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Abstract

An integral equation approach is developed for the problem of determining
the steady-state current to a periodic array of microelectrodes imbedded in an
otherwise insulating plane. The formulation accounts for both surface electrode
and bulk fluid reactions, and evaluates the Green’s functions for periodic systems
using convergence acceleration techniques. Numerical results are presented for
disc-shaped microelectrodes at the center of rectangular periodic cells for a large
range of dimensionless surface and bulk reaction rates and periodic cell sizes.
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1 Introduction

Mass transport coupling diffusion, surface and/or bulk chemical reactions, and species
migration in external fields occurs in a wide variety of physical situations, including
electrochemistry, catalysis, corrosion, colloidal suspensions, and protein binding. Such
transport processes are frequently controlled by surface chemical reactions or by charge
distributed along the surfaces bounding the fluid. In general, the bounding surfaces are
heterogeneous and so surface properties (e.g. reactivity) vary. For example, electrochem-
ical devices consisting of arrays of microelectrodes (Wightman and Wipf [35], Mallouk
[19]) or catalysis along heterogeneous surfaces (Kuan et al. [16, 17]) have in common
the geometric feature that surface chemical reactions occur on many distributed regions,
or patches, on an otherwise unreactive substrate. Although mass transfer to an isolated
surface patch has been studied for a variety of surface geometries (e.g. strips, hemi-
spheres, discs, and rings), the case of multiple active surface sites has received much less
attention. This paper addresses this question by studying reaction-diffusion problems
in a stationary fluid bounded by a plane that is covered by a periodic array of circular
reactive sites.

The electrochemical literature contains many studies of the current at an electrode
of various given shapes. The small size of microelectrodes typically leads to situations
where transients are short-lived and so the accompanying mass transport may be treated
as steady state. Isolated microelectrodes in the shape of hemispheres (Oldham and Zoski
[23]), discs (Aoki et al. [2], Bond et al. [6], Phillips [24, 25], Bender and Stone [5]) and
rings (Fleischmann et al. [9, 10], Szabo [33], Phillips and Stone [27]) have been analyzed
most frequently, mostly for the case of bulk diffusion with surface chemical reaction (the
Laplace equation), but also for bulk diffusion with surface chemical reaction and bulk
species regeneration by chemical reaction (the modified Helmholtz equation).

Recent electrochemical applications utilize microelectrode arrays (Wightman and
Wipf [35]). In general, it is of interest to determine an effective rate constant for the
heterogeneous surface which depends on both the reactivity of active sites as well as their
surface coverage. Theoretical analysis of such arrays must treat the interaction of the
different surface reactive sites and, perhaps not surprisingly, theoretical analyses have
been limited to the case of small fractional coverages of a finite surface (Phillips [26])
and numerical results for a small number of electrodes on an infinite surface (Fransaer
et al. [11]). Included in [26] are several references to problems dealing with microelec-
trode arrays of infinite extent, including studies by Reller et al. [30] and Scharifker [32],
who investigate time-dependent currents, though since diffusion with no regeneration
within the fluid is considered, the steady state result is zero current. In addition, in
[30] and [32], a periodic array geometry is approximated by solving instead the prob-
lem of a disc electrode surrounded by an insulating annulus. We also note that mass
transport problems related to the present investigation of multiple reactive surface sites
naturally arise in the modelling of catalytic surfaces (Kuan et al. [16, 17]), the double
layer forces between surfaces with a heterogeneous charge distribution (Miklavic et al.

[20]), multi-particle Ostwald ripening (Voorhees and Glicksman [34]), and protein bind-
ing (Balgi et al. [3]). Related mathematical formulations also arise in studies of the
effective conductivity of a suspension of particles of one conductivity dispersed within a
matrix of different conductivity (Bonnecaze and Brady [7]), and acoustic properties of
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bubbly liquids (Sangani and Sureshkumar [31]), where regular three-dimensional arrays
are analyzed.

A mathematical model of the typical reaction-diffusion situation characteristic of the
microelectrode geometry is to consider a distribution of reaction sites (e.g. discs) on an
otherwise unreactive plane boundary underlying a stagnant fluid. We shall consider here
the case of periodic surface arrays so that the transport problem is also periodic. Since
this geometry is three-dimensional, we have a mathematical problem involving a two-
dimensional periodicity embedded within three-dimensional space. The basic equations
and their solution in terms of an integral equation are given in Section 2, along with
three forms of the Green’s function. A description of the numerical methods of solution
is given in Section 3, and representative numerical results are presented in Section 4.

2 Formulation

2.1 Problem Statement

Consider a periodic array of circular disc-shaped microelectrodes distributed over an
otherwise insulating boundary as illustrated in Figure 1. An electrolytic solution fills
the entire volume above the plane, and we are interested in calculating the steady-
state current to the surface due to oxidation-reduction processes that occur on the
surface of the electrodes; effects due to possible chemical regeneration in the bulk are
also considered. The flux of the given chemical to the electrode is proportional to the
measured electrode current, and so we seek a solution for the concentration flux of the
chemical species. We assume that there is no fluid motion, so the usual reaction-diffusion
equations apply as in the literature cited above.

The electrode surfaces are denoted SE and the insulating planar region is denoted
SP . We choose coordinates such that the insulating plane is at z = 0, and the electrolytic
solution fills the volume z > 0. Following Phillips [24, 25] (see also Bender and Stone
[5]), the steady state reaction-diffusion problem may be written in the dimensionless
form

∇2φ = α2φ where



































φ = 1 +
1

K

∂φ

∂z
on z = 0, r ∈ SE ,

∂φ

∂z
= 0 on z = 0, r ∈ SP ,

φ → 0 as z → ∞,

(1)

where φ(r) is the dimensionless concentration in the fluid, α2 is a constant representing
the ratio of bulk species regeneration relative to diffusion, K is a constant representing
the ratio of surface reaction rate at the electrode surface relative to diffusion in the bulk,
and r denotes the position vector. A large value of α indicates a large bulk regeneration,
and so most activity will take place near the electrode, while a small value of α indicates
diffusion becoming more important, as reactants must be transported inwards from
infinity rather than being regenerated near the electrode. An infinite value for K is the
limit in which reaction takes place instantaneously at the electrode. Smaller values of

3



S   - Electrodes

S   - Insulating Plate

E

P

z=0x

yz

r=1

Figure 1: The periodic array of microelectrodes on an insulating plane.

K indicate a slower surface reaction at the electrode. In the limit K = 0, no surface
reaction takes place and the solution is φ = 0 everywhere (the first boundary condition
of (1) reduces to ∂φ/∂z = 0 on z = 0, r ∈ SE). Equation (1) can be recognized as the
modified Helmholtz equation with mixed boundary conditions.

Here, we shall assume that the surface consists of rectangular periodic cells of size
2l1×2l2, with circular microelectrodes of radius one centered within the periodic cells, as
shown in Figure 2. Due to the periodicity, we shall only need to determine the solution
within a single cell. Rather than calculate the concentration φ directly, we are more
interested in the flux ∂φ/∂z on the plane z = 0. Once the flux distribution has been
calculated, the total dimensionless flux to a single electrode follows from

Total Flux per electrode = −
∫

SE

∂φ

∂z
dS, (2)

which is proportional to the measured current through the electrode. Since we are only
interested in finding the flux distribution over the electrode, the domain of application
of (1) is the infinite half-space, and, additionally, as the boundary value problem is
linear, an integral equation approach is ideal. This mathematical approach is common,
although some of the analytical details necessary to treat the periodic surface condition
and numerical details to represent the flux accurately require some care.
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Figure 2: Geometry of the volume above a periodic cell for the problem.

2.2 Integral Equation Derivation

Due to the periodic nature of the problem, we have that φ(r) = φ(r + rp), where

rp = (2l1m1, 2l2m2, 0), m1, m2 = 0,±1,±2, . . . (3)

is the periodic vector. Rather than solving for φ throughout the entire volume, we may
treat instead the volume above a single periodic cell (see Figure 2), with volume Vc and
boundary Sc = SE ∪ SP ∪ S∞ ∪ Ssides. The surface S∞ is the ‘cap’ of the volume at
z = ∞. Applying Green’s theorem to Vc gives

∫

Vc

(G∇2φ − φ∇2G) dV =
∫

Sc

(

G
∂φ

∂n
− φ

∂G

∂n

)

dS, (4)

where G is the appropriate periodic Green’s function for the problem. Provided α > 0,
it can be shown that the surface integrals over S∞ vanish. Also, periodicity ensures no
net flux in φ or G over the surfaces Ssides.

We require a spatially periodic Green’s function that satisfies

G(r− r0) = G(r − r0 − rp), m = 0,±1,±2, . . . (5)

where r is the position vector, r0 is the position of the delta function in the equation for
the Green’s function, and rp is given in (3). This Green’s function can be interpreted as
the response at r due to a forcing at the lattice points r0 + rp. Writing R = r − r0, we
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have that the Green’s function must satisfy

∇2
r
G(R) = α2G(R) +

∞
∑

m1=−∞

∞
∑

m2=−∞
δ(R − rp) with G → 0 as |R3| → ∞, (6)

where the Laplacian operator is with respect to the variable r, and R3 is the z-component
of R.

Given an appropriate solution of (6), which is described in detail in section 2.3, the
Green’s function is substituted into (4), and the source point r0 moved to the boundary
(as is standard in applications of the boundary integral method, e.g. Brebbia et al. [8]).
Thus, we arrive at

−1

2
φ(r0) =

∫

SE∪SP

(

G(R)
∂φ

∂n
(r) − φ(r)

∂G

∂n
(R)

)

dS(r), r0 ∈ SE ∪ SP . (7)

Since the surface SE ∪ SP is that part of the periodic cell boundary in the plane z = 0,
we have that ∂/∂n ≡ −∂/∂z, and it may be shown that ∂G/∂z = 0 when both r and
r0 are on the plane z = 0 (R3 = 0). Thus, (7) reduces to

1

2
φ(r0) =

∫

SE∪SP

G(R)
∂φ

∂z
(r) dS(r). (8)

Finally, applying the boundary conditions on SE and SP from (1), we obtain the integral
formulation for the flux of φ through the electrode as

1 +
1

K
φ′(r0) =

∫

SE

2G(r− r0)φ
′(r) dS(r), r0 ∈ SE, (9)

where we have written φ′ for ∂φ/∂z. We note that r0 need only be taken over the surface
of the electrode SE , where SE is the disc of radius one centered at the origin on the plane
z = 0. The specific geometry of the periodic surface (the parameters l1 and l2) enter the
problem through the Green’s function G as described in the next section.

2.3 The Periodic Green’s Function

To find the Green’s function, we first note that r0 is fixed as the position r is varied, so
∇2

r
≡ ∇2

R
, and (6) can be written as

∇2
R
G(R) = α2G(R) + δ(R3)

∑

m

δ(R1 − 2l1m1)δ(R2 − 2m2l2), (10)

where we have used the definition of rp and written
∑

m to represent the infinite double
summation over m1 and m2. To solve (10), we make use of two-dimensional Fourier
transforms F2 in (R1, R2), as defined in Nijboer and De Wette [22]:

F2f(R1, R2) = f̂(k1, k2) =
∫ ∞

−∞

∫ ∞

−∞
e2πi(k1R1+k2R2)f(R1, R2) dR2 dR1,

F−1
2

{

f̂(k1, k2)
}

= f(R1, R2) =
∫ ∞

−∞

∫ ∞

−∞
e−2πi(k1R1+k2R2)f̂(k1, k2) dk2 dk1.



















(11)
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Taking the two-dimensional Fourier transform of (10), and using the standard result
(Barton [4]) that

∑

m

δ(x1 − m1L1)δ(x2 − m2L2) =
1

L1L2

∑

m

e
2πi

(

m1x1

L1
+

m2x2

L2

)

, (12)

we obtain the equation

∂2Ĝ

∂R2
3

−
(

4π2(k2
1 + k2

2) + α2
)

Ĝ =
δ(R3)

4l1l2

∑

m

δ
(

k1 −
m1

2l1

)

δ
(

k2 −
m2

2l2

)

, (13)

which has the solution

Ĝ = − e−|R3|
√

4π2(k2

1
+k2

2
)+α2

8l1l2
√

4π2(k2
1 + k2

2) + α2

∑

m

δ
(

k1 −
m1

2l1

)

δ
(

k2 −
m2

2l2

)

. (14)

Using the inverse transform, we obtain the Green’s function

G(R) = −
∑

m

exp

{

−πi
(

m1R1

l1
+ m2R2

l2

)

− |R3|
√

π2

[

(

m1

l1

)2
+
(

m2

l2

)2
]

+ α2

}

8l1l2

√

π2

[

(

m1

l1

)2
+
(

m2

l2

)2
]

+ α2

. (15)

Note that in (9), both r and r0 lie on the plane z = 0, so that R3 = 0, which is a useful
simplification for some of the mathematical manipulations that follow.

2.4 Accelerating the Convergence Rate of the Green’s Function

The form of the Green’s function given in (15) is computationally inefficient because
the convergence rate is very slow when |R3| is small or zero, and a large number of
terms are required to calculate (15) to even a few figures of accuracy. A more useful
form of the Green’s function can be obtained using various acceleration techniques such
as the Poisson summation formula or the method of Ewald. We mention at this point
that the double summation over m1 and m2 is calculated by starting with the term
m1 = m2 = 0 and adding successive layers corresponding to |m1|+ |m2| = j, j = 1, 2, . . .
. Geometrically, this ensures that the partial sum is that of a square of terms surrounding
m1 = m2 = 0.

2.4.1 The Poisson Summation Formula

The principle of the Poisson summation formula is that the Fourier transform of a
smooth function approaches zero more rapidly than the original function. The Poisson
summation formula in one dimension is clearly outlined in Barton [4], and the two-
dimensional form can constructed using the same procedure:

∑

m

F (λ1m1, λ2m2) =
1

λ1λ2

∑

m

∫ ∞

−∞

∫ ∞

−∞
F (ξ1, ξ2)e

2πi

(

m1ξ1
λ1

+
m2ξ2

λ2

)

dξ2dξ1. (16)
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Applying (16) to (15), we find

G(R) = −1

8

∑

m

∫ ∞

−∞

∫ ∞

−∞

e−πi(ξ1k1+ξ2k2)−|R3|
√

π2(ξ2

1
+ξ2

2
)+α2

√

π2(ξ2
1 + ξ2

2) + α2
dξ2dξ1, (17)

where (k1, k2) = (R1−2l1m1, R2−2l2m2). Transforming to polar coordinates using ξ1 =
a cos θ, ξ2 = a sin θ, and k1 = k cos ϕ, k2 = k sin ϕ with k2 = (R1−2l1m1)

2+(R2−2l2m2)
2,

and using equation (3.915.2) from Gradshteyn and Ryzhik [12],
∫ π

0
eiβ cos x cos(nx) dx = inπJn(β), (18)

we obtain

G(R) = −π

4

∑

m

∫ ∞

0

aJ0(πka)√
π2a2 + α2

e−|R3|
√

π2a2+α2

da. (19)

Applying the transform a2 = α2(u2 − 1)/π2, and using equation (6.616.2) from Grad-
shteyn and Ryzhik [12] that

∫ ∞

1
e−αxJ0

(

β
√

x2 − 1
)

dx =
1√

α2 + β2
e−

√
α2+β2

, (20)

equation (19) becomes

G(R) = − 1

4π

∑

m

exp
[

−α
√

R2
3 + k2

]

√

k2 + R2
3

,

= − 1

4π

∑

m

exp
[

−α
√

(R1 − 2m1l1)2 + (R2 − 2m2l2)2 + R2
3

]

√

(R1 − 2m1l1)2 + (R2 − 2m2l2)2 + R2
3

.

(21)

From this exponential form of G(R), it can be shown that ∂G/∂z = 0 when R3 = 0, as
was required in the derivation of (9).

The representation of the Green’s function in (21) is the same as would be ob-
tained by distributing the three-dimensional free-space Green’s function for the modified
Helmholtz equation

G(r − r0) = − 1

4π

e−α|r−r0|

|r− r0|
(22)

over all the electrodes to deal with spatial periodicity. Of course, (22) could have been
written down immediately, but it is useful to understand the steps (16-21) in order to
apply the Ewald method to this problem.

While the exponential in the summation for G(R) in (21) ensures that its convergence
is faster than for (15), the convergence rate can still be quite poor for small α. In such
cases, we will use the method of Ewald, which we now outline.

2.4.2 The Method of Ewald

The method of Ewald is a technique for improving the convergence rates of slowly
converging lattice sums. We assume R3 = 0 in the derivation that follows.
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We wish to accelerate the convergence of

G(R) = −
∑

m

exp
[

−πi
(

m1R1

l1
+ m2R2

l2

)]

8l1l2

√

π2

{

(

m1

l1

)2
+
(

m2

l2

)2
}

+ α2

. (23)

Using the fact that erf(x) + erfc(x) = 1, we rewrite (23) as

G(R) = S1 + S2, (24)

where

S1 = −
∑

m

exp
[

−πi
(

m1R1

l1
+ m2R2

l2

)]

erfc
(

c
√

A
)

8l1l2
√

A
,

S2 = −
∑

m

exp
[

−πi
(

m1R1

l1
+ m2R2

l2

)]

erf
(

c
√

A
)

8l1l2
√

A
,

(25)

A = π2{(m1/l1)
2 + (m2/l2)

2} + α2, and c is an arbitrary constant. Due to the nature
of the complimentary error function, the sum S1 converges very quickly, but the rate
of convergence of S2 is unchanged. The Ewald method as described in Nijboer and De
Wette [22] accelerates the convergence of S2 by first converting the summation terms into
integrals using properties of the delta function, and then applying the Fourier convolution
theorem to accelerate convergence. However, the same final result can be obtained more
easily by applying the two-dimensional Poisson’s summation formula to S2. Identifying
λi = 1/li, and applying (16) to (25b), we find that

S2 = −
∑

m

1

4

∫ ∞

−∞

∫ ∞

−∞
e−πi(k1ξ1+k2ξ2)

erf
(

c
√

π2(ξ2
1 + ξ2

2) + α2
)

√

π2(ξ2
1 + ξ2

2) + α2
dξ2dξ1, (26)

where (k1, k2) = (R1 − 2m1l1, R2 − 2m2l2). Since d(erf(x))/dx = 2 exp(−x2)/
√

π, we
may take the derivative of S2 with respect to c to show that

dS2

dc
= −

∑

m

1

2c2π3/2
e−α2c2− k2

4c2 , (27)

where k2 = k2
1 + k2

2, and we have (Gradshteyn and Ryzhik [12], equation (3.896.4))

∫ ∞

0
e−βx2

cos(bx)dx =
1

2

√

π

β
e−

b2

4β , Re(β) > 0. (28)

Now, integrating (27) leads to

S2 = −
∑

m

1

4πk

[

ekαerfc

(

k

2c
+ αc

)

+ e−kαerfc

(

k

2c
− αc

)]

, (29)

where we have used (Abramowitz and Stegun [1], equation (7.4.33))

∫

e−a2x2− b2

x2 dx =

√
π

4a

[

e2aberf

(

ax +
b

x

)

+ e−2aberf

(

ax − b

x

)]

+ C. (30)
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Thus, we have the final result that when R3 = 0,

G(R) = − 1

4l1l2

∑

m

e
πi

(

m1R1

l1
+

m2R2

l2

)

erfc(c
√

A)√
A

− 1

4π

∑

m

1

k

[

ekαerfc

(

k

2c
+ αc

)

+ e−kαerfc

(

k

2c
− αc

)]

,

(31)

where

k =
√

(R1 − 2l1m1)2 + (R2 − 2l2m2)2 and A = π2

{

(

m1

l1

)2

+
(

m2

l2

)2
}

+ α2. (32)

The arbitrary parameter c is chosen to obtain the best convergence for G(R). Since

erfc(x) = O
(

e−x2
)

for x ≫ 1, we can balance the convergence rates of the complimentary

error function terms in (31) to arrive at the estimate

c =

√

l1l2
π

. (33)

2.4.3 Choosing an Acceleration Technique

The convergence rate of G(R) depends on α, and the geometric parameters l1 and l2.
While the convergence rate for G(R) using the Ewald sum (31) has been found to be
relatively insensitive to the value of α, and the convergence rate of the Ewald sum is
O
(

e−m2
)

compared to the O (e−m) rate of the Poisson sum (21), it is not an automatic
choice to always use the Ewald result rather than the Poisson sum. Each term of the
Ewald sum requires the calculation of three complimentary error functions, while the
Poisson sum terms only require evaluation of a single exponential function. Thus from
a computational view, the Poisson sum may be more efficient than the Ewald sum.

Our initial choice for calculating the complimentary error function was the routine
derfc() from the IMSL numerical package [36]. However, this routine was found to
be significantly slower than polynomial approximations for erfc tabulated in Hart [13].
The particular polynomial approximations chosen from [13] for erfc are tables 5665
on [0, 2.5), 5705 on [2.5, 5.5) and thirteen terms in the asymptotic expansion of the
complimentary error function (from Abramowitz and Stegun [1]) on [5.5,∞). These
polynomial approximations guarantee at least eleven digits of accuracy and an absolute
error of less than 10−15, and are approximately seven times faster than the IMSL routine
on a Sun Sparc 10.

To decide which of the Ewald and Poisson sum results to use for calculating G(R),
a computational comparison is made. The sums are calculated in layers as described
in section 2.4 above until a relative error of 10−8 is obtained. The Green’s function is
calculated for 105 cases at the points R = (r cos θ, r sin θ), where r = 0, 0.2, 0.4, . . . , 2,
and θ = 0, π/50, π/25, . . . , 2π, which spans the values of R at which the Green’s function
needs to be calculated. The total time (in CPU seconds) needed to calculate the Green’s
function using the Ewald and Poisson sum results are compared, and for a particular
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0.0
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2.0

α 0

Use Ewald sum

Use Poisson sum

l2

l1=l2

l1=1.05

Figure 3: The value of α at which the Poisson and Ewald summations take the same
amount of CPU time versus l2 for the two cases l1 = l2 and l1 = 1.05. Above the curves
the Poisson sum is more efficient, below the Ewald sum is superior.

(l1, l2), we can find a value α0 such that when α > α0 the Poisson sum result (21) is
more efficient, and when α < α0 the Ewald result is more efficient, and when α = α0

both results are equally good. For example, Figure 3 shows the curves of α0 for the two
cases l1 = l2 and l2 = 1.05, and indicates which of the Poisson or Ewald sums to use for
a particular choice of α. It should also be noted that the summations are significantly
slower when the aspect ratio of the periodic cell gets large. For example, convergence
for l1 = 1.05, l2 = 30 is about 15 times slower than for l1 = l2 = 1.05 at α0.

3 Solution Method and Numerical Details

We wish to solve the integral equation (9) where we choose the reaction parameters
(α, K), and the periodic cell size parameters (l1, l2). Depending on the parameters, we
use data such as presented in Figure 3 to decide which form of the Green’s function (21)
or (31) to use. Since the electrode surface SE is a disc of radius one, we have l1, l2 > 1 so
that the electrodes in the periodic array are not touching. As l1, l2 become increasingly
large, the solutions should approach that for a single disc on an insulating surface, as
described in Bender and Stone [5]. Due to the problem geometry, it is natural to use a
cylindrical coordinate system and so write

∫

SE

f(r) dS(r) =
∫ 1

0

∫ 2π

0
F (r, θ)r dθdr, (34)
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where F (r, θ) ≡ f(r cos θ, r sin θ). Due to the symmetry of the problem, we only need
to find φ′ in the first quadrant, and (9) can then be rewritten as

1 +
1

K
φ′(r0, θ0) =

∫ 1

0

∫ π/2

0
2φ′(r, θ)r{G(r, θ; r0, θ0) + G(r, π − θ; r0, θ0)+

G(r, π + θ; r0, θ0) + G(r, 2π − θ; r0, θ0)} dθdr,

for 0 ≤ θ0 < π/2, 0 ≤ r0 < 1,

(35)

where G(r, θ; r0, θ0) ≡ G(R) = G(r − r0) and we have explicitly written the unknown
flux φ′ in polar coordinates.

To find the unknown flux φ′, we divide the rectangle [0, 1] × [0, π/2] in polar coor-
dinates into M × N elements, and assume that φ′ varies quadratically in r and θ; on
the (i, j)th element, we assume φ′ =

∑

k φ′
ijkNk(η1, η2), where (η1, η2) is the coordinate

system for the (i, j)th element mapped onto [−1, 1]×[−1, 1], Nk are the quadratic weight
functions, and the φ′

ijk are unknowns. By choosing the collocation points (r0, θ0) to be
the node points of the quadratic elements, we convert (35) to a linear system of equations
for the φ′

ijk, which can be solved by Gaussian elimination to obtain a solution for the
flux. Further details on the quadratic element boundary element method can be found
in standard boundary element texts such has Brebbia et al. [8].

3.1 Integration Techniques

The matrix elements in the linear system to be inverted involve two-dimensional inte-
grals over the elements of the Green’s function multiplied by the appropriate weight
functions. If the current collocation point (r0, θ0) is on the border or within the region
we are integrating over, then there is a singularity in the function at that point, which
must be handled more carefully. Here, we implement a scheme using ‘degenerate quadri-
laterals’, originally described in Lachat and Watson [18]. If we transform a triangle onto
a square, and stretch a corner of the triangle onto one of the square’s sides, then the
Jacobian of the transformation is such that a 1/r singularity at the stretched corner of
the triangle is removed, and no longer causes poor convergence for numerical integra-
tion rules. This idea is analogous to transforming a local cartesian coordinate system
to polar coordinates with the origin at the singularity, and has the advantage that the
degenerate quadrilateral transformation does not have to deal with circular arcs. An
integration routine designed to integrate over a set of general quadrilaterals, given their
four corners, thus has the advantage of being able to integrate over rectangular regions
with no singularities (given the four corners) or deal with singularities in the region
(divide into a set of triangles, with the singularity at a corner). Furthermore, the ability
to integrate over a set of quadrilaterals is also useful in cases where elements have a high
aspect ratio. For example, for long, thin integration regions, more function evaluations
are usually required in the long direction to obtain suitable accuracy. It follows that,
for the same accuracy, far fewer function evaluations are required if initially long thin
regions are subdivided into smaller regions of lower aspect ratio. Numerical experiments
performed here indicate that setting the maximum aspect ratio of a rectangle equal to
2 gives the best efficiency.
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Another integration difficulty which arises in boundary integral calculations lies in
choosing the order of the quadrature rule. Integrals over regions near the collocation
point will typically require more effort than those far from it, but a simple distance rule
is often insufficient, since the shape of the integration region is also important. Here, we
use a combination of successive and adaptive quadrature rules in an attempt to produce
a single integration routine to deal with the range of integrals required in a boundary
element method. An initial approximation is made using 4 × 4 and 6 × 6 point Gauss-
Legendre rules over general quadrilaterals, with an error estimate based on the difference
between these rules. For a more detailed description of the error estimate, see Kahaner
and Rechard [15]. If the error estimate is larger than that required, continue with 8× 8
and 12 × 12 point rules. If the required accuracy has still not been obtained, use an
adaptive method, where the quadrilateral with the largest error is subdivided into four
new quadrilaterals, and the 8 × 8 and 12 × 12 point rules are applied to them. This
adaptive process is continued until the estimated error is less than that requested. This
combination of successive then adaptive algorithms has the advantage that it will not
use a high order rule when not necessary (i.e. when the integration region is far from the
collocation point), but will use efficient adaptive methods with reasonably high-order
rules when required.

Finally, we note that evaluating the periodic Green’s function (21) or (31) is sub-
stantially more expensive than evaluating the free space Green’s function (22). Since for
a quadratic boundary element method we integrate over each region for each collocation
point eight times where the Green’s function is multiplied by different weight functions,
it makes sense to form all eight integrals one time, and use vector integration. In cases
such as this where each of the integrands in the vector are very similar (different weight
functions), substantial savings in time can be made by minimizing the number of times
the Green’s function has to be evaluated. For this problem a factor of 5 increase in speed
of integration was obtained by changing from scalar to vector integration.

For the work described here, numerical integration is performed with a requested
relative error of 5 × 10−6, which guarantees at least 5 digits of accuracy.

3.2 Singularities in the Solution

Unfortunately, when the above procedures are used to solve the integral equation (35),
the numerical solutions converge quite slowly as the number of quadratic elements is
increased. The numerical inaccuracies arise because the function we are trying to find, φ′,
is itself poorly behaved as we approach the edge of the disc. The problem is qualitatively
different in the two cases K = ∞ and 0 < K < ∞, which are now addressed separately.

3.2.1 The K = ∞ Case

In this case, the boundary conditions from (1) on z = 0 become φ = 1 for r ∈ SE and
∂φ/∂z = 0 for r ∈ SP . For the case of a single disc, not the periodic array, there is an
exact analytic solution for the case α = 0, the so-called ‘electrified disc’ solution (see
for example Jackson [14] or Newman [21]), where the flux on the surface of the disc in
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terms of radial position r is
∂φ

∂z
= − 2

π
√

1 − r2
. (36)

The flux distribution has an inverse square root singularity at the edge of the disc, r = 1,
which explains why a quadratic element approximation is relatively poor. This inverse
square root singularity is common in problems where there is a change in boundary
conditions, as is also the case in the stress field at a crack tip in classical elastostatics.

For the modified Helmholtz equation, analytic information on the leading term in
the solution near the singularity can be found following the method described in Ra-
machandran [29] for Laplace’s equation near the point where the boundary conditions
suddenly change. We find that the leading order behavior near the edge x = 1− r of φ′

is φ′ ∝ I1/2(αx)xr, where I is the modified Bessel function of the first kind. For small
x (near the singularity), φ′ ∝ 1/

√
x, and so the form of the singularity is the same as

for Laplace’s equation, which is the modified Helmholtz equation with α = 0. In fact,
the solution has this inverse square root singularity in the flux φ′ regardless of the value
of α or whether we are dealing with a single or periodic array of electrodes. Thus, we
replace φ′(r, θ) in the integral equation (35) by φ̂′(r, θ)/

√
1 − r, and solve for φ̂′. The

inverse square root singular part of the flux is absorbed into the formulation, and the
smooth contribution to the flux is all that remains to be approximated by the quadratic
elements.

The additional 1/
√

1 − r term in the integral means that there is an additional
singularity in the two-dimensional integrals over the elements whose edge corresponds
to the edge of the disc. Transformations to remove endpoint algebraic singularities are
available in Press et al. [28], and we make use of the identity

∫ 1

−1

f(x)√
1 − x

dx =
∫ 1

−1

√
2f
(

1 − 1

2
(1 − t)2

)

dt (37)

to remove the square root singularity at r = 1.

The 1/
√

1 − r term also means that we cannot place collocation points at r0 = 1
(the edge of the disc). Normally, collocation points for quadratic elements are placed
as shown in Figure 4a, where the element has been mapped onto [−1, 1] × [−1, 1] in
(η1, η2) space (Brebbia et al. [8]). For elements on the outer edge of the disc, we place
collocation points as shown in Figure 4b. Collocation points previously at η1 = 1 have
been moved to η1 = 1/2.

3.2.2 The K < ∞ Case

Due to the boundary condition φ = 1 + φ′/K on the disc, there is no obvious way of
analytically determining the form of the singularity in φ′ at the edge of the disc r = 1.
The results for a single microelectrode in Bender and Stone [5] for finite K indicate φ′

is finite at r = 1, but has a derivative singularity, which becomes increasingly malignant
as K increases. Since the solution is badly behaved at r = 1, we require more elements
in the quadratic element discretization near the edge of the disc to increase accuracy
with the same number of elements, rather than equally spaced as for the K = ∞ case.
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Figure 4: Positions of collocation points for a quadratic element transformed to (η1, η2)
space, (a) normally and (b) when the element is on the edge of the disc, with the nodes
positioned to avoid the inverse square root singularity at r = 1.

To this end, we place M/2 elements in the r direction on r ∈ [0, 0.9] and M/2 elements
on r ∈ [0.9, 1].

Figure 5 shows −φ′ versus r along θ = 0◦ for a single isolated electrode for the
particular case α = 10, K = 100, and the non-equal spacing of elements. As the number
of elements M in the radial direction increases, we can see the convergence of the curves
to a final solution. Due to the derivative singularity in φ′ at r = 1, the quadratic element
for −φ′ right near the edge has a concave up form. This numerical artifact is caused by
fitting a quadratic to a curve with a singularity, and is particularly obvious for the M=8
curve. This concave up behavior also occurs for the element just below r = 0.9 as this
is the radial value at which the width of elements suddenly changes.

While the detailed flux curves are poor for smaller numbers of elements, the solutions
for total flux over the disc from (2), as shown in Table 1 converge significantly faster.
For N=16, the flux curve is inaccurate enough to be easily seen by the naked eye, and
yet the total flux result has three digits of accuracy. This result occurs regularly in
boundary integral research; the calculated solution may be quite poor, but integrated
results are more accurate. Since we are more interested in the flux per disc rather than
the flux at a particular point on the disc, calculations on non-equally spaced elements
will be used for finite K.

4 Results

Numerical results are reported first for K = ∞ and then for finite K. We note that the
periodic formulation as given here breaks down in the cases α = 0. This is the limit of no
bulk species regeneration, and all reactants at the electrodes are supplied by diffusion.
In the single disc case (Bender and Stone [5]), the flux was easily calculated, but the
infinite sum for the periodic Green’s function tends to infinity as α → 0. This is due to
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Figure 5: -φ′ versus r for θ = 0◦ for a single microelectrode, varying the number of
elements. The parameters are α = 10, K = 100, and curves are for various numbers
of elements in the r direction. The larger graph shows −φ′ on r ∈ [0, 0.9], with the
inset showing the results on r ∈ [0.9, 1]. M represents the number of elements in the r
direction for the different solutions.

M Total flux
2 31.548071
4 31.042502
8 30.942839
16 30.919375
32 30.914033
64 30.912789

Table 1: Convergence of the total flux for a single disc with α = 10 and K = 100 as
the number of unknowns is increased. M is the number of quadratic elements in the
r-direction.
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the denominator of (15) tending to zero as α tends to zero for the term m1 = m2 = 0.
In fact, as α → 0, the flux through each electrode in the periodic array goes to zero. In
the single electrode case, diffusion can bring reactants to the electrode from the entire
space z > 0, and it is possible to have a nonzero flux on the disc as φ and φ′ go to zero at
infinity. For the periodic array, each electrode can only absorb reactants diffused from
the volume above its own periodic cell in the α = 0 case, and since φ′ = 0 at z = ∞, the
‘top’ of the periodic volume, conservation implies that there is no flow of reactants, and
the flux goes to zero. Thus, while no results can be calculated for the periodic problem
with α = 0, there can be assumed to be a zero flux, regardless of K, as long as l1 and
l2, the periodic cell size parameters, are finite. While there are a set of problems where
there is a nonzero concentration gradient at infinity, the current formulation cannot deal
with such a case, and is beyond the scope of this paper.

It should also be noted that by changing the Green’s function to the free-space form
(22), the quadratic boundary element method described above can be used to reproduce
the results of Bender and Stone [5] for a single disc on an insulating surface. In all cases,
the different numerical implementations gave identical results to the reported accuracies.

4.1 Results for K = ∞

We present first the results for the case of instantaneous reaction at the electrode surface,
the limit K = ∞. The assumption of an inverse square root singularity in the solution
described in section 3.2.1 above was successful for all these cases. We found that 5×5 =
25 elements are sufficient to give flux results which are almost indistinguishable from
higher order discretizations, and the results for total flux through an electrode, calculated
using (2), are accurate to at least 3 digits. The accuracy is highest for small α, up to
6 digits, and diminishes as α increases, owing to the formation of boundary layers with
large gradients. 5 × 5 quadratic elements produce a linear system of equations with 96
unknowns, for which the solution with l1 = l2 takes 10 minutes of CPU time on a Sun
Sparc 10 workstation. For periodic cells with l1 6= l2, the computation times can be
much longer – up to 150 minutes for l1 = 1.05 and l2 = 30, for example.

We first show the θ-dependence of the flux φ′. Figure 6 plots −φ′ as a function of r,
θ for the parameters α = 0.01, K = ∞ and l1 = l2 = 1.05 in the first quadrant. On the
diagonal θ = 45◦, the flux takes its maximum value. This response is expected, since
the distance to the nearest disc is highest at this angle.

Figure 7 shows the total flux per disc as a function of l1 = l2 for various values of
α; Figure 7(b) is a magnification of the dotted rectangle in Figure 7(a). The horizontal
dashed lines in Figure 7(a) represent the results for a single disc on the insulating surface,
while the vertical line in Figure 7(b) at l1 = l2 = 1 indicates where electrodes touch.
Figure 8 shows this information by plotting flux per disc versus α for various values
of l1 = l2. Not surprisingly, as l1 = l2 increase in size, the flux per disc approaches
that for a single disc. As α increases, the approach to the single disc result is much
more rapid. Not plotted in Figure 7 are results for α = 5, where the single disc flux
is 18.9931 and for l1 = l2 = 1.05 the flux per disc is 18.1444. Even more extreme are
the results for α = 10, where the single disc flux is 34.6453 and for l1 = l2 = 1.05 the
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Figure 6: Plots of -φ′ versus θ for r = 0.1, 0.2, . . . 0.9; α = 0.01, K = ∞, l1 = l2 = 1.05.

flux per disc is 34.3020. We only have to increase the spacing to l1 = l2 = 1.5 before
the flux per disc results for α = 10 are identical to six figures to those for the single
disc. Physically, for large α, bulk regeneration of reactants within the fluids is large with
respect to diffusion, and so most reaction occurs close to the electrode. As α increases,
the region of reaction around the electrode decreases, and so the distance over which
individual electrodes have an effect on each other decreases. For small α, on the other
hand, diffusion dominates, and the restriction of each electrode only having access to
the reactants in the fluid above its own periodic cell becomes more important. We can
see in Figure 8 that for small α, even for large values of l1 = l2, the flux per disc is
significantly below the single disc result. The influence of electrodes on their neighbors
is far more dramatic when diffusion dominates.

From the standpoint of design it is more important to evaluate the average flux per
unit area of the bounding surface. This information is easily obtained as the flux per
disc divided by the area of the periodic cell, and is plotted in Figure 9 as a function of
l1 = l2 for various α. The flux per unit area provides a better indication of the overall
transport properties of the periodic array, since it is a measurement that has scaled out
the periodic cell size. The results show that for large l1 = l2, the slope of the curves
is −2. Since for large l1 = l2 the flux per disc approaches a constant (the single disc
result), we have the same flux per periodic cell when the cell size increases. Since the
area of the periodic cell increases as the square of the cell lengths, the factor of −2 is as
expected. We have also included in Figure 9 a dotted line across the various α curves as
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a measure of the effectiveness of close-packing the electrodes on the insulating surface.
The dotted line is the value of l1 = l2 at which the flux per unit area is 90% of its value
at l1 = l2 = 1.05, and we can see that as α decreases, this value increases. It is thus
evident that placing electrodes closer together yields a much smaller additional increase
in flux for small α. Since placing electrodes closer together is presumably more expensive
in terms of time and materials, a point may be reached where placing electrodes closer
together is uneconomical. This argument is even more important if the catalytic analog
of this problem is considered, in which case the flux relates to the total reaction in the
system due to catalytic sites, which we may be trying to maximize.

We also include here comparisons of the variation of φ′ with respect to angle θ as the
size of the periodic cell increases. Figure 10 shows curves of flux divided by its minimum
value for α = 0.01, r = 0.9, θ in the first quadrant, and varying the periodic cell size.
The curves have been scaled by the values of the flux at r = 0.9 and θ = 0◦, so that the
variations are emphasised. Table 2 reports the values of the flux at r = 0.9 and θ = 45◦

for the various periodic cell sizes, and shows the percentage variation between maximum
and minimum φ′ values. We see that the percentage variation is decreasing more rapidly
with increasing periodic cell size than the convergence of the φ′

min values. In fact, the
flux per disc results from Figure 7 show that, for α = 0.01, the flux per disc is still well
below the single disc flux for l1 = l2 = 30, which indicates that the variation of φ′ with θ
is only due to the close proximity of the electrodes for small l1, l2. For moderate to large
spacings, the discs are far enough away from each other to cause minimal disturbances
in their neighbor’s flux, but the limitations on volume available for diffusion (only the
volume above the periodic cell for each electrode) result in the low flux per disc. In fact,
this observation explains the observable point of inflexion in the curves of flux per disc
for α = 0.1, 0.05, 0.01, 0.05 shown earlier in Figure 7(a). There is a drop in flux per disc
as l1 = l2 decreases due to the reduced size of the periodic cell. However, as l1 = l2 gets
small enough, there is additional interaction between the discs themselves, causing the
angular variation of φ′ observed in Figure 10.

Finally, in Figure 11, the flux per disc is shown with curves for different α, but now
l1 = 1.05 always, and l2 is varied, thus increasing the aspect ratio of the periodic cell.
For large l2, this geometry will look like widely separated parallel rows of discs. We see
that the convergence to a set flux per disc as l2 increases is about the same as for the
l1 = l2 case. However, the value the flux per disc converges to is reduced, by a greater
fraction as α gets smaller. We also see that the inflexion in the curves in Figure 7(a)
are not seen in Figure 11. Since l1 = 1.05, discs will always be close together in the x
direction, and so the change in behavior as discs get further apart is not apparent here.

4.2 Results for Finite K

For finite K, tests were performed for the single microelectrode case for various α and
K with nonequally spaced elements in the radial direction. It was found that 3-6 digits
of accuracy in the total flux are obtained using M=16 elements (8 on r ∈ [0, 0.9], 8 on
r ∈ [0.9, 1]), with the accuracy highest for small K. Thus, results quoted here used
16 × 5 = 80 element discretizations. 16 × 5 quadratic elements lead to 283 unknowns,
and solution took roughly three hours on a Sun Sparc 10. It should also be noted that
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l1 = l2 φ′
min % Variation

1.05 −3.105 × 10−2 3.1
2 −5.650 × 10−2 0.64
3 −1.242 × 10−1 0.077
4 −2.100 × 10−1 0.018
5 −3.070 × 10−1 0.0058
6 −4.087 × 10−1 0.0023

Table 2: For each l1 = l2, φ′
min represents the minimum value of φ′ for r = 0.9, which

is at θ = π/4. The third column holds the percentage variation between maximum and
minimum values of φ′.
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the integral terms from (35) are independent of K, and so calculations for a particular
α, l1, and l2 can be used for various K with minimal extra calculation - just the inversion
of a matrix.

With the enormous range of parameters available, we choose to present in Figure
12 the flux per disc versus l1 = l2 results for α = 0.01 and α = 0.5 for various K.
The results for K = ∞ from Figure 7 are included to show the upper bounds on the
possible flux per disc in these cases. For small K, the curves of flux per disc versus
l1 = l2 reach a steady state more quickly than for higher K. We can also see that for
K > 100, there is very little difference in flux per disc compared to the K = ∞ case.
If for physical systems there is a cost involved in increasing the surface reaction rate
K of the electrodes, then there is a break even point at which increases in K result in
increases in flux per disc that are uneconomical. Also, for particular α, l1, l2, a value of
K can be found at which the flux per disc is any given percentage of the K = ∞ result.

5 Conclusion

Bender and Stone [5] developed an integral equation approach to the single disc steady
state microelectrode problem, and produced results of greater accuracy and flexibility
(e.g. not limited to the pure diffusion, α = 0, case) than previously available. A com-
bined eigenfunction expansion and boundary collocation approach was recently described
by Fransaer et al. [11], who also treated a finite number of electrodes. Here, we have
extended those results to the periodic microelectrode problem, and have investigated
the effects of varying the periodic cell size. By allowing the flux φ′ to vary in both r and
θ directions and using a periodic Green’s function, we have obtained results for periodic
systems, and have obtained results over a range of α and K values.

There are a number of possible simple extensions of the techniques presented here for
further analysis. The problem of a ring microelectrode, or indeed any other potentially
interesting shape, can be modelled in both the single and periodic cases. For situations
where we wish to maximize the flux per unit area from a periodic array, while minimizing
the quantity of microelectrode material placed on the plane, ring electrodes may indeed
by more useful than discs. Also, the problem of random positioning of microelectrodes
on a surface may be simulated by a periodic cell containing a random collection of
microelectrodes, random in both position and/or size.
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