- 2. Your first LATEX assignment is to use LATEX to produce a document that replicates this one as exactly as possible, with just two differences: First, replace the class section number and name above with your own. Second, make the following letter substitutions so that I know that you did not just photocopy this document: in Problems 3 and 5, change each m to n; in Problem 8, change each c to b. Your grade on this assignment will be based on how much your paper looks like this one.
- **3.** Prove that every integer that is divisible by 6 is even.

Proof. Suppose $m \in \mathbb{Z}$ is divisible by 6. Then there is some $k \in \mathbb{Z}$ such that m = 6k. Therefore m = 2(3k), and since 3k is also in \mathbb{Z} , this means that m is divisible by 2 and therefore that m is even.

5. Define $A = \{m \in \mathbb{Z} \mid m^3 - m^2 - 6m = 0\}$. Prove that if $m \in A$ then m = -2, 0, or 3.

Proof. Let $A = \{m \in \mathbb{Z} \mid m^3 - m^2 - 6m = 0\}$. Note that

$$m^3 - m^2 - 6m = m(m^2 - m - 6)$$
 (factor out an m)
= $m(m+2)(m-3)$. (factor the quadratic)

Therefore if $m \in A$ then m(m+2)(m-3) = 0, and therefore m must be equal to one of -2, 0, or 3.

8. Prove that if $a, c \in \mathbb{R}$ with $a \leq c$ then $[c, \infty) \subseteq [a, \infty)$.

Proof. Suppose $a \leq c$ in \mathbb{R} . For all $x \in \mathbb{R}$,

$$x \in [c, \infty) \Longrightarrow x \ge c$$

$$\Longrightarrow x \ge c \ge a \qquad (c \ge a \text{ by hypothesis})$$

$$\Longrightarrow x \ge a \qquad \text{(transitivity)}$$

$$\Longrightarrow x \in [a, \infty).$$

Therefore we have $[c, \infty) \subseteq [a, \infty)$.