing
just the leading terms. The term ordering that we choose determines the leading terms
of the polynomials.

The term ordering that we use in this paper is the lexicographical term ordering,
abbreviated Lex. Lex is almost exactly as it sounds; it is a dictionary ordering where
a’s beat b’s and c’s and the more the better. For example, if we have variables x , y, and
z and choose to order the variables as x > y > z, then xy >Lex yz, xy >Lex xz2, and
x2 >Lex x . There are many other orderings on monomials that can be defined—in fact,
infinitely many! For more information on term orderings and optimization see [5].

Given a chosen term ordering (in our case, Lex), the leading term of a polynomial
f will be denoted lt( f ). This leading term can be broken down into the leading coef-
ficient lc( f ) and the leading power product lp( f ), so that lt( f ) = lc( f )lp( f ). Given
any set S of polynomials in a polynomial ring, we define the leading term ideal of
S to be the ideal Lt(S) generated by the leading terms of the polynomials in S, or
Lt(S) = 〈lt( f )| f ∈ S〉. Note that the leading term ideal of a set of polynomials is not
necessarily equal to the leading term ideal of the ideal generated by that set of poly-
nomials. For example, if S = {x, x + 1} then Lt(S) = 〈x〉, but if I = 〈x, x + 1〉, then
x + 1 − x = 1 ∈ I . So Lt(I ) = 〈1〉 = R. When the leading term ideal of a set S of
polynomials is equal to the leading term ideal of the ideal I generated by S, we say
that S is a Gröbner basis for the ideal I . In other words, a set of non-zero polynomials
G = {g1, g2, . . . , gt} ⊆ I is called a Gröbner basis for I if and only if Lt(G) = Lt(I ).

Why is a Gröbner basis “better” than other generating sets for an ideal? One of
the reasons is that if G is a Gröbner basis for an ideal I , then there is a simple way
to use G to determine whether or not a given polynomial f is in the ideal I . This is
done by the process of reduction. Given a polynomial f1 we can reduce f1 by f2 by
dividing f1 by f2 (that is, writing f1 = g f2 + r1 for some polynomials g and r1 with
deg r1 < deg f2) and replacing f1 by the remainder r1. Note that f1 can be divided by
f2 exactly when lt( f2) divides lt( f1). Note also that if f1 reduced by f2 gives remainder
r1, then f1 − α f2 = r1. This means that given any polynomial f , if one can reduce f
by the polynomials in G until 0 is reached, then f must be in the ideal I . On the other
hand, if in the process of reduction a polynomial is reached whose leading term is not
divisible by any of the leading terms of polynomials in G, then f cannot be in the ideal
I . Thus a Gröbner basis answers the “Ideal Membership Problem” in this situation.

Buchberger’s algorithm guarantees the existence of a Gröbner basis for a given
ideal and term order. The easiest way to find a Gröbner basis is to use a symbolic
manipulation package such as Maple, Mathematica, CoCoA, GP/Pari, etc. All these
systems employ Buchberger’s algorithm. The interested reader can learn more about
Gröbner bases and Buchberger’s algorithm in [2], [5], or [8].

Thinking back to our goal of investigating Shidoku via analysis of polynomial sys-
tems, we can use Gröbner bases to obtain a simpler generating set of polynomials for
either the sum-product system, the roots of unity system, or the Boolean system. If
we include additional polynomials to represent the given values in a Shidoku puzzle,
and that puzzle has a unique solution, then the system of polynomials is completely
determined. The resulting Gröbner basis will consist of 16 linear polynomials that
explicitly identify the solution. (In other words, Buchberger’s algorithm provides us
with a Shidoku solver, although not necessarily the most efficient one.) If we start
with an inconsistent set of given values for which no solution board is possible, then
the Gröbner basis will consist of the single polynomial 1, representing the impossible

106 © THE MATHEMATICAL ASSOCIATION OF AMERICA



equation 1 = 0. If we start with too few given values to guarantee a unique solution,
then the system will be underdetermined, and the Gröbner basis will consist of (pos-
sibly) some explicit solutions and some polynomials. If we do not add any additional
polynomials to represent given values, then the resulting system will be a model for
the structure of the Shidoku board itself.

As an example, consider the sum-product system defined by equations (1) and (2).
As in Section , we use the variables a, b, c, . . . , p (from upper left to lower right)
for the 16 cells on the Shidoku board. We use Lex term ordering with variables in
reverse order p > o > n > · · · > a. We choose the Lex ordering because of a very
useful and well-known theorem in Gröbner basis theory (see Corollary 2.2.11 in [2]):
Given a system of polynomial equations with a finite number of solutions, the reduced
Gröbner basis for the ideal generated by these polynomials using the lexicographical
term ordering is triangular.

Having a triangular set of polynomials is similar to having echelon form. For ex-
ample, if G is a Gröbner basis in 16 variables a < b < c < · · · < p, then the theorem
above says that the polynomials of G can be ordered as {g1, g2, . . . , gs}, s ≥ 16, in
such a way that g1 involves only the smallest variable a, g2 involves only a and b and
has leading term involving only b, g3 involves only a, b, and c with leading term in-
volving only c, and so forth until g16. There may be more than 16 polynomials in G,
but the first 16 will be in a form that allows us to solve the system of equations by back
substitution.

Figure 4 shows the Gröbner basis for the ideal generated by the sum-product Shi-
doku system with no given values, as computed using Maple 12. Since Gröbner bases
are all about the leading terms, we have omitted a large number of lower terms in
several of the polynomials. Note that the Gröbner basis algorithm has reduced our
generating set of 40 polynomials to a Gröbner basis of 17 polynomials. Even more
importantly, the first 16 of the 17 polynomials are in triangular form. As we will see
in the next section, this triangular Gröbner basis can be used to shed light on certain
counting problems in Shidoku.

p1 = a4 − 10a3 + 35a2 − 50a + 24
p2 = b3 + b2a + lower terms
p3 = c2 + bc + lower terms
p4 = d + c + b + a − 10
p5 = e2 + lower terms
p6 = f + e + b + a − 10
p7 = g2 − gb − ga + ab
p8 = h + g − b − a

p9 = i2 + lower terms
p10 = j2 − je − ja + ae
p11 = 18k + lower terms
p12 = 18l + lower terms
p13 = m + i + e + a − 10
p14 = n + j − e − a
p15 = 18o + lower terms
p16 = 18p + lower terms
p17 = 9g j + lower terms

Figure 4. Gröbner basis for the sum-product Shidoku system with no given values.

Counting boards using Gröbner bases
Although it is not that difficult to use simple counting methods to determine that there
are exactly 288 different possible Shidoku boards, the same calculation in the 9 × 9
Sudoku case is not possible by hand, and requires significant computer time. In this
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section, we explore how Gröbner bases can be used to count boards in the 4 × 4 Shi-
doku case. Similar methods may prove useful for counting boards of larger dimension.

If we were to count the number of Shidoku boards by hand, we might begin by
counting choices starting from the upper-left corner. In that upper-left corner we have
4 choices for a. Once a is chosen we have 3 choices for b, and then 2 choices for c and
only 1 choice for d. Moving to the next row, the previous choices of a and b only allow
2 choices for e, and then 1 choice for f . This means that there are 4 · 3 · 2 · 1 · 2 · 1 =
48 ways to fill in the first six cells on the board; see Figure 5.

(4)(3)(2)(1)

(2)(1)

Figure 5. Counting the number of ways to fill the first six cells.

An examination of the leading terms in the Gröbner basis in Figure 4, shows that
the six numbers we just used for counting are in fact the powers in the leading terms of
the polynomials p1 to p6 in that basis! This interesting pattern can be explained alge-
braically. As we will see, none of the polynomials in the Gröbner basis have repeated
roots. Hence, since p1 is quartic, the equation p1 = 0 has four possible solutions. Since
p1 only involves a, there are four choices for a. Once a choice for a is made and substi-
tuted in p2, the equation p2 = 0 only involves b and is cubic. Therefore there are three
possible choices for b. In this way, moving through the first six polynomials p1 to p6

in the Gröbner basis we can simply multiply leading term degrees to obtain the same
result of 4 · 3 · 2 · 1 · 2 · 1 = 48 solutions (a, b, c, d, e, f ) for the first six variables.

This reasoning seems to suggest that in determining the number of possible Shi-
doku puzzles, we need only multiply the degrees of the Gröbner basis elements. If we
naively did this, we would calculate that there are 384 possible Shidoku boards. But
the actual answer is 288. What went wrong? Well, remember p17? This polynomial
has a leading term containing both g and j , which represents a branching effect that
occurs when we count past the sixth cell in the puzzle.

Counting, again by hand and looking at the board, suppose we have filled in one
of the 48 possible arrangements for the first six cells on the board. One such choice is
shown in Figure 6, with (a, b, c, d, e, f ) = (1, 2, 3, 4, 3, 4). We have a choice of two
values for the g cell, either g = 1 or g = 2. If we choose g = 1, then the next cell is
determined as h = 2, and another choice arises at cell i , where we can have i = 2 or
i = 4. Each of these choices for i leads to two possible solution boards, as shown in
Figure 6. Note that with the choice of g = 1 there are two choices for j after choosing
i .

1 2 3 4
3 4

1 2 3 4
3 4 1© 2
2© 1 3 4 3 1

4 3 1 2 1 3

1 2 3 4
3 4 1© 2
4© 1 3 2 3 1

2 3 1 4 1 3

Figure 6. Four possible solutions when g = 1.

Now consider what happens if we back up and instead make the choice g = 2. This
time h = 1, but again i = 2 or i = 4. This time, each of these choices for i leads to
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just one possible solution board, as shown in Figure 7. Note that with this choice of g
there is only one choice for j .

1 2 3 4
3 4

1 2 3 4
3 4 2© 1
2© 1 4 3
4 3 1 2

1 2 3 4
3 4 2© 1
4© 3 1 2
2 1 4 3

Figure 7. Two possible solutions when g = 2.

From the work above we see that there are 48 · 1 · 2 · 2 = 192 different Shidoku
boards that are equivalent (up to permutation of symbols) to those we found in the g =
1 calculation above, and 48 · 1 · 2 · 1 = 96 different Shidoku boards that are equivalent
(up to permutation of symbols) to the g = 2 case above. This gives us a total of 288
possible different Shidoku boards.

Of course the branching that happened in the calculation above is much more com-
plicated in the 9 × 9 Sudoku case, so counting solutions by hand will not be feasible
in that larger case. It turns out that we can use a Gröbner basis to count the solu-
tions. Let J be the ideal generated by the Gröbner basis, G = {p1, . . . , p17}. To count
the number of solutions to the system of polynomial equations p1 = 0, . . . , p17 = 0,
and hence, the number of Shidoku boards, we can simply count the number of power
products that are not divisible by any of the leading power products of G. The nice
triangular Lex Gröbner basis will assist us with this. The reason that we can do this
involves a bit of algebra and Gröbner basis theory.

Our ideal, J , is zero-dimensional which means that there are only a finite number of
solutions to the system of polynomial equations, p1 = 0, . . . , p17 = 0. Because each
variable can take on only 4 values, we have at most 416 possible solutions. Furthermore,
J is what is known as a radical ideal, meaning that given any polynomial f such that
some power of f is in J , then f is also in J . For example, the ideal 〈x2, y2〉 is not
radical, since x and y are not in the ideal. But the ideal 〈x, y〉 is radical. The fact that
the sum-product Shidoku and Sudoku ideals are radical is well known (see Proposition
2.7 in [6]). This fact is what allowed us to assume that we had no repeated roots in the
beginning of our Gröbner basis counting argument above.

Since our Shidoku ideal J is zero-dimensional, a well-known theorem in Gröbner
basis theory (see Proposition 2.1.6 in [2]) allows us to conclude that a basis for the Q-
vector space Q[a, b, . . . , p]/J consists of the cosets represented by the power prod-
ucts that are not divisible by any leading power product of G. Furthermore, since our
ideal J is radical, Proposition 2.10 in [6] says that the dimension of this vector space
is in fact the number of solutions to the system of polynomials. A similar argument is
outlined in [9].

While this may sound complicated and technical, in practice it is not that bad! In
order to find the number of possible Shidoku boards, we just need to count the power
products that are not divisible by any leading power product of G. Let’s do that.

Recall that our Gröbner basis was computed with Lex and a < b < · · · < p. The
nice format of the Lex Gröbner basis will make our task easy. Consider the first poly-
nomial p1 = a4 − 10a3 + 35a2 − 50a + 24 in Figure 4. This is the only polynomial
in the basis whose leading term is entirely in a, and therefore a, a2 and a3 are power
products that are not divisible by any leading power product of a Gröbner basis poly-
nomial. a4, a5, a6 and so on, are divisible by a4 and are not counted. The polynomial
p2 has leading term b3 and is the only polynomial in the Gröbner basis whose leading
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term is in b, so b2 and b are also power products that are not divisible by any leading
power product of a Gröbner basis polynomial. Putting these together we can also add
things like a3b2, a3b, a2b2, a2b, and so on, to our list of power products that are not
divisible by any leading power product in the Gröbner basis.

So, how many of these types of power products do we have? Any such power prod-
uct is of the form ar1 br2 · · · pr16 , and by the argument above we have 4 choices for r1

(corresponding to the choices a0 = 1, a1, a2, and a3). Similarly we have 3 choices for
r2, 2 choices for r3, 1 choice for r4, and so on through p16 in the Gröbner basis. The
resulting product of choices so far is 4 · 3 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 2 · 1 · 1 · 1 · 1 · 1 · 1 =
384, but p17 whose leading term is 9g j still needs to be considered. We need to remove
all of the power products that are divisible by g j from our list. How many of these are
there? Each of these non-allowable power products are of the form ar1 br2 · · · pr16 with
r7 = 1 and r10 = 1, so there are 4 · 3 · 2 · 1 · 2 · 1 · 1 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 96
possible such power products to be removed from our list. This leaves 384 − 96 = 288
power products not divisible by any leading term in the Gröbner basis, and thus a count
of the 288 different possible Shidoku boards.

Other directions
We have seen how to represent the constraints of Shidoku as a system of polynomial
equations, find an associated Gröbner basis for the ideal generated by that system, and
use this Gröbner basis to both solve Shidoku puzzles and count the number of Shidoku
boards. The natural extension of this work is to reproduce it for 9 × 9 Sudoku. The
roots-of-unity and Boolean Shidoku systems can be extended to Sudoku systems in
an obvious way. Gago-Vargas et al. [9] have successfully solved Sudoku puzzles us-
ing a form of the roots-of-unity system in cases with a large number of given values.
Without any given values, however, finding a Gröbner basis for Sudoku systems with
these methods is beyond the capabilities of a typical desktop computer. An interest-
ing approach worth considering is the special case of Boolean Gröbner bases, where
Buchberger’s algorithm is modified to make use of the fact that variables can only take
the values 0 or 1. The work of Bernasconi et al. [3] and Sato [15] suggests that the
computational cost of finding Gröbner bases in the Boolean case is greatly reduced,
and Sato’s conference presentation [14] suggests that puzzles with a unique solution
could be solved very quickly with Boolean methods.

Our tests with the sum-product system for Shidoku suggest that this new formula-
tion is a useful one in terms of computational efficiency—if only because the initial
number of polynomial equations is relatively small. Extending it to Sudoku requires
some alterations however. There is more than one choice of a selection of nine (not
necessarily distinct) integers from the set {1, 2, . . . , 9} that sum to 45 and add to
362880, namely {1, 2, 3, 4, 5, 6, 7, 8, 9} and {1, 2, 4, 4, 4, 5, 7, 9, 9}. It turns out that
{−2, −1, 1, 2, 3, 4, 5, 6, 7} is the smallest (in magnitude) set of nine integers for which
the only way for nine elements of the set to have the sum and product of the set is to
choose each number exactly once. Thus for Sudoku, equation (1) is replaced by

(w + 2)(w + 1)(w − 1)(w − 2)(w − 3)(w − 4)(w − 5)(w − 6)(w − 7) (8)

for each of the 81 cells w on the board, and equation (2) is replaced by

9∑
k=1

xk − 25 = 0 and
9∏

k=1

xk − 10080 = 0 (9)
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for each set of cells {x1, . . . x9} that make up a row, column, or block region of the
board.

There are a large number of open Sudoku problems, including the minimum givens
problem, which asks for the smallest number of given values that can completely de-
termine a Sudoku board. It is conjectured that 17 is this minimum number, and many
Sudoku puzzles with unique solutions from 17 givens are known. Despite extensive
computational searches by many people, no valid 16-givens puzzle has been found.
Computationally, enumerating all 16-givens possibilities is not realistically feasible.
This is where the potential power of the Gröbner basis approach is so appealing. The
Gröbner basis techniques outlined in this paper do more than just provide a Sudoku
solver. They allow us to represent the inherent structure in the rules of Sudoku in a
compact way.

Summary. In this paper we use Gröbner bases to explore the inherent structure of Sudoku
puzzles and boards. In particular, we develop three different ways of representing the con-
straints of Shidoku with a system of polynomial equations. In one case, we will explicitly
show how a Gröbner basis can be used to obtain a more meaningful representation of the
constraints. The Gröbner basis representation can be used to find puzzle solutions or count
numbers of boards.

References

1. Comment by anonymous reviewer.
2. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol.
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Proof Without Words: Harmonic Mean < Geometric Mean <
Arithmetic Mean < Root Mean Square < Contraharmonic Mean

Sidney Kung (sidneykung@yahoo.com), Cupertino, CA 95014

AM = a + b

2
, GM = √

ab, HM = 2ab

a + b
, CH = CM − HM = a2 + b2

a + b

RC = √
CA · CH =

√
a + b

2

√
a2 + b2

a + b
=

√
a2 + b2

2

a > b > 0 ⇒ b <
2ab

a + b
<

√
ab <

a + b

2
<

√
a2 + b2

2
<

a2 + b2

a + b
< a

HM < GM < AM < RC < CH

Also,

CH − AM = AH = AM − HM.

(That is, the contraharmonic mean exceeds the arithmetic mean by the same
amount that the arithmetic mean exceeds the harmonic mean.)
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