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Abstract

We define a two-parameter family of Cesáro averaging operatorsPb,c,

Pb,cf (z)= �(b + 1)

�(c)�(b + 1 − c)
∫ 1

0
tc−1(1 − t)b−c(1 − tz)F (1, b + 1; c; tz)f (tz)dt,

where Re(b + 1)>Rec >0, f (z) = ∑∞
n=0 anz

n is analytic on the unit disc�, andF(a, b; c; z) is the classical
hypergeometric function. In the present article the boundedness ofPb,c, Re(b+ 1)>Rec >0, on various function
spaces such as Hardy, BMOA anda-Bloch spaces is proved. In the special caseb= 1+ � andc= 1,Pb,c becomes
the�-Cesáro operatorC�, Re�> − 1. Thus, our results connect the special functions in a natural way and extend
and improve several well-known results of Hardy-Littlewood, Miao, Stempak and Xiao.
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1. Introduction

Suppose thatA = (tij )i,j �0 is an infinite matrix with complex entries. Then we can considerA as
a transformation which carries a complex sequencea = {ai}i�0 into a complex sequenceb = {bi}i�0
through the systemAa = b, where∑

j �0

tij aj = bi, i = 0,1,2, . . . , (1.1)

and where we assume that the series converge. Since each sequence{ai}i�0 can be uniquely associated
with a power seriesf (z)=∑∞

i=0 aiz
i, the matrixAmaps a power series into another power series defined

byg(z)=∑∞
n=0 biz

i,wherebi is given by (1.1).Assuming that the matrixA transforms each power series
convergent in the unit disc� = {z : |z|<1} into a power series convergent in�, the following problem
arises:

Problem 1.2. What are the function spacesF, consisting of analytic functions in the unit disc�, on
which the operators defined through the given matrices are bounded?

Our main result is motivated by this problem. Special functions provide a valuable testing ground for
analytical methods in complex variable theory. The surprising use of the hypergeometric functions in
the proof of Bieberbach conjecture by de Branges, has prompted renewed interest in the hypergeometric
functions—the core of special functions. Moreover, many special functions encountered in physics,
engineering and probability theory are special cases of the Gaussian hypergeometric function[1,2,16]
defined by the power series expansion

2F1(a, b; c; z) := F(a, b; c; z)=
∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n! (|z|<1), (1.2)

wherea, b, c are complex numbers such thatc �= −m,m=0,1,2,3, . . ., and(a, n) is the shifted factorial
defined by Appel’s symbol

(a, n) := a(a + 1) . . . (a + n− 1)= �(a + n)
�(a)

, n ∈ N = {1,2, . . .}

and(a,0)=1 fora �= 0. We assumec �= −m,m=0,1,2,3, . . . , to prevent the denominators vanishing.
Clearly,F(a, b; c; z) belongs toH, the space of all analytic functions in�. The asymptotic behaviour of
F(a, b; c; z) nearz= 1 can be obtained from standard texts (see[1,4,17]). Many other properties of the
hypergeometric series including the relations for contiguous functions (differing by 1 in the parameter
values) and its various generalizations are gathered together in standard texts such as[2,4,13,16,17].
Asymptotic expansions and inequalities for hypergeometric functions are also discussed in[12]. The
following proposition is simple and is the basis for our investigation.

Proposition 1.4.We have

(a + b − c)zF (a, b + 1; c + 1; z)+ cF (a − 1, b; c; z)= c(1 − z)F (a, b + 1; c; z). (1.3)
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Proof. This identity follows easily if we compare the coefficients ofzn on both sides of (1.3). �

Eq. (1.3) is a contiguous relation. Ifa=1 andc=a+b, then (1.3) reduces to the trivial equationc= c.
Therefore, our interest lies in the following three cases:

(i) a = 1 andc �= a + b = 1 + b,
(ii) a �= 1 andc = a + b (see Section 4),
(iii) a �= 1 andc �= a + b.
We produce a number of results concerning case (i) only and leave the other two cases open, although

we shall at least outline the problem for case (ii) in Section 4 ahead.

2. Generalization of Cesáro means

If a = 1 andc �= a + b = 1 + b, then (1.3) is equivalent to

((1 + b − c)/c)zF (1, b + 1; c + 1; z)+ 1

1 − z = F(1, b + 1; c; z). (2.1)

A comparison of the coefficients ofzn on both sides shows that forn ∈ N ∪ {0},
1

A
b+1;c
n

n∑
k=0

bn−k = 1,

where

A
a,b;c
k = (a, k)(b, k)

(c, k)(1, k)
, A

b;c
k := A1,b;c

k = (b, k)

(c, k)

andbk is the coefficient ofzk in [(1+ b− c)/c]zF (1, b+ 1; c+ 1; z)+ 1 given byb0 = 1, and fork�1

bk = (1 + b − c)
c

A
b+1;c+1
k−1 = (1 + b − c)

b
A
b;c
k ,

the second identity being well defined only whenb �= 0 (otherwise we have to treat the second identity
as a limiting case ifb = 0). This basic property suggests that for a given sequence of complex numbers
{ak}k�0, we can consider the Cesáro mean of type(1, b; c) which we define by

1

A
b+1;c
n

n∑
k=0

bn−kak, n ∈ N ∪ {0}.

We call this a generalized Cesáro mean because in the special caseb=1+� (Re�>−1) andc=1, the above
mean becomes the classical Cesáro mean of order� (or simply�-Cesáro mean). Iff (z)=∑∞

n=0 anz
n ∈ H,

then we define

Pb,cf (z) :=
∞∑
n=0

(
1

A
b+1;c
n

n∑
k=0

bn−kak

)
zn (2.2)

and we call this Cesáro operator of type(1, b; c), or simply ageneralizedCesáro operator. It is not hard
to see that the right-hand side of (2.2) defines an analytic function on�. The fact thatPb,cf is analytic
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becomes clear from the integral representation which we derive below. In the notation of Stempak[15],
we find that

P1+�,1f = C�f (Re(� + 1)>0)

and, in particular, for� = 0, that

P1,1f = C0f :=
∞∑
n=0

(
1

n+ 1

n∑
k=0

ak

)
zn,

whereC�f is called the Cesáro operator of order�, or simply the�-Cesáro operator acting onf (see
[15]). If � = 0, the�-Cesáro operatorC�f is simply the classical Cesáro operatorC. To find an integral
representation forPb,cf (z), we rewrite (2.2) as

Pb,cf (z) :=
[ ∞∑
n=0

(
n∑
k=0

bn−kak

)
zn

]
∗

∞∑
n=0

1

A
b+1;c
n

zn

=
∞∑
n=0

(
n∑
k=0

bn−kak

)
zn ∗

∞∑
n=0

Ac;b+1
n zn

= (1 + b − c)
c

[zF (1, b + 1; c + 1; z)+ 1]f (z) ∗ F(1, c; b + 1; z)

and, by (2.1), we obtain that

Pb,cf (z)= [f (z)(1 − z)F (1, b + 1; c; z)] ∗ F(1, c; b + 1; z),
where∗ denotes the Hadamard product (or convolution) of power series. That is, iff (z)=∑∞

i=0 aiz
i and

g(z)=∑∞
i=0 biz

i are two analytic functions in|z|<R thenf ∗ g is defined by(f ∗ g)(z)=∑∞
i=0 aibiz

i

and this series converges for|z|<R2. Moreover,

(f ∗ g)(z)= 1

2�i

∫
|w|=�

f (w)g(z/w)
dw

w
, |z|< �R<R2.

In particular, iff, g are inH, we have

(f ∗ g)(�z)= 1

2�

∫ 2�

0
f (�eit )g(ze−it )dt, 0< �<1.

We recall the Euler’s representation forF(a, b; c; z), namely,

F(a, b; c; z)= 1

B(b, c − b)
∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt, (2.3)

which is valid when Rec > Reb>0. It follows easily for eachg(z)=∑∞
k=0bkz

k ∈ H, that

F(1, b; c; z) ∗ g(z)= 1

B(b, c − b)
∫ 1

0
tb−1(1 − t)c−b−1g(tz)dt
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for Rec >Reb>0. Using this formula withb replaced byc andc replaced byb + 1, and withg(z) =
f (z)(1 − z)F (1, b + 1; c; z), we have the integral representation

Pb,cf (z)= 1

B(c, b + 1 − c)
∫ 1

0
tc−1(1 − t)b−c(1 − tz)F (1, b + 1; c; tz)f (tz)dt

which is valid for Re(b + 1)>Rec >0. In view of the well-known Gauss identity[2,17]

F(a, b; c; z)= (1 − z)c−a−bF (c − a, c − b; c; z), (2.4)

we can rewrite the previous equation to obtain the following result.

Proposition 2.5. Forb, c ∈ C with Re(b + 1)>Rec >0, we have

Pb,cf (z)= 1

B(c, b + 1 − c)
∫ 1

0
tc−1(1 − t)b−c f (tz)

(1 − tz)b+1−c F (c − 1, c − b − 1; c; tz)dt

= z−b

B(c, b + 1 − c)
∫ z

0
�c−1(z− �)b−c f (�)

(1 − �)b+1−c F (c − 1, c − b − 1; c; �)d�.

In particular, ifc = 1 andb = 1 + �, we find that the representation for the classical Cesáro operator
of order� is given by

C�f (z) := P1+�,1f (z)= (1 + �)

∫ 1

0
f (tz)

(1 − t)�
(1 − tz)1+�

dt,

as in[15]. Thus,Pb,cf (z) is clearly a natural generalization ofC.

3. Boundedness of the generalized Cesáro operator

Forf ∈ H, 0�r <1, the integral meansMp(r, f ) are defined by

Mp(r, f ) :=
(

1

2�

∫ 2�

0
|f (reit )|p dt

)1/p

, 0<p<∞

and are known to be increasing withr. The standard Hardy spaceHp (0<p<∞) is the space of all
f ∈ H for which

‖f ‖p := sup
r∈[0,1)

Mp(r, f )= lim
r→1− Mp(r, f )<∞.

Forp = ∞,Hp =H∞ denotes the space of all bounded analytic functions on�, i.e.,f ∈ H satisfying
‖f ‖∞ = supz∈� |f (z)|<∞.

The boundedness ofC on Hp was investigated by a number of authors, Hardy–Littlewood[9] for
1<p<∞, Siskakis[14] for p = 1, Miao [10] for 0<p<1, and Danikas and Siskakis[6] for p = ∞.
For � ∈ (0,∞), the boundedness ofC� onHp, 0<p�2, was obtained by Stempak[15] and the case
2<p�∞ remained open. The case 2<p<∞ was recently settled by Xiao[18] affirmatively. The main
aim of this paper is to discuss the boundedness of the general operatorPb,c onHp for 0<p<1. The
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boundedness ofPb,c onHp for 1<p<∞ is yet to be proved as we have faced some difficulties in
getting integral representation for the adjoint ofPb,c. For the moment, we leave this problem open. In
order to prove our result, we will make use of the following lemma as in[15].

Lemma 3.1. (i) For 0<p<∞,∫ 2�

0
sup

0� r<1
|f (rei�)|p d��B‖f ‖pp

withB = Bp independent off ∈ Hp.
(ii) If 0<p<∞, andn>1, then∫ 1

0
(Mnp(r, f ))

p(1 − r)−1/n dr�C‖f ‖pp
withC = Cp independent off ∈ Hp.

(iii) If s >1, then∫ 2�

0
|1 − rei�|−s d��D(1 − r)−s+1

withD =Ds independent of r, 0<r <1.

Lemma 3.1 is due to Hardy and Littlewood and Lemma 3.1(i) is well-known as the name Hardy–
Littlewood maximal theorem. We refer to pp. 12, 65 of[7] for parts (i) and (iii) of Lemma 3.1 whereas
for Lemma 3.1(ii), see[9, p. 412]). The first main result we shall prove here is the following

Theorem 3.2. Letb, c ∈ C be such thatRe(b+ 1)>Rec >0.ThenPb,c is a bounded operator onHp,
0<p�1.

Proof. Our main aim is to show that

[Mp(r,Pb,cf )]p�K‖f ‖pp
for some constantK >0, depending only onb, c, andp. We provide the proof only for the case of reals
b, c with b + 1>c>0. For the proof of the complex case, we simply require to note the following for
t ∈ (0,1):

|tc−1| = tRe(c)−1 and |(1 − t)b−c| = (1 − t)Re(b−c).

Here we choose the principal argument for arg(1− tz) such that arg(1− tz)=0 atz=0, and we note that
| arg(1 − tz)|< �/2 for z ∈ �. Moreover, the integral

∫ 1
0 t
c−1(1 − t)b−c dt converges by the hypotheses

Re(b+ 1− c)>0 and Rec >0, therefore, we observe that it suffices to assumeb andc are real, and that
b + 1>c>0 in the remaining part of the proof.

Let tk = 1 − 2−k for eachk�1. We will show that

0�
∫ tk

tk−1

tc−1(1 − t)b−c dt�K12−k(b+1−c). (3.1)



M.R. Agrawal et al. / Journal of Computational and Applied Mathematics 180 (2005) 333–344 339

For this, we need to consider two casesk = 1 andk >1 separately. Fork = 1,

0�
∫ t1

t0

tc−1(1 − t)b−c dt <2
∫ 1/2

0
tc−1 dt = 1

c2c−1 ,

because(1 − t)b−c = (1 − t)−1(1 − t)b+1−c�2(1 − t)b+1−c�2. Fork >1,

0�
∫ tk

tk−1

tc−1(1 − t)b−c dt�2
∫ tk

tk−1

(1 − t)b−c dt

= 2

b + 1 − c
[
2−(k−1)(b+1−c) − 2−k(b+1−c)]

= 2

b + 1 − c
[
2b+1−c − 1

]
2−k(b+1−c)

< 2
2b+1−c

b + 1 − c2−k(b+1−c),

sincetc−1 = t−1tc�2tc�2. Putting together the two cases gives the required inequality (3.1) for some
constantK1. Now, as in[10,15], we supposef ∈ Hp and

Gk(r, �)= sup
t∈(tk−1,tk)

∣∣∣∣∣ f (tr ei�)

(1 − tr ei�)b+1−c

∣∣∣∣∣ .
Sinceb+ 1>c, the boundedness ofF(c− 1, c− b− 1; c; z) on |z|�1 and the above calculations show
that

|B(c, b + 1 − c)Pb,cf (rei�)|

=
∣∣∣∣∣
∫ 1

0
tc−1(1 − t)b−c f (tr ei�)

(1 − tr ei�)b+1−c F (c − 1, c − b − 1; c; tr ei�)dt

∣∣∣∣∣
�K2

∞∑
k=1

∫ tk

tk−1

tc−1(1 − t)b−c
∣∣∣∣∣ f (tr ei�)

(1 − tr ei�)b+1−c

∣∣∣∣∣ dt

�K2

∞∑
k=1

Gk(r, �)

∫ tk

tk−1

tc−1(1 − t)b−c dt

�K1K2

∞∑
k=1

Gk(r, �)2
−k(b+1−c)
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and therefore, the last inequality withK3 =Kp1Kp2 gives

2�(B(c, b + 1 − c))p[Mp(r,Pb,cf )]p

=
∫ 2�

0
|B(c, b + 1 − c)Pb,cf (rei�)|p d�

�K3

∞∑
k=1

2−k(b+1−c)p
∫ 2�

0
G
p
k (r, �)d� (since 0<p�1)

�K3

∞∑
k=1

2−k(b+1−c)p
∫ 2�

0
sup
t∈(0,tk)

∣∣∣∣∣ f (tr ei�)

(1 − tr ei�)b+1−c

∣∣∣∣∣
p

d�

�K3B

∞∑
k=1

2−k(b+1−c)pMp
(
tkr,

f

(1 − z)b+1−c

)p
, Lemma 3.1(i),

�K3BK4

∞∑
k=1

∫ tk+1

tk

(1 − t)p(b+1−c)−1Mp

(
tr,

f

(1 − z)b+1−c

)p
dt

�K5

∫ 1

0
(1 − t)p(b+1−c)−1Mp

(
t,

f

(1 − z)b+1−c

)p
dt, (3.2)

whereK4 =p(b+ 1− c)/(1− 2−p(b+1−c)) andK5 =K3BK4. Now, we choosen>1 such that 1− (b+
1 − c)p <1/n<1 and 1/n+ 1/m= 1. Then by Hölders’s inequality[

Mp

(
t,

f

(1 − z)b+1−c

)]p
= 1

2�

∫ 2�

0

∣∣∣∣∣ f (tei�)

(1 − tei�)b+1−c

∣∣∣∣∣
p

d�

�
1

2�

(∫ 2�

0
|f (tei�)|np d�

)1/n(∫ 2�

0
|1 − tei�|−(b+1−c)pm d�

)1/m

�(2�)1/n−1D1/mMnp(t, f )
p(1 − t)(−(b+1−c)pm+1)/m

(by Lemma 3.1(iii )),
=K6Mnp(t, f )

p(1 − t)−(b+1−c)p+1−1/n, (3.3)

whereK6 = (2�)1/n−1D1/m. Finally, combining inequalities (3.2) and (3.3) we can quickly obtain

2�(B(c, b + 1 − c))p[Mp(r,Pb,cf )]p�K5K6

∫ 1

0
(1 − t)−1/nMnp(t, f )

p dt

�CK5K6‖f ‖pp,
where the second inequality is a consequence of Lemma 3.1(ii). This completes the proof.�

Forb = 1 + � andc = 1, we have

Corollary 3.6. For any�, Re�>− 1, the operatorC� is bounded onHp, 0<p�1.

In addition to the Hardy spaces, we are interested in two other spaces, namely, the Bloch space and the
space BMOA.
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Thea-Bloch spacesBa are defined fora >0 as

Ba =
{
f ∈ H : ‖f ‖Ba = sup

z∈�
(1 − |z|)a|f ′(z)|<∞

}
.

In particular, the spacesBa become the classical Lipschitz and Bloch spaces whenevera ∈ (0,1) and
a = 1, respectively.

The space BMOA is defined to be the class of all analytic functions inH 2 such that

sup
z∈�

∥∥∥∥f
(
z+ a
1 + āz

)
− f (a)

∥∥∥∥
2
<∞.

One of the basic properties of BMOA is that it is contained in the Bloch space. Moreover, the space
BMOA equipped with the norm

‖f ‖BMOA := |f (0)| + sup
z∈�

∥∥∥∥f
(
z+ a
1 + āz − f (a)

)∥∥∥∥
2
,

is a Banach space.
We recall the property of Bloch function with nonnegative coefficients from[3,5].

Proposition 3.7. If f (z)=∑∞
n=0 anz

n with an�0, then f is Bloch if and only if
∑2N
n=N an = O(1).

For instance,f (z)= − log(1 − z)= zF (1,1; 2; z) is a Bloch function. Also, we note thatf is convex
univalent in�. Univalence off is trivial because Ref ′(z)> 1

2 >0 in �. It is well known that an analytic
functionf is univalent and Bloch if and only iff ∈ BMOA. Thus,f ∈ BMOA.

A simple consequence of a result of Zhu[19, Proposition 7]is the following.

Proposition 3.8. Suppose thata >1.Then f is inBa if and only if(1 − |z|)a−1f (z) is bounded in�.

In view of Proposition 3.8, fora >1, we have an equivalent definition forBa in the following form:

Ba =
{
f ∈ A : ‖f ‖′

Ba = sup
z∈D

(1 − |z|)a−1|f (z)|<∞
}
.

We require this equivalent form in the proof of part (ii) of Theorem 3.9.

Theorem 3.9. Letb, c ∈ C. Then we have the following:
(i) For Re(b + 1)>Rec >0, there existsf ∈ BMOA such thatPb,cf does not belong toBMOA.
(ii) For Re(b + 1)>Rec�1,Pb,c is a bounded operator fromBa toBa for all a in (1,∞).

Proof. (i) Consider the function

f1(z)= −z−1 log(1 − z)= F(1,1; 2; z).
Then, we note thatf1 is univalent and Bloch and therefore it is BMOA. Indeed univalence off1 follows
from [11, Corollary 1.9(5)]and it belongs to BMOA because[8]

f
(n)
1 (0)

n! = 1

n
.
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Our aim is to prove thatPb,cf1(z) is not in BMOA. As each function in BMOA is Bloch, to show that
Pb,cf1(z) is not in BMOA, it suffices to show thatPb,cf1(z) is not in the Bloch space. For convenience,
we assumeb, c real andb + 1>c>0. Now putak = 1/(k + 1) in the definitionPb,cf1(z) so that

Pb,cf1(z)= 1 + b − c
b

∞∑
n=0

(
1

A
b+1;c
n

n∑
k=0

A
b;c
n−k
k + 1

)
zn.

It is known that[4]

Ab;cn = �(c)

�(b)
nb−c

{
1 + O

(
1

n

)}
as n→ ∞.

To complete the proof, by Proposition 3.7, it is enough to show that

SN =
2N∑
n=N

Bn �= O(1), where Bn = 1

nb+1−c
n∑
k=0

(n− k)b−c
k + 1

.

Now proceeding exactly as in[18] we complete the proof.
(ii) By using Proposition 3.8, to prove the theorem it is sufficient to show that

|Pb,cf (z)|� K‖f ‖′
Ba

(1 − |z|)a−1

for some positive constantK. As usual, we deal with the case whenb, c are real andb + 1>c�1 since
the proof for the complex case follows easily, for example, as in Theorem 3.2. Define

f (z)=
∞∑
n=0

anz
n and �(t)= 1

B(c, b + 1 − c) t
c−1(1 − t)b−c.

Then the integral representation ofPb,cf (z) takes an equivalent form given by

Pb,cf (z)=
∫ 1

0
�(t)

f (tz)

(1 − tz)b+1−c F (c − 1, c − b − 1; c; tz)dt.

Now

|Pb,cf (z)|�
∫ 1

0
�(t)

|f (tz)|
|(1 − tz)|b+1−c |F(c − 1, c − b − 1; c; tz)| dt

�K
∫ 1

0
tc−1(1 − t)b−c |f (tz)|

|1 − tz|b+1−c dt

�K‖f ‖′
Ba

∫ 1

0

tc−1(1 − t)b−c
|1 − tz|b+1−c(1 − t |z|)a−1 dt

=K‖f ‖′
Ba

∫ |z|

0

tc−1(1 − t)b−c
|1 − tz|b+1−c(1 − t |z|)a−1 dt

+
∫ 1

|z|
tc−1(1 − t)b−c

|(1 − tz)|b+1−c(1 − t |z|)a−1 dt.
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For t ∈ (0,1) and|z|<1, we have|1 − tz|−1<(1 − t)−1 and(1 − |z|)−1� |1 − tz|−1. Therefore, we
see that

|Pb,cf (z)|�K‖f ‖′
Ba

[∫ |z|

0
tc−1(1 − t)−a dt +

∫ 1

|z|
tc−1(1 − t)b−c
(1 − |z|)a+b−c dt

]
.

For 0< t < |z|, the first integral on the right of the last inequality gives the estimate∫ |z|

0
tc−1(1 − t)−a dt�

1

(a − 1)(1 − |z|)a−1

and, for|z|< t�1, the second integral gives the estimate∫ 1

|z|
tc−1(1 − t)b−c
(1 − |z|)a+b−c dt�

1

(1 − |z|)a−1 .

Using these two inequalities, we can easily obtain that

|Pb,cf (z)|� K ′‖f ‖′
Ba

(1 − |z|)a−1 .

The desired conclusion follows if we use the definition of the norm onBa. �

Remark. We note that the operatorPb,c does not mapH∞ functions toH∞. This may be seen by
applyingPb,c to the functionf ≡ 1, arguing as in[18].

4. Remarks and an open question

If a �= 1 andc = a + b, then (1.3) is equivalent to

F(a − 1, b; a + b; z)
1 − z = F(a, b + 1; a + b; z), a �= 1. (4.1)

A comparison of the coefficient ofzn on both sides of (4.1) shows that

1

A
a,b+1;a+b
n

n∑
k=0

A
a−1,b;a+b
n−k = 1, n ∈ N ∪ {0}.

As in the casea = 1, c �= a + b, we can consider the mean

1

A
a,b+1;a+b
n

n∑
k=0

A
a−1,b;a+b
n−k ak, n ∈ N ∪ {0}

and form the set of new averaging operators defined by

Qb,cf (z) :=
∞∑
n=0

(
1

A
a,b+1;a+b
n

n∑
k=0

A
a−1,b;a+b
n−k ak

)
zn, (4.2)
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wheref (z)=∑∞
n=0anz

n is analytic on the unit disc�. Again, it is not difficult to show that the right-hand
side of (4.2) represents an analytic function on�. In fact, (4.2) can be rewritten as

Qb,cf (z)= [f (z)(1 − z)F (a − 1, b; a + b; z)] ∗ 3F2(1,1, a + b; a, b + 1; z),
wherea �= 1. HerepFq represents the generalized hypergeometric function defined by

pFq(a1, . . . , ap; c1, . . . , cq; z)=
∞∑
n=0

(a1, n) · · · (ap, n)
(c1, n) · · · (aq, n)

zn

n! .

We remark that forp�q, the series converges forz ∈ C. Whenp>q+1, the series diverges forz ∈ C\{0}
unless the series breaks off into a polynomial. In the interesting case wherep=q+1, the series converges
for |z|<1. If Re(

∑q
j=1 cj −∑q+1

j=1aj )>0, thenq+1Fq converges also at the pointz = 1. It would be

interesting to know whetherQb,cf is bounded on Hardy spaces and other function spaces.
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