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1. Introduction

In the classical Monty Hall problem you are a contestant on a game

show confronted with three identical doors. One of them conceals a

car while the other two conceal goats. You choose a door, but do not

open it. The host, Monty Hall, now opens one of the other two doors,

careful always to choose one he knows to conceal a goat. You are then

given the options either of sticking with your original door, or switching

to the other unopened door. What should you do to maximize your

chances of winning the car?

Most people find the correct solution, that you double your chances

of winning by switching doors, to be counterintuitive. Also counterin-

tuitive is the fact that if Monty selects his door at random and just

happens to choose one with a goat, then there is no longer any advan-

tage to be gained from switching. A lucid explanation of these points

can be found in [5].

Several n door versions of the problem are known. One of them,

which we call the Progressive Monty Hall problem, starts with n > 3

doors. One door conceals a car, while the other n − 1 doors conceal

goats. You select one door, but do not open it. Monty chooses at

random one of the other doors that he knows conceals a goat, and

opens it. You are then given the option of switching to a different

door. After making your choice, Monty reveals another goat and again

offers you the option of switching. This continues until only two doors

remain. You make your final choice, and receive whatever is behind

your door. What strategy maximizes your chances of winning the car?

The case n = 4 was solved by Rao and Rao [7]. By enumerating the

sample space, they established that the best strategy is to stick with
1



2 STEPHEN K. LUCAS, JASON ROSENHOUSE

your original door until only two doors remain, and then switch. They

asserted, but did not prove, that this strategy is optimal for all n ≥ 4,

with the probability of success being (n − 1)/n. Using methods based

on Bayes’ theorem and conditional probabilities, the optimality of this

strategy was proved by the authors (in joint work with A. Schepler) in

[6].

Here we present a different approach. Using recurrence relations, we

prove that by following the strategy of switching every time you win

with probability 1 − 1/e. We also establish the optimal strategy to

follow when you are determined to switch a given number k times. We

then present another proof of the optimality of the “switch at the last

minute” strategy.

2. Switching Every Time

It has been our experience in presenting this problem to students

that the strategy of switching doors at every opportunity is invariably

popular. This discussion typically comes after a long struggle to per-

suade them of the benefits of switching in the classical version. The

take home message seems to be that switching is a very good thing

indeed, which might explain the popularity of this approach. In this

section we will prove that your probability of success with this strategy

approaches 1 − 1/e as n → ∞.

We assume that every time Monty reveals a goat we select randomly

from among the unopened doors different from our current choice. De-

note by an the probability of winning with this strategy. Our analysis

now splits into two cases, depending on whether our initial choice is

correct or incorrect. Let bn denote the probability of winning if we

begin with n doors and our initial choice conceals a goat, and let cn

denote the probability of winning if we begin with n doors and our

initial choice conceals the car. Since there is one car and n − 1 goats,

we can write

(1) an =

(

n − 1

n

)

bn +

(

1

n

)

cn.
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Suppose our initial choice conceals a goat. Monty opens a door and

reveals a goat. This time, among the remaining n − 2 doors different

from our current choice, there is one that conceals the car and n − 3

that conceal goats. Thus, there is a probability of 1/(n − 2) that we

will switch to the car, and a probability of (n− 3)/(n− 2) that we will

switch to a goat. Consequently, we can write

(2) bn =

(

n − 3

n − 2

)

bn−1 +

(

1

n − 2

)

cn−1.

Alternatively, suppose our current choice conceals the car. Again

Monty reveals a goat. In this case each of the remaining n−2 doors will

conceal a goat. It follows that we will switch to a goat, and therefore

(3) cn = bn−1.

We can use equation (3) to eliminate the ci terms in equations (1) and

(2). We obtain

(4) an =

(

n − 1

n

)

bn +

(

1

n

)

bn−1

and

(5) bn =

(

n − 3

n − 2

)

bn−1 +

(

1

n − 2

)

bn−2.

Note that b2 = 0 and b3 = 1.

Repeated applications of equation (5) leads to

bn+2 =

(

n − 1

n

)

bn+1 +

(

1

n

)

bn

=

(

n − 1

n

)(

n − 2

n − 1
bn +

1

n − 1
bn−1

)

+

(

1

n

)

bn

=

(

n − 1

n

)

bn +

(

1

n

)

bn−1.

Since this last expression appears as the right-hand side of (4), we see

that bn+2 = an. If we now rewrite (5) with n+2 in place of n and then

use this substitution, we get the recurrence

(6) an =

(

n − 1

n

)

an−1 +

(

1

n

)

an−2,
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with a0 = 0 and a1 = 1.

To solve (6), we rewrite it as

an − an−1 = −
1

n
(an−1 − an−2).

Since a1 − a0 = 1, we have

an − an−1 = −
(−1)n

n!
,

which implies that the probability of winning is

an = an − a0 =

n
∑

i=1

(ai − ai−1) = −

n
∑

i=1

(−1)i

i!
.

It follows that

lim
n→∞

an = −
∞
∑

i=1

(−1)i

i!
= 1 −

∞
∑

i=0

(−1)i

i!
= 1 −

1

e
,

recognizing that the infinite series is that for ex with x = −1. The

number of doors n does not need to be very large before the probability

stabilizes at 0.632.

3. Other Things With Probability (1 − 1/e)

Perhaps it is a bit surprising that the number e should appear in

a probability problem based on a game show. Making it even more

remarkable is the prevalence of 1 − 1/e as the asymptotic probability

of a variety of quite different phenomena.

• A derangement [8] is a permutation of the integers from one to

N such that for all 1 ≤ i ≤ N the number i does not appear

in the i-th place. The probability that a permutation is not a

derangement approaches 1− 1/e as N approaches infinity. The

two most common proofs are by application of the inclusion-

exclusion principle, or by developing a recurrence relation very

similar to equation (6).

• Suppose you have n numbered balls. You select one at random,

jot down its number, then replace it. You repeat this procedure

n times. Since at every step all n balls are available, the prob-

ability of not selecting a given ball at each drawing is 1 − 1/n.
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After making n selections, the probability of a given ball never

having been chosen is (1 − 1/n)n. Given the definition

ez = lim
n→∞

(

1 +
z

n

)n

,

we see that as n increases, the probability that a given ball is

never selected in n drawings is 1/e. Thus, the probability of

selecting a given ball at least once in n drawings approaches

1 − 1/e.

This result is important in bootstrapping methods in sta-

tistics, where we want to estimate properties of a population

based upon sampling from an approximate distribution, as in

[1]. A particular example is known as 0.632 bootstrapping,

where 0.632 ≈ 1 − 1/e.

• Imagine that we are interviewing n applicants for a job. We

know that there exists a unique ordering of the candidates from

best to worst, but we do not know what that ordering is. We

can only assign relative rankings as we interview each candidate.

At the end of each interview we must make a decision as to

whether to accept or reject each candidate. Once rejected, we

are not allowed to recall a candidate. Our goal is to hire the

best candidate; hiring the second best is the same as hiring

the worst for our purposes. What strategy will maximize our

chances of hiring the best candidate?

This is variously known as the secretary problem, the Sul-

tan’s dowry problem, the marriage problem, or the best choice

problem. Following Havil [3], the optimal strategy begins by

rejecting the first k applicants, where k = ⌊n/e⌋. We then hire

the next applicant who is superior to all those who came be-

fore. If no such applicant exists, then we agree to hire the last

candidate even though that implies failure. It turns out that

following this strategy you will fail to hire the best candidate

with probability approaching 1−1/e an n increases. The result

is related to approximating the harmonic series by a natural

logarithm, which introduces e.
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What makes these examples even more fascinating is that we have

been unable to find any comparable problem (apart from the obvious

cases involving the exponential probability distributions) where the

probability does not involve 1/e. There are many probability problems

related to that other classic constant π, but the familiar examples all

provide different algebraic expressions. For example, the probability

that two randomly chosen positive integers are relatively prime is 6/π2,

as is the probability that a randomly chosen integer is square-free [2].

The probability that the triple (x, y, 1), where 0 < x, y < 1 represents

the lengths of the sides of an obtuse triangle is (π − 2)/4 [4]. The

solution to the Buffon needle problem (in which a needle of length L

is tossed at random onto a plane ruled with parallel lines at distance

d ≥ L from each other, and we seek the probability that the needle

intersects a line) is given by 2L/(πd) [5].

4. Other Strategies

What can be said on behalf of other strategies? We note first that

equation (1), though formulated with the “Switch Every Time” strat-

egy in mind, is actually valid for any strategy. More specifically, let S

be a given strategy and denote by an the probability of winning with S

at the moment when n doors remain in play. We now make our initial

door choice. If bn denotes the probability of winning with S given that

our current choice conceals a goat, and cn denotes the probability of

winning given that our current choice conceals the car, then an, bn and

cn are related via equation (1).

Furthermore, since it is assumed that the doors are identical, and

therefore that their numbering is arbitrary, we only need to consider

strategies that call for switching at specific moments during the game.

Strategies such as, “Switch if Monty opens an even door, but stick

otherwise,” can not be optimal, and we will not consider them.

Let us assume, then, that our strategy calls for us to switch doors a

total of k times with k ≤ n − 2. We will assume that we choose our

new door randomly from the available options each time we switch.

Denote by {mi}
k
i=1 the number of doors remaining when we make the

k − i + 1-st switch. We have 3 ≤ m1 < m2 < · · · < mk ≤ n.
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For any integer j, the manner in which the probabilities bj and cj are

related to bj−1 and cj−1 will depend on whether or not we switch at the

moment when j doors remain. If we switch, then the probabilities are

related in the manner described by equations (2) and (3). If we do not

switch, then the probabilities do not change. To see this, note that our

probability of winning by sticking with our present door is equal to the

probability that it conceals the car. A straightforward argument using

Bayes’ theorem shows that this probability can not change so long as

we maintain this door as our selection. Consequently, our probability

of winning can change only at those moments of the game when we

decide to switch doors.

It follows that we have

(7) bmi
=

(

mi − 3

mi − 2

)

bmi−1
+

(

1

mi − 2

)

cmi−1
and cmi

= bmi−1
,

for all 1 ≤ i ≤ k. For any subscript j 6= mi for any i, we have bj = bj−1

and cj = cj−1.

To simplify the notation, we define βi = bmi
and qi = mi − 2. This

leads to

(8) βi =

(

qi − 1

qi

)

βi−1 +

(

1

qi

)

βi−2,

for i = 1, 2, . . . , k. Note that we have the initial conditions β
−1 = 1

and β0 = 0. The probability of winning given there are n doors and a

given set of k door changes is thus

(9) an =

(

n − 1

n

)

βk +

(

1

n

)

βk−1.

To solve (9), set γi = βi − βi−1. Subtracting βi−1 from both sides of

equation (8) then leads to

γi =
−γi−1

qi

,

with γ0 = −1. Thus γ1 = 1/q1, γ2 = −1/(q1q2), γ3 = 1/(q1q2q3), and

in general

γj =
(−1)j+1

∏j

i=1
qi

.
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Since βi = γi + βi−1,

β1 =
1

q1

, β2 =
1

q1

−
1

q1q2

, β3 =
1

q1

−
1

q1q2

+
1

q1q2q3

,

and in general

(10) βj =
1

q1

−
1

q1q2

+
1

q1q2q3

− · · ·+
(−1)j+1

∏j

i=1
qi

.

Finally, substitution back in (9) gives us

(11) an =
1

q1

−
1

q1q2

+
1

q1q2q3

− · · ·+
(−1)k+1

∏k

i=1
qi

−
(−1)k+1

n
∏k

i=1
qi

.

Let us use (11) to analyze a few simple cases. If we never change

doors, then k = 0, β0 = 0 and β
−1 = 1. It follows that an = 1/n. This

makes sense. Our initial door choice is correct with probability 1/n

and this probability can not change so long as it remains our choice

(as can be shown with Bayes’ theorem, for example). Note that as n

increases, the probability of winning approaches zero.

If we change doors exactly once then k = 1 and

an =
1

q1

−
1

nq1

=
n − 1

nq1

.

The probability of winning is maximized, given our constraints on q1,

by choosing q1 = 1, which is equivalent to m1 = 3. This corresponds to

switching at the last possible moment. Again, this makes sense. If you

are only going to switch one time you should do so after Monty opens his

final door. This strategy gives a probability of winning an = (n−1)/n,

which approaches one as n increases.

If we change doors twice, k = 2 and

an =
1

q1

−
1

q1q2

+
1

nq1q2

=
n(q2 − 1) + 1

nq1q2

.

This is clearly maximized by choosing q1 = 1 and q2 = n − 2. The

optimal strategy of changing doors immediately then leaving the final

change to the last moment has probability an = (n2−3n−1)/(n2−2n),

which also approaches one as n increases. Note, however, that for a

given number of doors n, the best one change winning probability is

better than that for two changes.
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Finally, if we change doors three times, then k = 3 and

an =
1

q1

−
1

q1q2

+
1

q1q2q3

−
1

nq1q2q3

.

Since 1/q1 is a common factor to all terms, we see that an is maximized

by minimizing q1. That is, we set q1 = 1. Determining the appropriate

values of q2 and q3 is trickier. The value of an increases with q2 (sug-

gesting that q2 should be maximized), but decreases with q3 (suggesting

that q3 should be minimized). We must balance these considerations

with the fact that q2 < q3. This is accomplished by setting q3 = q2 +1.

With this substitution, it is straightforward to show that we should

take q2 = n − 3 and q3 = n − 2. This corresponds to making the first

two switches immediately, and then waiting until the end to make the

third. This leads to a probability of success of

an =
n3 − 6n2 + 9n − 1

n(n − 2)(n − 3)
.

This approaches one as n increases, but is nonetheless a lower chance

of success than in the two switch strategy.

Based on these examples, you might suspect that if you are deter-

mined to switch exactly k > 2 times, your best strategy is to make your

first k−1 switches as soon as possible, and then wait until the last pos-

sible minute to make your final switch. That suspicion is correct, as

the following theorem shows:

Theorem 1. Let S be a strategy for the Progressive Monty Hall prob-

lem that calls for you to switch exactly k times, with 2 ≤ k ≤ n − 2.

Then the probability of winning with S is maximized by making switches

1, 2, 3, · · · , k − 1 when there are n − 1, n − 2, · · · , n − k + 1 doors re-

maining, respectively, and making the k-th switch when only two doors

remain.

Proof. The quantity to be maximized is an from equation (11), subject

to the constraints that qi ∈ Z for all i and

1 ≤ q1 < q2 < · · · < qk ≤ n − 2.
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Equation (11) can be rewritten as

an =
1

q1

(

1 −
1

q2

(

1 −
1

q3

+
1

q3q4

+ · · ·+
(−1)k+1

∏k

i=3
qi

−
(−1)k+1

n
∏k

i=3
qi

))

.

It is clear that an is maximized by setting q1 = 1. This corresponds to

making your final switch at the last possible moment.

To simplify the notation, set

γk = 1 −
1

q3

+
1

q3q4

+ · · ·+
(−1)k+1

∏k

i=3
qi

−
(−1)k+1

n
∏k

i=3
qi

.

Maximizing an now requires that we minimize γk/q2.

To do this, first note that γk is an alternating series whose terms are

strictly decreasing in magnitude. It follows that γk ≥ 1− (1/q3). Since

q3 > 1, this implies that γk > 0.

Next, view the function f(q1, q2, · · · , qk) = γk/q2 as a function from

R
k → R; that is, allow the qi’s to be real-valued instead of integer-

valued. Then we have
∂f

∂q2

=
γk

(q2)2
> 0,

for all values of q2. It follows that γk/q2 will be minimized when q2 is

maximized. With our constraints, that means setting q2 = n − k.

But this, in turn, forces us to set qi = n − k + (i − 2) for 3 ≤ i ≤ k.

This corresponds to the strategy laid out in the theorem, and the proof

is complete. �

5. Optimal door choices

Finally, Lucas et al. [6] proved that the best strategy for winning the

progressive Monty Hall problem is changing doors once at the last pos-

sible moment – in the above notation, k = 1, q1 = 1, and an = 1−1/n.

The proof used an inductive argument based upon Bayes’ Theorem and

conditional probabilities. We can now use (11) to establish this fact in

a more straightforward manner:

Theorem 2. The optimal strategy for the progressive Monty Hall prob-

lem is to change doors once at the moment when only two doors remain

in play.
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k\n 3 5 10 20 50 100 200 500
1 0.6667 0.8000 0.9000 0.9500 0.9800 0.9900 0.9950 0.9980
2 0.7333 0.8875 0.9472 0.9896 0.9899 0.9950 0.9980
3 0.6333 0.8732 0.9443 0.9792 0.9898 0.9949 0.9980
4 0.8545 0.9410 0.9787 0.9897 0.9949 0.9980
5 0.8291 0.9373 0.9783 0.9896 0.9949 0.9980
8 0.6321 0.9226 0.9767 0.9892 0.9948 0.9980
18 0.6321 0.9697 0.9880 0.9945 0.9979
48 0.6321 0.9811 0.9935 0.9978
98 0.6321 0.9903 0.9975
198 0.6321 0.9967
498 0.6321

Table 1. Probabilities of winning given k
switches and n doors (to four digits accuracy)

Proof. We begin by assuming that we change doors exactly k times,

where k > 1. We have already shown that the k = 1 case (one switch

at the end) is superior to the best k = 2 or 3 cases. For k > 3 and

using the optimum strategy just proven, the probability of winning is

an = 1 −
1

(n − k)
+

1

(n − k)(n − k + 1)
− · · ·+

(−1)k

(n − k)(n − k + 1) · · · (n − 2)
−

(−1)k

n(n − k)(n − k + 1) · · · (n − 2)
.

This is an alternating series where each term is strictly smaller in mag-

nitude than its predecessor, and so has an upper bound

an < 1 −
1

(n − k)
+

1

(n − k)(n − k + 1)
= 1 −

1

(n − k + 1)
< 1 −

1

n
.

Thus, the optimum when changing doors more than once is an inferior

strategy to changing doors at the last possible moment, completing the

proof. �

We conclude with table 1 indicating actual probabilities of winning

the car using the optimum strategies with k switches and n doors.
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