
Least squares cubic splines without B-splines

S.K. Lucas

School of Mathematics and Statistics, University of South Australia, Mawson Lakes SA 5095

e-mail: stephen.lucas@unisa.edu.au
Submitted to the Gazette of the Australian Mathematical Society May 2003, Accepted July 2003

1. Justification

Readers of the Gazette will be familiar with the use of least squares to find the polynomial
that best fits a set of data points. As with all curve fitting problems, there are many situations
where one low order polynomial is inadequate and a high order polynomial fit is inappropriate.
A least squares cubic spline would provide a better fit.

There are thousands of articles published on variants of splines, including least squares cubic
splines. One of the first least squares articles was de Boor and Rice [1], and a comprehensive
explanatory textbook is Dierckx [2]. Unfortunately, every example in the literature and on the
web of a least squares cubic spline makes use of B-splines. While B-splines have a certain ele-
gance, they are sufficiently complex to be beyond the typical undergraduate level, and have the
disadvantage of being more expensive to evaluate than traditional cubic splines. For example,
Schumacker [4] points out that it is more efficient to convert a cubic B-spline to a traditional
cubic spline and then evaluate if you require two or more function evaluations per interval. The
only exception to using B-splines is Ferguson and Staley [3], where they find a least squares
cubic fit to data that enforces continuity of function and first derivative, but not second deriva-
tive. Thus, their formulation does not lead to a cubic spline. My colleague, Basil Benjamin,
had been using what is essentially the same cubic fit as [3] when fitting smooth curves to train
line data. This motivated me to seek the alternative that also enforces continuity of the second
derivative.

The aim of this note, then, is to show how least squares cubic splines can be formulated in
a straightforward manner using a traditional cubic spline definition. While we shall show that
the system of linear equations to be solved is larger than when using B-splines, (N +1)×(N +1)
given N intervals, the theory involved will be much more accessible to readers without advanced
numerical analysis experience.

2. Derivation

Assume that we are given a set of points {(xi, yi)}
n
i=1 for which we require a least squares

fit. Let t1 < t2 < · · · < tN+1 be N + 1 nodes, where t1 ≤ x1 and tN+1 ≥ xn. The rest of the
t’s do not need to be placed at data points. A piecewise cubic function f(x) is defined on the
domain [t1, tN+1] such that fi(x) = f(x) on [ti, ti+1] is a polynomial of degree at most three.
We wish to find the coefficients of the various cubics such that we minimise the sum of the
squares of the errors at the data points, with the constraints that the cubics have continuity of
function, first and second derivative, so that f(x) is in fact a cubic spline. Our approach will
be the standard one of Lagrange multipliers: to minimise f(x) with constraints gi(x) = 0, we
minimise f(x) +

∑

λigi(x).

Following Ferguson and Staley [3], we define our piecewise cubic as

f(x) = (2ui(x) + 1)v2

i (x)zi + u2

i (x)(1 − 2vi(x))zi+1 + hiui(x)v2

i (x)z′i + hiu
2

i vi(x)z′i+1, (1)

1



for x ∈ [ti, ti+1], i = 1, 2, . . . , N , where

hi = ti+1 − ti, ui(x) = (x − xi)/hi, and vi = ui(x) − 1. (2)

This ensures that f(ti) = zi and f ′(ti) = z′i for i = 2, 3, . . . , N − 1. In other words, the function
and its first derivative are already continuous. While not a standard way of writing a cubic,
this form will make the following analysis far more straightforward. If you prefer a standard
cubic for efficient nested evaluation, (1) can be rewritten on [ti, ti+1] as

f(x) = zi + z′i(x − ti) +

[

−
3

h2
i

(zi − zi+1) −
1

hi

(2z′i + z′i+1)

]

(x − ti)
2+

[

2

h3
i

(zi − zi+1) +
1

h2
i

(z′i + z′i+1)

]

(x − ti)
3.

(3)

The constraints that ensure f(x) is a cubic spline are continuity of the second derivative at ti,
i = 2, 3, . . . , N . This reduces to

hiz
′

i−1 + 2(hi−1 + hi)z
′

i + hi−1z
′

i+1 − 3
hi−1

hi

(zi+1 − zi) − 3
hi

hi−1

(zi − zi−1) = 0 (4)

for i = 2, 3, . . . , N . Now let us assume that the data {(xi, yi)}
n
i=1 is ordered on x so that we can

easily identify how many points (ni) are in each interval and where in the list (pi) they begin.
Under these conditions, the constrained minimisation problem is reduced to minimising

S =
N

∑

i=1

pi+ni−1
∑

j=pi

(yj − αijzi − βijzi+1 − γijz
′

i − δijz
′

i+1)
2+

N
∑

i=2

λi

[

hiz
′

i−1 + 2(hi−1 + hi)z
′

i + hi−1z
′

i+1 − 3
hi−1

hi

(zi+1 − zi) − 3
hi

hi−1

(zi − zi−1)

]

,

(5)

where
αij = (2ui(xj) + 1)v2

i (xj), βij = u2
i (xj)(1 − 2vi(xj)),

γij = hiui(xj)v
2
i (xj), δij = hiu

2
i (xj)vi(xj).

(6)

The {λi}
N
i=2 are the Lagrange multipliers, and combined with the unknowns {zi, z

′

i}
N+1

i=1 there
are 3N + 1 unknowns. As with any least squares problem, we can take the partial derivatives
of S with respect to each unknown, being careful to recognise that each unknown occurs in
several terms on the right hand side of (5), and equate to zero. This leads to the following
linear system of equations:







A BT CT

B E FT

C F 0













z
z′

λ





 =







D
G
0





 , (7)

where (with the abbreviation
∑k for

∑pk+nk−1

j=pk
)

• A is the (N + 1) × (N + 1) symmetric tridiagonal matrix with main diagonal 2
∑

1 α2
1j ,

2(
∑

2 α2
2j +

∑

1 β2
1j), 2(

∑

3 α2
3j +

∑

2 β2
2j), . . ., 2(

∑N α2
Nj +

∑N−1 β2
N−1,j), 2

∑N β2
Nj, and

codiagonal 2
∑

1 α1jβ1j , 2
∑

2 α2jβ2j , . . ., 2
∑N αNjβNj,

• B is the (N+1)×(N+1) tridiagonal matrix with main diagonal 2
∑

1 α1jγ1j, 2(
∑

2 α2jγ2j+
∑

1 β1jδ1j), 2(
∑

3 α3jγ3j+
∑

2 β2jδ2j), . . ., 2(
∑N αNjγNj+

∑N−1 βN−1,jδN−1,j), 2
∑N βNjδNj,

upper diagonal 2
∑

1 β1jγ1j, 2
∑

2 β2jγ2j , . . ., 2
∑N βNjγNj, and lower diagonal 2

∑

1 α1jδ1j ,
2

∑

2 α2jδ2j , . . ., 2
∑N αNjδNj,

2



• C is the (N −1)× (N +1) upper diagonal matrix with cii = 3hi+1/hi, ci,i+1 = 3(hi/hi+1 −
hi+1/hi), and ci,i+2 = −3hi/hi+1 for i = 1, 2, . . . , N − 1, all other terms zero,

• D is the (N + 1) × 1 vector with terms 2
∑

1 yjα1j , 2(
∑

2 yjα2j +
∑

1 yjβ1j), 2(
∑

3 yjα3j +
∑

2 yjβ2j), . . ., 2(
∑N yjαNj +

∑N−1 yjβN−1,j), 2
∑N yjβNj,

• E is the (N + 1) × (N + 1) symmetric tridiagonal matrix with main diagonal 2
∑

1 γ2
1j ,

2(
∑

2 γ2
2j +

∑

1 δ2
1j), 2(

∑

3 γ2
3j +

∑

2 δ2
2j), . . ., 2(

∑N γ2
Nj +

∑N−1 δ2
N−1,j), 2

∑N δ2
Nj, and codi-

agonal 2
∑

1 γ1jδ1j , 2
∑

2 γ2jδ2j , . . ., 2
∑N γNjδNj,

• F is the (N − 1) × (N + 1) upper diagonal matrix with fii = hi+1, fi,i+1 = 2(hi + hi+1),
and fi,i+2 = hi for i = 1, 2, . . . , N − 1, all other terms zero,

• G is the (N + 1)× 1 vector 2
∑

1 yjγij, 2(
∑

2 yjγ2j +
∑

1 yjδ1j), 2(
∑

3 yjγ3j +
∑

2 yjδ2j), . . .,
2(

∑N yjγNj +
∑N−1 yjδN−1,j), 2

∑N yjδnj,

• z = [z1, z2, . . . , zN+1]
T , z′ = [z′1, z

′

2, . . . , z
′

N+1]
T , λ = [λ2, λ3, . . . , λN ]T , and

• the zero matrix on the left hand side is (N − 1) × (N − 1), and the zero vector on the
right hand side is (N − 1) × 1.

3. Implementation

Setting up and solving (7) by Gaussian elimination is not difficult, particularly if appropriate
intermediate variables are used. Equation (3) can then be used to output the solution as
standard piecewise cubics. For N piecewise cubics we require at least 3N + 1 data points,
but there is no constraint on the position of these points. In fact it is perfectly acceptable (if
unusual) to have intervals with no data points whatsoever.

Pseudocode for a function that implements this formulation of a least squares cubic spline is
listed in figure 1. Figure 2 shows two examples of least squares cubic spline fits to data using
this algorithm. The first is the classic titanium heat data used to test curve fitting routines,
where spline intervals have been chosen for a good fit. The appropriate positioning of interval
endpoints continues to be an area of active research. The second is a simple fit to sinusoidal
data with small Gaussian noise, where data is not available in each interval. As one would
expect, the solutions are exactly those obtained using a B-spline approach.

References

[1] C. de Boor and J.R. Rice, Least squares cubic spline approximation I – fixed knots, Technical

Report CSD-TR 20, Computer Sciences, Purdue University (1968). Also available at
ftp://ftp.cs.wisc.edu/Approx/tr20.pdf

[2] P. Dierckx, Curve and surface fitting with splines, Oxford University Press, 1993.

[3] J. Ferguson and P.A. Staley, Least squares piecewise cubic curve fitting, Comm. ACM 16
380–382 (1973).

[4] L.L. Schumaker, Spline functions: basic theory, John Wiley and Sons, New York, 1981.

3



Algorithm to find a least squares cubic spline fit to data (xi, yi)
n
i=1 on intervals [ti, ti+1]

N
i=1.

Input: Data (xi, yi)
n
i=1 and interval endpoints {ti}

N+1

i=1
, number of data points n and intervals N .

Output: Function {zi}
N+1

i=1
and derivative {z′i}

N+1

i=1
data at interval endpoints.

procedure least squares spline(x, y, n, t,N, z, z ′)
sort(x, y) // sort data points on x coordinates

for i = 1, N
hi = ti+1 − ti

endfor

p1 = 1, pn1 = 0, j = 1
for i = 1, n // identify which data is in which interval

if xi ≤ tj+1

pnj = pnj + 1
else

j = j + 1, pj = i, pnj = 0
while xi > tj+1 // deal with intervals with no points

j = j + 1, pj = i, pnj = 0
endwhile

pnj = 1
endif

endfor

Set taa, tab, tag, tad, tbb, tbg, tbd, tgg, tgd, tdd to zero vectors of length N
Set D and G to zero vectors of length N + 1
for i = 1, N // Set up intermediate sums and vectors

for j = pi, pi + pni − 1
u = (xj − ti)/hi, v = u − 1, α = (2u + 1)v2, β = u2(1 − 2v), γ = hiuv2, δ = hiu

2v
taai = taai+α2, tabi = tabi+αβ, tagi = tagi +αγ, tadi = tadi +αδ, tbbi = tbbi+β2

tbgi = tbgi +βγ, tbdi = tbdi +βδ, tggi = tggi +γ2, tgdi = tgdi +γδ, tddi = tddi + δ2

Di = Di + 2yjα, Di+1 = Di+1 + 2yjβ, Gi = Gi + 2yjγ, Gi+1 = Gi+1 + 2yjδ
endfor

endfor

Set A, B, E to zero matrices of size (N + 1) × (N + 1)
Set C, F to zero matrices of size (N − 1) × (N + 1)
for i = 1, N // Set up the intermediate matrices

Aii = Aii + 2taai, Ai+1,i+1 = 2tbbi, Ai,i+1 = 2tabi, Ai+1,i = Ai,i+1,
Bii = Bii + 2tagi, Bi+1,i+1 = 2tbdi, Bi,i+1 = 2tbgi, Bi+1,i = 2tadi

Eii = Eii + 2tggi, Ei+1,i+1 = 2tddi, Ei,i+1 = 2tgdi, Ei+1,i = Ei,i+1

endfor

for i = 1, N − 1
Cii = 3hi+1/hi, Ci,i+2 = −3hi/hi+1, Ci,i+1 = −Cii − Ci,i+2

Fii = hi+1, Fi,i+1 = 2(hi + hi+1), Fi,i+2 = hi

endfor

Set up and solve







A BT CT

BT E FT

C F 0






x =







D
G
0







Extract z = {xi}
N+1

i=1
, z′ = {xi}

2N+2

i=N+2

end(least squares spline)

Figure 1: Pseudocode for the least squares cubic spline algorithm.

4



600 700 800 900 1000 1100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Figure 2: Examples of fitting least squares cubic splines to data, open squares are data points,
closed circles are spline interval endpoints.

5


