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Abstract

We define a two-parameter family of Ceséaro averaging operatofs

1
PP f(z) = re+1 3 / A —nP A —t2)F, b+ L c; 1z) f(12) dr,
- 0

rre+1

where Reb + 1) > Rec >0, f(z) = > oo gan2" is analytic on the unit disel, and F (a, b; ¢; z) is the classical
hypergeometric function. In the present article the boundednegs9fRe(b + 1) > Rec > 0, on various function
spaces such as Hardy, BMOA aadBloch spaces is proved. In the special casel + o andc = 1, #”:¢ becomes
thea-Cesaro operator”, Rex > — 1. Thus, our results connect the special functions in a natural way and extend
and improve several well-known results of Hardy-Littlewood, Miao, Stempak and Xiao.
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1. Introduction

Suppose thatl = (t;;); ;>0 IS an infinite matrix with complex entries. Then we can consilers
a transformation which carries a complex sequanee{a;}; .o into a complex sequende= {b;}, -
through the systema = b, where

> tjaj=bi, =012, (1.2)
j>0

and where we assume that the series converge. Since each segiiinggecan be uniquely associated
with a power serieg (z) =Y 2 a;z', the matrixA maps a power series into another power series defined
by g(z) =02 o biz', whereb; is given by (1.1). Assuming that the matftransforms each power series
convergent in the unit dis¢ = {z : |z| < 1} into a power series convergent.mn the following problem
arises:

Problem 1.2. What are the function spaces, consisting of analytic functions in the unit digc on
which the operators defined through the given matrices are bounded?

Our main result is motivated by this problem. Special functions provide a valuable testing ground for
analytical methods in complex variable theory. The surprising use of the hypergeometric functions in
the proof of Bieberbach conjecture by de Branges, has prompted renewed interest in the hypergeometric
functions—the core of special functions. Moreover, many special functions encountered in physics,
engineering and probability theory are special cases of the Gaussian hypergeometric fln2tid)
defined by the power series expansion

o0

oF1(a,b;c;z) ;= F(a,b;c;z) = Z
n=0

(a,n)(b,n) "
— — (Jz] < 1), (1.2)
(c,n) n!
wherea, b, c are complex numbers such thag —m,m=0, 1, 2, 3, ..., and(a, n) is the shifted factorial
defined by Appel’'s symbol
r
@ =aa+l).. (@+n—1=19FtM L oNn=mw2.)
I'(a)
and(a, 0)=1fora # 0.We assume = —m,m=0, 1,2, 3, ..., to prevent the denominators vanishing.
Clearly, F (a, b; c; z) belongs to#, the space of all analytic functions in The asymptotic behaviour of
F(a, b; c; z) nearz = 1 can be obtained from standard texts (geé,17). Many other properties of the
hypergeometric series including the relations for contiguous functions (differing by 1 in the parameter
values) and its various generalizations are gathered together in standard texts fdt138s16,17]
Asymptotic expansions and inequalities for hypergeometric functions are also discug&@fl ifhe
following proposition is simple and is the basis for our investigation.

Proposition 1.4. We have

(a+b—c)zF(a,b+Lc+12)+cFla—1,b;c;2)=c(l—2)F(a,b+ 1;¢; 7). (2.3)
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Proof. This identity follows easily if we compare the coefficientsgbfon both sides of (1.3). O

Eqg. (1.3) is a contiguous relation.dt=1 andc =a + b, then (1.3) reduces to the trivial equatios: c.
Therefore, our interest lies in the following three cases:

(a=1andc #a+b=1+0b,

(i) a # 1 andc = a + b (see Section 4),

(iii) @ # 1 andc # a + b.

We produce a number of results concerning case (i) only and leave the other two cases open, although
we shall at least outline the problem for case (ii) in Section 4 ahead.

2. Generalization of Cesaro means

If a =1andc # a + b =1+ b, then (1.3) is equivalent to
(A+b—-c)/o)zF(L,b+Lc+Lz)+1

11—z
A comparison of the coefficients @* on both sides shows that fare N U {0},

=F1Lb+1c;2). (2.1)

l n
e 2 e =1,
n k=0
where
. Lk)(b, k . . b,k
Az,b,c _ ((l )( ) Ai,c = Al:l.,b,c _ ( )

(e, k(@ k)’ (e, k)
andby is the coefficient of¥ in [(1+b — ¢)/clzF (1, b+ 1; ¢ + 1; z) + 1 given bybg = 1, and fork > 1

A+b—0) . A+b—c) p.

by = L ARt 2 T Al
c b

the second identity being well defined only whiggt 0 (otherwise we have to treat the second identity

as a limiting case ib = 0). This basic property suggests that for a given sequence of complex numbers

{ar}r >0, We can consider the Cesaro mean of tyhe; ¢) which we define by

1

n
piTe Z by—rax, n e NU({O}.

n k=0

We call this a generalized Cesaro mean because in the speciakchse (Reo > —1) ande=1, the above
mean becomes the classical Cesaro mean of e(@esimplyx-Cesaro mean). If (z)=) .- qanz" € #,
then we define

: - 1
P = (AbT > bn_kak) z" (2.2)
k=0

n=0 n

and we call this Cesaro operator of ty{de b; ¢), or simply ageneralizedCesaro operator. It is not hard
to see that the right-hand side of (2.2) defines an analytic functioh dhe fact that??- f is analytic
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becomes clear from the integral representation which we derive below. In the notation of Sféjpak
we find that

Pl =" f  (Re(a+ 1) > 0)
and, in particular, fosx = 0, that

gll (gOf Z(n+12ak)z,

=0

where©® f is called the Cesaro operator of orderor simply thex-Cesaro operator acting drnsee
[15]). If « = 0, thea-Cesaro operatct™ f is simply the classical Cesaro operatorTo find an integral
representation fow”< f (z), we rewrite (2.2) as

P f(2) = [Z <Z bn— kak>z } 2 Ab-lm '

n=0
00 n 00
_ Z (Z bn—kak> % Z A;;b—i—lzn
n=0 \k=0 n=0
_(A+b—0)

zFLb+Lc+12)+1Uf(@)«Fc;b+1;2)
and, by (2.1), we obtain that
P fR=1f@QA-)FLb+1Lci )]l F(L e b+ 1),

wherex denotes the Hadamard product (or convolution) of power series. Thafig)i&= > oa,z' and
g()=Y 77 obzz are two analytic functions ifr| < R thenf x g is defined by( f * g)(z) =Y ;2 aibiz’
and this series converges flat < R2. Moreover,

1 dw
(f*)@) =5 / F)g(e/w)—. |zl <pR < R?.
In particular, if f, g are in#, we have
1 2n . )
(f *8)(p2) = o ; fpehg(ze™)de, O0<p<1l.
We recall the Euler’s representation fta, b; c; z), namely,
1 Yo b1
F(a,b;c;2) = ——— TTA-0)"T""T A —12)7%dr, 2.3
(a,b;c;2) B(b’c_b)/o 7 A=) A — )" dr (2.3)

which is valid when Re > Reb > 0. It follows easily for eacly(z) = Z,fiobkzk € #, that

1 1
FLbicio) 50 = o /O 11— 1) Tg (i) dr
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for Rec > Reb > 0. Using this formula wittb replaced byc andc replaced by + 1, and withg(z) =
f(@@A—-2)F(, b+ 1;c; z), we have the integral representation

;/11‘611_1‘)175 1—1¢ F(1b+1 -t (I dt
B(c,b+1-0¢) Jo ( -1k, se; 1) f(1z)

which is valid for Rgb + 1) > Rec > 0. In view of the well-known Gauss identiff,17]

P f2) =

F(a,b;c;2)=1—2) " PF(c—a,c—b;c; 2), (2.4)

we can rewrite the previous equation to obtain the following result.

Proposition 2.5. Forb, ¢ € C with Re(b 4+ 1) > Rec > 0, we have
f(tz)

(1= tg)bti=c
-~ ‘ c—=1, b—cL
" B(c,b+1-c¢) ,/0 ¢e-0 (1 — (btle

g’b’cf(z) = C_l(l —)be F(c—1c—b—1;c;tz)dt

1 1
B(C,b—}—l—c)/o !

Z_b
F(c—1c—b—1;¢c;0dC

In particular, ifc = 1 andb = 1 + «, we find that the representation for the classical Cesaro operator
of order« is given by

’

1 4\
G f(z) =2 () =1+ w f f(fz)((l s
0

1— tz)l-i—ot

as in[15]. Thus,2" f (z) is clearly a natural generalization of

3. Boundedness of the generalized Ceséaro operator

For f € o, 0<r <1, the integral mean&/ ,(r, f) are defined by

2n

and are known to be increasing withThe standard Hardy spaéé” (0 < p < o0) is the space of all
f € o for which

I fllp:= sup Mp(r, )= lim M,(r, f)<oc.
rel0,1) r—1-

1 2n . 1/p
My(r, f) = (—/ | f(reD|? dt) ., O<p<oo
0

For p = o0, H? = H* denotes the space of all bounded analytic functiond,dre., f € # satisfying
[ flloo =SUR 4 | f(2)] < 00.

The boundedness of on H” was investigated by a number of authors, Hardy—Littlew{fjdfor
1< p < o0, Siskakig[14] for p = 1, Miao[10] for 0 < p < 1, and Danikas and SiskalB] for p = oc.
Foro € (0, o0), the boundedness &f* on H”, 0 < p<2, was obtained by Stemp#§k5] and the case
2 < p<oo remained open. The case2p < oo was recently settled by Xigd8] affirmatively. The main
aim of this paper is to discuss the boundedness of the general opefstam H” for 0< p < 1. The
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boundedness of”¢ on H? for 1< p < oo is yet to be proved as we have faced some difficulties in
getting integral representation for the adjoint®f<. For the moment, we leave this problem open. In
order to prove our result, we will make use of the following lemma g4 %j.

Lemma 3.1. (i) For 0 < p < o0,

2n .
/0 sup |£(ré") P do< Bl £l

0<r<1

with B = B, independent of € H”.
(i) If 0< p <o0,andn > 1,then

1
/0 (Map(r, )P (L= 1Y dr<C L £

with C = C,, independent of € H”.
(ii) If s > 1,then

2n )
/ 11—re’| ™ do<D@—r)*H
0
with D = Dy independent of,l0 < r < 1.

Lemma 3.1 is due to Hardy and Littlewood and Lemma 3.1(i) is well-known as the nhame Hardy—
Littlewood maximal theorem. We refer to pp. 12, 65 ¢f for parts (i) and (iii) of Lemma 3.1 whereas
for Lemma 3.1(ii), se¢9, p. 412). The first main result we shall prove here is the following

Theorem 3.2. Letb, ¢ € C be such thaRe(b + 1) > Rec > 0. ThenZ”¢ is a bounded operator oH ?,
O0<p<l.

Proof. Our main aim is to show that
[Mp(r, 27 I <K fII5

for some constank > 0, depending only oh, ¢, andp. We provide the proof only for the case of reals
b, ¢ with b + 1> ¢ > 0. For the proof of the complex case, we simply require to note the following for
t €(0,1):

|tc_1| — tRe(C)—l and |(1 _ t)b—c'| — (1 _ t)Re(b—C)‘

Here we choose the principal argument for(arg ¢z) such that argl — rz) = 0 atz =0, and we note that
|arg(l — tz)| < /2 for z € A. Moreover, the integrajo1 1¢~1(1 — )~ dr converges by the hypotheses
Re(b+1—-c¢) > 0and Re > 0, therefore, we observe that it suffices to assbraedc are real, and that
b+ 1> ¢ > 0inthe remaining part of the proof.

Lets, = 1 — 2% for eachk >1. We will show that

Tk
0< / 171 = P dr < K 27O+, (3.1)
Tk—1



M.R. Agrawal et al. / Journal of Computational and Applied Mathematics 180 (2005) 333-344 339
For this, we need to consider two cages 1 andk > 1 separately. Fat =1,
1/2 1

141
0< / Tl —nbdr < 2/ ldr = ,
; 0 C2€—l

0

becausel — 1)?¢ = (1 — 1)~ 11 — )Pt <21 — Hbt1c<2. Fork > 1,

t 173
0< / 7Y - b= dr <2/ (L—pb—<dr
173

-1 T—1

2 [27(1(71)(17+17c) _ sz(b+1fc):|

Tbhtl—c
— 2 [2h+1—6 _ 1] 2—k(b+1—c)
b+1-—c
b+1—c
<2 2—k(b+l—c)
b+1-c ’

sincer¢~! = =11 < 2r¢ < 2. Putting together the two cases gives the required inequality (3.1) for some
constantk;. Now, as in[10,15], we suppos¢g € H? and

fre?
1—tr ei@)b—i-l—c ’

Gi(r,0) = sup

r€(tx—1.1k)

Sinceb + 1> ¢, the boundedness @f(c — 1, c — b — 1; ¢; z) on|z| <1 and the above calculations show
that

|B(c,b+1—c)2"¢ f(rd?)|

1 i0
-1 poe  SfAreY) 0
t 1—1¢ _ F(c—1c—b—1c;tre”)dr
/o (=2 (1 — tref)btl—c ( )

f(tre?
(1 —tr eiB)b—l—l—c

o0 t
<K> Z/ tc—l(l _ t)b—c
k=1""%-1

o0 t
<K22 G (r, 0) / LA -l dt
k=1 f—1

(0,0
<K1K2 Z G (r, )2~ kF1=)
=1
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and therefore, the last inequality wikty = K] K5 gives
2n(B(c, b+ 1— c)P[My(r, 2 )17

2n .
=/ |B(c,b+1—c)2"¢ f(ré?)|P do
0

00 2n
gng 2 k(+1=op / G7(r,0)d0 (since O< p<1)
0

k=1
o 2n i0 p
<Ks Y 27kb+1-op / f (tr'e' b) -
k=1 0 re@p) |(L—1tr e) e
<K3B Z Z_k(b+l_c)pMp (l’ki", W) , Lemma 31(|),
k=1 1-2)
o0 tgy1 f p
<K3BK4 / (1 — pn)POFi-a-1py (tr, —) dr
]{2:]:- ” p (1 _ Z)b-l-l—L
! b4+1l—c)—1 S P
<K5/(; (1- t)P( +1-0)—- Mp(t, W) dr, (3.2)

whereK4=p(b+1—c)/(1—2"P?+1=9) andK5 = K3BK 4. Now, we choose > 1 such that - (b +
l1-c¢)p<1l/n<land ¥n+ 1/m = 1. Then by Holders’s inequality

[M (t f )T_i/% faedh |
P> (1_Z)b+1—c T 2n 0 (1_tei6)b+1—c

1 2n ) 1/n o .
Soo ( f | f (€| dﬂ) < / 11— re?|=F1=cpm d9>
27'C 0 0

< (2n)1/n_1D1/mM,1p(t, f)p(l _ t)(—(b+l—c)pm+1)/m
(by Lemma 3L1(iii)),
= KM, (t, )P (1 — 1)~ CH=apti=t/n, (3.3)

1/m

whereKe = (2n)Y"~1DY™  Finally, combining inequalities (3.2) and (3.3) we can quickly obtain

1
2n(B(c, b+ 1 — ¢))P[M,(r, 7" £)]1” < KsKe / (L—0)"Y" M, t, )P dt
0

<CKsKell £l
where the second inequality is a consequence of Lemma 3.1(ii). This completes the froof.

Forb =1+ o andc = 1, we have
Corollary 3.6. For any«, Reax > — 1, the operatorg® is bounded orH?, 0 < p<1.

In addition to the Hardy spaces, we are interested in two other spaces, namely, the Bloch space and the
space BMOA.
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Thea-Bloch space$“ are defined for > 0 as

= {f € A ¢ || fllge =sup(l — [z f'(2)] < OO} :

zeAd

In particular, the spaceB“ become the classical Lipschitz and Bloch spaces whenreeer0, 1) and
a =1, respectively.
The space BMOA is defined to be the class of all analytic functiof$4rsuch that
sup

Z+a
— | — f(a)
zed f (1 + ClZ) f 2
One of the basic properties of BMOA is that it is contained in the Bloch space. Moreover, the space
BMOA equipped with the norm
Z+a
(e )

1+az

< Q.

Il fllBmOA == | f(O)] + sup

zed

2

is a Banach space.
We recall the property of Bloch function with nonnegative coefficients f{8/5).

Proposition 3.7. If f(z) = Y. g a,z" With a, >0, then fis Bloch if and only 52", a, = O(1).

Forinstancef(z) = —log(1 — z) = zF (1, 1; 2; z) is a Bloch function. Also, we note thats convex
univalent in4. Univalence of is trivial because R¢’(z) > % > 0in 4. Itis well known that an analytic
functionf is univalent and Bloch if and only if € BMOA. Thus, f € BMOA.

A simple consequence of a result of ZH9, Proposition 7]s the following.

Proposition 3.8. Suppose thai > 1. Then fis inB“ if and only if (1 — |z])* "1 f(z) is bounded ir.

In view of Proposition 3.8, for > 1, we have an equivalent definition fBf in the following form:

= {f € o ¢ || fllpa = sup(L— lzD* | f(2)] < OO} :

zeD

We require this equivalent form in the proof of part (ii) of Theorem 3.9.

Theorem 3.9. Letb, ¢ € C. Then we have the following
(i) For Re(b + 1) > Rec > 0, there existsf € BMOA such that#?” f does not belong tBMOA.
(i) For Re(b + 1) > Rec =1, #"¢ is a bounded operator fro8¢ to B* for all a in (1, c0).

Proof. (i) Consider the function

fi@)=—z"tlogl —z) = F(1, 1; 2 7).

Then, we note thaf; is univalent and Bloch and therefore it is BMOA. Indeed univalencé; dbllows
from [11, Corollary 1.9(5)jand it belongs to BMOA becau$@]

A0 1

n! T n
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Our aim is to prove tha#’ € f1(z) is not in BMOA. As each function in BMOA is Bloch, to show that
2b¢ f1(z) is not in BMOA, it suffices to show tha#? ¢ f1(z) is not in the Bloch space. For convenience,
we assume, ¢ real andb + 1> ¢ > 0. Now puta; = 1/(k + 1) in the definition?€ f1(z) so that

. 1+b—c 1 - Ab;_c
pb.c - - - n—k n
P f1(2) = b E ( hilc E 1 z.

n=0 n k=0

It is known that{4]
. T 1
Aﬁ’c=ﬁnb_c 1+0|( - as n — oo.
ro) n
To complete the proof, by Proposition 3.7, it is enough to show that

2N n

H 1 (n — k)=
Sx=Y_ By #O0(1), where annbﬂ_cz T
n=N k=0

Now proceeding exactly as [a8] we complete the proof.
(if) By using Proposition 3.8, to prove the theorem it is sufficient to show that

KI5
(1— |zt

for some positive constait. As usual, we deal with the case whigrc are real and + 1> ¢ >1 since
the proof for the complex case follows easily, for example, as in Theorem 3.2. Define

|27¢ £ ()] <

1

—tcfl 1—1t bfc'
B, b+1—c¢) ( )

f@=) a" and A0 =
n=0

Then the integral representation Bf-“ 7 (z) takes an equivalent form given by

f(tz)

(1— l,Z)b+l—c

1
P f() = /0 2(0) Fle—Lc—b—1cizydr

Now
| f(t2)]

W'F(C—lvc—b—lw;n)ldt

1
_ e |f@2)]
<K £€ 1 1—1¢ b—c__ 1J\PJT
/0 ( ) |1_tz|b+l—c

1 c—1 b—c
t 1—1¢
<K||f||/3a/0 -

R L R )

|z] tc_l(l _ t)b—c
= K| f||’pa /
B 0 |l—

tz|bHl=e(1 —t]g])a~1

1 c—1 _ \b—c
+/ ! (11 £) — dr.
Izl (L —tz)[PTi=e(1 —t]z])

1
22 £ (2)] < fo A1)
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Fort € (0,1) and|z| <1, we havell — rz] 1 < (1 — ) Tand(l — |z|) 1> |1 — tz|~L. Therefore, we
see that

< FI<KI I f Tt ned / LA,
’ )X a — e .
1o o (L= Jehee
For O<t < |z], the first integral on the right of the last inequality gives the estimate
|zl 1
/ Y1 —n"%dr < —
0 (a—DA - |z*
and, for|z| <t <1, the second integral gives the estimate
1 ,c-1 b—c
t 1—¢ 1
/ ( a-zb—c dr S a-1"
ol (—lzD (1—1z))
Using these two inequalities, we can easily obtain that
K'll fI’ga
(L — |zt

The desired conclusion follows if we use the definition of the nornBén O

|27¢ £ ()<

Remark. We note that the operatar’¢ does not mapd ™ functions to H>. This may be seen by
applying2”€ to the functionf = 1, arguing as if18].

4. Remarks and an open question

If a #1andc=a + b, then (1.3) is equivalent to

Fa—1b;a+b;z)
1-z
A comparison of the coefficient af* on both sides of (4.1) shows that

=F@a,b+1,a+b;z7), a#l (4.2)

Lba+b
ab+1a+b ZAa “P=1 neNU{0}.

Asinthe caser =1, ¢ # a + b, we can consider the mean

a— lba+b
AebTTath ZA K, neNU{0}

and form the set of new averaging operators defined by

o0

IOEDY (Aa btLath Z ATt ) 2, (4.2)

n=0
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wheref(z) =), yan2" is analytic on the unit disd. Again, it is not difficult to show that the right-hand
side of (4.2) represents an analytic functionnn fact, (4.2) can be rewritten as

PCf()=1fR)A—2)Fa—1bia+b;z)]*3F(1,La+b;a,b+1;2),

wherea # 1. Here , F, represents the generalized hypergeometric function defined by

)

pFalar, ... apict,. . cqi2) =)
n=0

(ag,n)---(ap,n) 2"
(c1,n)---(ag,n) n!’

We remark that fop < ¢, the series converges foie C. Whenp > g+1, the series diverges fore C\{0}
unless the series breaks off into a polynomial. In the interesting case wheye- 1, the series converges

for |z| <1. If Re( X9 _y¢j — Z?:iaj ) >0, then, 11 F, converges also at the point= 1. It would be
interesting to know whethe2”¢ f is bounded on Hardy spaces and other function spaces.
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