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Time Series Analysis

Bispectral-Based Goodness-of-Fit
Tests of Gaussianity and Linearity

of Stationary Time Series
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Spectral domain tests for time series linearity typically suffer from a lack of power
compared to time domain tests. We present two tests for Gaussianity and linearity of
a stationary time series. The tests are two-stage procedures applying goodness-of-fit
techniques to the estimated normalized bispectrum. We illustrate the performances of
the tests are competitive with time domain tests. The new tests typically outperform
Hinich’s (1982) bispectral based test, especially when the length of the time series
is not large.

Keywords Bispectral density function; Frequency domain analysis; Testing time
series linearity.

Mathematics Subject Classification 62-07; 62G10; 62G20; 62M10; 62M15;
91B84.

1. Introduction

Contrary to only 30 years ago, the analysis of a time series realization as being
from a nonlinear process is no longer uncommon. Many examples appear in the
literature with the series being one that is commonly accepted as a realization
from a nonlinear dynamic process (see, for example, Tong, 1990). The explosion
of parametric and nonparametric methods for nonlinear time series analysis
encourages the use of nonlinear models when they are appropriate. However, the
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Testing Time Series Gaussianity and Linearity 3217

principle of parsimony should always apply. And so, although it is possible to
analyze a time series via more complicated nonlinear techniques, if a linear model
will suffice, then linear time series analysis methods should be used. All of that being
said, it is desirable to have reliable methods for testing the linearity of a time series.

In general, tests for time series linearity can be classified into one of two broad
categories: parametric time domain tests or nonparametric frequency domain tests.
In general, the time domain tests are parametric in that the alternative hypothesis
designates a specific nonlinear model (e.g., Tsay, 1986, 1989), or a class of nonlinear
models (e.g., Tsay, 1991). In contrast, frequency domain tests (e.g., Hinich, 1982;
Subba Rao and Gabr, 1980) are nonparametric with an alternative specifying only
that the underlying time series model is nonlinear. Due in large part to their
parametric nature, time domain tests typically outperform the existing frequency
domain tests, especially when the underlying model generating the realization is
that model specified in the alternative hypothesis. Moreover, the power of spectral
domain tests has been shown to be heavily dependent upon the choice of smoothing
parameters used in estimating the spectral quantities that make up the test statistics
(Chan and Tong, 1986). On the other hand, Harvill (1999) showed frequency
domain tests can outperform time domain tests when the model in the time domain
alternative is misspecified. Additionally, exploiting the properties of the bispectrum
has proven a useful tool in many time series problems; see, for example, Hinich and
Rothman (1998), Barnett et al. (1997), or Hinich and Messer (1995).

Motivated by the asymptotic sampling distribution of twice the square modulus
of the estimated normalized bispectrum, Z2

2 say, we develop a two-stage, bispectral-
based, goodness-of-fit test for the Gaussianity and linearity of a time series. The
two-stage approach was first proposed by Subba Rao and Gabr (1980) and later
by Hinich (1982). Between the two, Hinich’s test has long been preferred. For
both tests, as well as the test we propose, the null hypothesis for the first stage
of the test is that the time series is Gaussian. If rejected, the test proceeds to the
second stage. In this stage, the null hypothesis is that the time series is linear,
but not Gaussian. Hinich’s test statistic for linearity computes p-values based
on approximate normality of the standardized difference of quantiles (e.g., the
interdecile range) of the Z2

2 across frequencies on a lattice. Harvill and Newton
(1995) and Harvill (1999) discussed two primary short-comings with Hinich’s
approach. First, using the difference of quantiles relies on bispectral estimates at
only two frequency pairs (those included in the difference), thus effectively ignoring
information contained in the other quantiles. Second, even for a reasonably long
time series, the number of frequency pairs in the lattice is small (this is illustrated
further in Sec. 5). The small number of frequency pairs necessarily implies that
applying normal approximation to the distribution of the difference is questionable
practice, and can result in an inflated Type I error probability.

The remainder of the article is organized as follows. In Sec. 2, the normalized
bispectral density function is defined, and expressions are developed for the
normalized bispectrum when the time series is Gaussian or linear. Section 3 contains
a brief discussion of estimating the spectral quantities and the asymptotic properties
of the estimators. Based on these properties, the proposed two-stage bispectral-
based goodness-of fit test is developed in Sec. 4. In Sec. 5, an empirical study is
provided for comparing the performance of the proposed test to existing time and
frequency domain tests.
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3218 Jahan and Harvill

2. Bispectral Density Function

The zero mean process �Xt � t ∈ ��, where � represents the set of integers, is linear
if admits the representation

Xt =
�∑
j=0

�j�t−j�

where
∑�

j=0 �
2
j < � and the ��t� is an i.i.d. sequence with finite constant variance �2

�.
Under the additional restriction that the process is up to third-order stationary, the
autocovariance function and third-moment function can be defined as

�v = E	XtXt+v
 and �u�v = E	XtXt+uXt+v
�

respectively. Furthermore, if
∑�

v=−� ��v� < �, the spectral density function of �Xt�
exists and is defined as

I��
 =
�∑

v=−�
�ve

−2�iv� for � ∈ 	0� 1
� (1)

Symmetries allow us to restrict our consideration of I��
 to � ∈ 	0� 0�5
.
If it can be further assumed that the process �Xt� is up to sixth-order

stationary, and if the third-moment function is absolutely summable, i.e.,∑�
u=−�

∑�
v=−� ��u�v�<�, then the bispectral density function of �Xt� is the bivariate

analogue of (1) given by

I��1� �2
 =
�∑

u=−�

�∑
v=−�

�u�ve
−2�i�u�1+v�2
� ��1� �2
 ∈ 	0� 1
× 	0� 1
� (2)

By again taking note of symmetries, the area of the domain of the bispectrum can be
reduced by a factor of 1/12 to a principal domain of � = ���1� �2
 � 0 ≤ �2 ≤ �1 ≤
0�5, �1 ≤ �1− �2
/2�. Finally, the normalized bispectrum is the function Z��1� �2

defined by

Z��1� �2
 =
�I��1� �2
�2

I��1
I��2
I��1 + �2

� ��1� �2
 ∈ �� (3)

For purposes of clarification, we note that the principal domain of I��1� �2) is not
quite so simple if �X�t
� is a discrete-time realization with sampling rate �−1 (where
�−1 = 1) of a continuous-time process that is third-order stationary with band
limit �0 ≤ �2�
−1. In this case, the continuous-time support set of I��1� �2
 is the
isosceles right-triangle ���1� �2
 � 0 ≤ �1 ≤ �0� �2 ≤ �1� �1 + �2 = �0�. However,
the principal domain of the discrete-time bispectrum is a larger area consisting
of two adjoining triangles: the isoceles triangle ���1� �2
 � �2 ≤ �1� 0 ≤ �1 + �2 ≤
�2�
−1� and the odd triangle ���1� �2
 � �2 ≤ �2� �2�


−1 ≤ �1 + �2 ≤ �−1 − �1�.
For details, see Hinich and Wolinsky (1988) or Hinich and Messer (1995).

It is well known that if �Xt� is linear, then the spectral density function in (1)
reduces to

I��
 = �2
� �H��
�2�
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Testing Time Series Gaussianity and Linearity 3219

where H��
 = ∑�
j=0 �je

−2�ij� is the transfer function (Priestley, 1981). Furthermore,
it is not difficult to prove that under linearity, the bispectral density function in (2)
reduces to

I��1� �2
 = �3H��1
H��2
H
∗��1 + �2
�

where �3 is the third moment of the series �, and ∗ denotes complex conjugate.
Combining these two results, if the process �Xt� is linear, then the normalized
bispectral density function defined in (3) is simply

Z��1� �2
 =
�2
3

�6
�

for all ��1� �2
 ∈ �� (4)

This fundamental property is the basis of frequency domain tests for the Gaussianity
and linearity of a time series.

Inspection of (4) also yields a quick explanation for the two-stage nature of
frequency domain tests. Note that if the series X is linear, and the distribution of the
innovations � is symmetric, then �3 = 0, and Z��1� �2
 ≡ 0 for all frequency pairs.
It is often the case that the symmetric distribution of the � is interpreted as the
innovations are Gaussian, although that is unnecessarily restrictive. On the other
hand, if the series X is linear and the distribution of the noise is not symmetric, then
the normalized bispectrum is a non-zero constant equal to �2

3/�
6
� for all frequency

pairs.

3. Estimating Spectral Quantities

Let Xt� t = 1� � � � � n represent a realization of a zero-mean sixth-order stationary
process �Xt�. The estimators of the autocovariance and third-moment function
functions are

�̂�v
 = 1
n

n−�v�∑
t=1

XtXt+v and �̂�u� v
 = 1
n

n−s∑
t=1

XtXt+uXt+v�

where s = max�0� u� v�.
To estimate I��
 and I��1� �2
, the sets of (continuous) frequencies on which

the two functions are defined are discretized to the set of natural frequencies
�j = �j − 1
/n. For estimating I��
� j = 1� � � � � 	n/2
+ 1, where 	r
 is the greatest
integer value of r. For estimating I��1� �2
, the set of frequency pairs ��j� �k

is defined in the triangular grid, D = ���j� �k
 � 1 ≤ k ≤ j ≤ 	n/2
+ 1� 2j + k−
3 ≤ n�. Crude estimates of the spectral quantities are then the discrete Fourier
transforms.

Let ���
 be a one-dimensional lag window satisfying ��0
 = 1 and the symmetry
condition ���
 = ��−�
; let ���1� �2
 be a two-dimensional lag window that satisfies

���1� �2
 = ���2� �1
 = ��−�1� �2 − �1
 = ���1 − �2�−�2
 = ���1
���2
���1 − �2
�

For some truncation point M , estimators of the spectral quantities are defined by

Î��j
 =
M∑

v=−M

�

(
v

M

)
�̂�v
e−2�iv�j � �j ∈ 	0� 0�5
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3220 Jahan and Harvill

and

Î��j� �k
 =
M∑

u=−M

M∑
v=−M

�

(
u

M
�
v

M

)
�̂�u� v
e−2�i�u�j+v�k
� ��j� �k
 ∈ D� (5)

It is well known that, under very general conditions, Î��j
 is asymptotically normal
(see, for example, Priestley, 1981).

From Van Ness (1966) and Brillinger and Rosenblatt (1967), we have that

E	̂I��j� �k

 = I��j� �k
+ O�n−1
�

Thus

Z2
2�j� k
 = 2�Ẑ��j� �k
�2 =

�̂I��j� �k
�2
Î��j
̂I��k
̂I��j + �k


(6)

converges in distribution to a non central �22��
, where the non centrality parameter

� = 2KI��j� �k
�

where the constant of proportionality K depends upon M and

�2 =
∫ �

−�

∫ �

−�
�2�u� v
 du dv�

See, for example, Hinich (1982), Brockett et al. (1988), or Hinich and Wolinsky
(1988).

4. Goodness-of-Fit Test for Gaussianity and Linearity

Generally speaking, goodness-of-fit (GOF) tests are used to determine the likelihood
that a random sample was selected from a specified distribution function F�x� �
.
The parameter vector � may be completely specified or may contain unknown
parameters. Traditional GOF tests are based on popular forms of F�x� �
, such as,
the uniform, normal, exponential, or gamma distributions.

Let Fn�x
 denote the empirical distribution function (EDF). Then the general
EDF test statistic of quadratic class, defined as

T = n
∫ �

−�
	Fn�x
− F�x� �

2��x
 dF�x� �
 = �Fn�x
− F�x� �
��

is a measure of agreement between the EDF and the underlying distribution
function F�x� �
. Well-known forms of the EDF test statistic include the Cramér–
von Mises (CVM) statistic (��u
 = 1) and the Anderson–Darling (AD) statistic
(��u
 = F�u� �
	1− F�u� �

−1). For the aforementioned popular null distributions,
a number of methods have been developed for computing the CVM, AD, and other
EDF statistics. (See, for example, D’Agostino and Stephens, 1986.)

To apply EDF GOF statistics to testing time series Gaussianity and linearity, we
proceed in two stages. In the first stage, the null hypothesis is that the time series is
Gaussian. Under Gaussianity, the non centrality parameter � of the distribution of
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Testing Time Series Gaussianity and Linearity 3221

Z2
2�j� k
 is identically zero for all j� k, and so the distribution reduces to exponential

with mean 2. Therefore, applying the GOF approach to test Gaussianity of the
time series is equivalent to testing that the sampling distribution of Z2

2�j� k
 is
exponential(2). In contrast, Subba Rao and Gabr (1980) and Hinich (1982) relied
on

∑
�j�k
∈D Z2

2�j� k
, which is approximately �22P under Gaussianity (P representing
the number of frequency pairs in �). Subba Rao and Gabr use the sample estimate
of the variance–covariance matrix of Î , while Hinich uses the asymptotic variance–
covariance matrix. For all three procedures, if the null hypothesis is rejected, then
the Gaussian null is rejected. If not, then the process may be non Gaussian, but the
bispectral estimates are consistent with a zero bispectrum.

If Gaussian null is rejected, the test proceeds to the second stage, which has a
null hypothesis stating that the time series is linear (although not Gaussian). Under
this hypothesis, the constancy of

Z��1� �2
 =
�2
3

�6
�

for all ��1� �2
 ∈ ��

can used to develop a test for linearity. The approach taken by Subba Rao and Gabr
is that of an F test, which is not robust to outliers. As previously mentioned, Hinich
proposed using a standardized difference of quantiles of the Z2

2�j� k
. We propose a
GOF EDF test. However, having as the non central �22��
 as the null distribution
results in an problem for which finding the null distribution of the EDF statistic is
intractable.

Faced with this situation, we apply a robust transformation from non central
�2� ��
 to standard normal. The primary advantage of this is to have available
the known critical values for both Anderson–Darling and Cramér-von Mises test
statistic under a standard normality. Abdel-Aty (1954) provided an approximation
for non central �2� ��
 to standard normal by equating the skewness and kurtosis
of the transformed normal variable to that of the non central �2� ��
 distribution.
Specifically, if X ∼ �2� ��
, then

Y =
(

X

�+ �

)h

(7)

with h = 1/3 is approximately standard normal. In 1959, Sankaran suggested taking
h in (7) to be

h = 1− 2r��+ 3�

3s2

� (8)

where r = �+ � and s = �+ 2�, proving that Y has an approximate normal
distribution with mean and variance given, respectively, by

�Y = 1+ h�h− 1

s

r2
− h�h− 1
�2− h
�1− 3h


s2

2r4
� (9)

�2
Y = h2 2s

r2

[
1− �1− h
�1− 3h


s

r2

]
� (10)

Johnson et al. (1995) provided a numerical comparison of upper and lower 5%
points of a good number of normal approximations of the non central �2, including
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3222 Jahan and Harvill

the Abdel–Aty with h = 1/3 and the approximation by Sankaran (1959). Their
numerical comparison indicates Sankaran’s approximation is most accurate in the
tails. Empirical studies have shown that �Y − �Y 
/�Y converges in distribution to
N�0� 1
 as long as �̂ is a consistent estimator of � (Jahan 2006, 2006). Applying this
transformation to the Z2

2�j� k
 yields that testing the linearity of the (non Gaussian)
time series is equivalent to testing the null that the transformed Z2

2 have a standard
normal distribution. Under the null hypothesis, a consistent estimator of the non
centrality parameter � for use in computing (8), and hence (9) and (10) is

�̂ =
{
x̄ − �� if x̄ > ��

0� if x̄ ≤ ��
(11)

If we let Q�i
 denote the quantiles computed from the order statistics of the
Z2
2�j� k
, then the Cramér–von Mises statistic may be computed using

W 2 = 1
12P

+
P∑
i=1

[
Q�i
 −

�2i− 1

2P

]2

� (12)

and the Anderson–Darling test statistic can be computed using

A2 = −P − 1
P

P∑
i=1

�2i− 1
	logQ�i
 + log�1−Q�P+1−i


�

Finally, since both mean and variance of the transformed random variable are
unknown, the modified Anderson–Darling test statistic

A2
∗ = A2

(
1+ 3

4P
+ 9

4P2

)
� (13)

should be compared to the to the appropriate upper-tail critical value.
To summarize, the bispectral-based goodness-of-fit testing procedure is as

follows.

Stage 1. Testing Gaussianity.

1. Compute the estimator of twice the square modulus of the normalized bispectrum
Z2
2, as defined in Eq. (6).

2. Apply GOF test of exponential(2) to Z2
2. This is equivalent to testing a null

hypothesis of a symmetric error distribution, which is usually interpretted as time
series Gaussianity.

3. If the null is not rejected, then stop. Otherwise, proceed to the second stage of
testing.

Stage 2. Testing linearity of a series with non Gaussian errors.

1. Apply the transformation described in Eqs. (7)–(10) to Z2
2 using �̂ as defined in

Eq. (11) as an estimate of the non centrality parameter
2. Compute GOF statistic for normality; the Cramér–von Mises statistic is given by

Eq. (12) and the Anderson–Darling statistic by (13).
3. Compare GOF statistic to appropriate upper-tail critical value.
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Testing Time Series Gaussianity and Linearity 3223

5. Comparison to Existing Tests

In application, estimation of Z��1� �2
 is accomplished by taking the lag window
��u� v
 to be rectangular with width M = nc� 1/2 ≤ c ≤ 1. The value of c controls
the trade-off between bias and variance. This closely follows the procedure in
Hinich (1982). Specific expressions for the asymptotic variance–covariance matrix
are found within. Ashley et al. (1986) presented a simulation study that illustrates
optimal values of c, with values closer to c1/2 performing better for Hinich’s test.
Accordingly, we take c = 5/8. Construct a lattice

� =
{(

�2�− 1
M
2n

�
�2� − 1
M

2n

)
� � = 1� � � � � � and

� ≤ n/�2M
− 	�/2
+ 0�75
}
∈ D�

Then for each frequency pair ��2�− 1
M/�2n
� �2� − 1
M/�2n

 ∈ �, the estimated
bispectral density function Î�·� ·
 is simply an average of the bivariate Fourier
transforms at the natural frequencies in a square of M2 points centered at
��2�− 1
M/�2n
� �2� − 1
M/�2n

, if all the M2 points are in �. If a square has
points outside the set �, then those points are not included in the average. Figure 1
illustrates the lattice constructed for c = 5/8 for a time series of length n = 500.

Figure 1. Lattice � for estimating normalized bispectrum for c = 5/8 and n = 500.
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3224 Jahan and Harvill

At each frequency point that is fully contained within a square, the number
of bivariate Fourier transforms used to estimate the bispectrum is indeed large.
Recall that in the second stage of the test, the test statistic proposed by Hinich
(1982) is the standardized difference of quantiles, with p-values computed using the
normal approximation for the sampling distribution of the standardized difference.
Figure 1 clearly illustrates that the number of Z2

2 used in computing the difference
of quantiles is only 10. Thus, the normal approximation for distribution of the
standardized difference of quantiles will be poor.

A numerical investigation was conducted to compare the performance of the
spectral domain tests and some popular time domain tests. The time domain tests
were the Tukey nonadditivity test based on an added variable approach (Keenan,
1985), original F test (Tsay, 1986), CUSUM test (Petruccelli and Davies, 1986),
TAR F test (Tsay, 1989), and the new F test (Tsay, 1991). Most of the time domain
tests are constructed under the premise that the alternative is a specific nonlinear
model. In particular, the tests by Keenan (1985) and Tsay (1986) specify a bilinear
model in the alternative. Tsay’s (1986) test is considered an improvement over
Keenan’s test in that Tsay retains the simplicity of Keenan’s approach, but increases
the power by examining the residuals of regressions that include the individual
nonlinear and quadratic terms up to third order, while Keenan considers residuals
of regressions on only the second-order terms. The CUSUM and Tsay’s TAR
F test specify a threshold model in the alternative. The CUSUM test is based
on cumulative sums of standardized one-step-ahead forecast errors from arranged
autoregressive fits to the data. Tsay’s TAR F test takes the process farther, by
performing a second autoregression using those residuals, and constructs an F test
based on the sums of squares of those two regressions. Finally, Tsay’s New F test is
constructed in such a way as to include any of the bilinear, smoothed threshold, and
exponential autoregressive models in the alternative. For most of the time domain
tests, it is necessary to specify some set of testing parameters. In the simulation
studies, the parameters selected were optimal, based on the true model.

The three spectral domain tests included were Hinich’s (1982) bispectral based
test, the AD GOF test, and the CVM GOF test. The Subba Rao and Gabr (1980)
test was not included since Hinich’s test performs better, in general. All results are
based on 1,000 replications for time series lengths of n = 100 or 500, and level of
significance � = 0�05.

Because the distribution of the test statistics for all spectral-domain tests
are based on approximations, an empirical investigation of the size of the tests
is warranted. Three of the models considered in that investigation are listed
immediately below. For all models, the series �t is white noise.

I. Xt = �t (White noise)
II. Xt − 0�4Xt−1 + 0�3Xt−2 = �t (Autoregressive)
III. Xt = −0�4�t−1 + 0�3�t−2 + �t (Moving average)

Table 1 contains a summary of the results. The empirical sizes of all three tests are
slightly higher than the nominal � = 0�05. However, this simulation suggests that
the size of Hinich’s test is inflated more than AD or CVM, with CVM performing
better, in general.

The majority of the nonlinear models considered in the study were selected
because they were found in the time domain testing literature. Specifically, Model IV
is found in Tsay (1986), and Models V–VIII in Tsay (1991). Model IX was added
at the suggestion of a referee.
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Table 1
Empirical sizes for Hinich, AD, and CVM bispectral-based tests of Gaussianity

Model n Hinich AD CVM

I 100 0.095 0.076 0.068
500 0.075 0.064 0.060

II 100 0.083 0.069 0.065
500 0.071 0.066 0.063

III 100 0.084 0.071 0.064
500 0.057 0.065 0.062

IV. Xt = 0�5�t−1 − 0�6�2
t−1 + �t (Nonlinear moving average)

V. Xt = 0�4Xt−1 − 0�3Xt−2 + 0�8�t−1 + 0�5Xt−1�t−1 + �t (Bilinear)
VI. (Threshold autoregressive)

Xt =
{
1− 0�5Xt−1 + �t if Xt−1 < 0�

−1− 0�5Xt−1 + �t if Xt−1 ≥ 0�

VII. Xt = 1− 0�5Xt−1 − 0�5F�Xt−1
+ �t, where F�u
 = 	1+ exp�−u/2

 (Smoothed
threshold autoregressive)

VIII. Xt = �0�3+ 100eX
2
t−1
Xt−1 + �t (Exponential autoregressive)

IX. Xt = − 0�25Xt−1 + 0�2Xt−2 + 0�15X2
t−1 − 0�1X2

t−2 + �t (Nonlinear autoregressive)

Table 2 summarizes the results. A comparison of the three frequency domain tests
clearly illustrates that for smaller values of n, both GOF approaches outperform
Hinich’s difference of quantile approach. For larger values of n, the three methods
are comparable, and in two cases (both with n = 500), Hinich’s test outperforms the
GOF tests.

Table 2
Empirical powers for time and frequency domain tests

Model n Keenan Ori-F CUSUM Tar-F New-F Hinich AD CVM

IV 100 0.319 0.323 0.557 0.680 0.887 0.089 0.350 0.309
500 0.644 0.645 0.957 0.977 1.000 0.910 0.835 0.783

V 100 0.650 0.740 0.890 0.670 0.810 0.097 0.638 0.573
500 0.952 0.990 1.000 0.999 1.000 0.751 1.000 0.999

VI 100 0.183 0.186 0.345 0.228 0.700 0.010 0.954 0.735
500 0.195 0.195 0.945 0.649 1.000 0.074 0.999 0.996

VII 100 0.091 0.098 0.090 0.102 0.114 0.037 0.089 0.085
500 0.155 0.155 0.308 0.281 0.490 0.078 0.064 0.051

VIII 100 0.047 0.047 1.000 0.096 0.884 0.066 0.232 0.201
500 0.090 0.090 1.000 0.039 1.000 0.216 0.170 0.156

IX 100 0.454 0.532 0.284 0.400 0.302 0.383 0.953 0.904
500 0.757 1.000 0.936 0.986 0.967 1.000 1.000 1.000
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Other comparisons of interest are the between the frequency and time domain
tests. While it is certainly the case that different time domain test outperform all
the spectral domain tests for some models, it is not always the case. In fact, for
those models considered here, the power of the GOF is comparable to the time
domain tests. For example, for the threshold model (VI) and for the nonlinear AR
model (IX), the AD and CVM spectral domain tests outperform all time domain
tests, including the two time domain tests with a test statistic constructed to detect
threshold nonlinearity. On the other hand, no test performs well for the smoothed
threshold model. In general, the GOF spectral domain tests outperform Keenan’s
test and usually outperforms the original F test. The power of these spectral-
domain tests rivals that of the CUSUM, TAR F , and New F tests, but without the
restriction of a parametric alternative.

6. Conclusion

Spectral domain tests have largely been considered inferior to their time domain
counterparts because the spectral domain tests suffer from lack of power. In this
article, we presented two bispectral-based test for the Gaussianity and linearity that
out perform the popular spectral domain test proposed by Hinich (1982). Moreover,
in many cases, the power of the tests we propose rivals that of existing parametric
time domain tests. While these new approaches can not be recommended in every
circumstance, neither can any of the more popular time domain approaches. The
additional information that can be gleaned from plotting the bispectrum may also
prove to be useful in explaining the interaction of frequency components due found
in nonlinear series.

References

Abdel-Aty, S. H. (1954). Approximate formulae for the percentage points and probability
integral of the non central �2 distribution. Biometrika 41:538–540.

Ashley, R. A., Patterson, D. M., Hinich, M. (1986). A diagnostic test for nonlinear serial
dependence in time series fitting errors. J. Time Ser. Anal. 7:165–178.

Barnett, W. A., Gallant, A. R., Hinich, M. J., Jungeilges, J. A., Kaplan, D. T., Jensen, M. J.
(1997). A single-blind controlled competition among tests for nonlinearity and chaos.
J. Econometrics 82:157–192.

Brillinger, D. R., Rosenblatt, M. (1967). Asymptotic theory of estimates of kth order spectra.
In: Harris, B., ed. Spectral Analysis of Time Series. New York: Wiley, pp. 153–188.

Brockett, P. L., Hinich, M. J., Patterson, D. (1988). Bispectral-based tests for the detection
of Gaussianity and linearity in time series. J. Amer. Statist. Assoc. 83:657–664.

Chan, K., Tong, H. (1986). A note on certain integral equations associated with nonlinear
time series analysis. Probab. Theor. Related Fields 73:153–159.

D’Agostino, R. B., Stephens, M. A. (1986). Goodness-of-Fit Techniques. New York:
John Wiley & Sons.

Harvill, J. L. (1999). Testing time series linearity via goodness of fit methods. J. Statist. Plann.
Infer. 75:331–341.

Harvill, J. L., Newton, H. J. (1995). Saddlepoint approximations for the difference of order
statistics. Biometrika 82:226–231.

Hinich, M. J. (1982). Testing for Gaussianity and linearity of a stationary time series. J. Time
Ser. Anal. 3:169–176.

Hinich, M. J. (2005). Normalizing bispectra. J. Statist. Plann. Infer. 130:405–411.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
a
m
e
s
 
M
a
d
i
s
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
2
8
 
2
2
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Testing Time Series Gaussianity and Linearity 3227

Hinich, M. J., Wolinsky, M. A. (1988). A test for aliasing using bispectral analysis. J. Amer.
Statist. Assoc. 83:499–502.

Hinich, M. J., Messer, H. (1995). On the principal domain of the discrete bispectrum of a
stationary signal. IEEE Trans. Signal Process. 43:2130–2134.

Hinich, M. J., Rothman, P. (1998). Frequency-domain test of time reversibility.
Macroeconomic Dyn. 2:72–88.

Jahan, N. (2006). Applying Goodness-of-Fit Techniques in Testing Time Series Gaussianity
and Linearity. Unpublished doctoral dissertation, Mississippi State University,
Mississippi State, MS.

Johnson, N. L., Kotz, S., Balakrishnan, N. (1995). Continuous Univariate Distributions.
New York: John Wiley & Sons.

Keenan, D. M. (1985). A Tukey nonadditivity-type test for time series nonlinearity.
Biometrika 72:39–44.

Petruccelli, J. D., Davies, N. (1986). A Portmanteau test for self-exciting threshold
autoregressive-type nonlinearity in time series. Biometrika 73:687–694.

Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.
Rosenblatt, M., Van Ness, J. W. (1965). Estimation of the bispectrum. Ann. Mathemat. Statist.

36:1120–1136.
Sankaran, M. (1959). On the non central chi-square distribution. Biometrika 46:235–237.
Subba Rao, T., Gabr, M. M. (1980). A test for linearity of stationary time series. J. Time

Ser. Anal. 1:145–158.
Tong, H. (1990). Non-linear Time Series Analysis: A Dynamical System Approach. Oxford:

Oxford University Press.
Tsay, R. S. (1986). Nonlinearity tests for time series. Biometrika 73:461–466.
Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. J. Amer. Statist.

Assoc. 84:231–240.
Tsay, R. S. (1991). Detecting and modeling nonlinearity in univariate time series analysis.

Statistica Sinica 1:431–451.
Van Ness, J. W. (1966). Asymptotic normality of bispectral estimates. Ann. Mathemat. Statist.

37:1257–1275.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
a
m
e
s
 
M
a
d
i
s
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
2
8
 
2
2
 
D
e
c
e
m
b
e
r
 
2
0
0
8


