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Abstract

We consider the problem of the contact between a rigid sphere and a thin

initially flat plate. After reviewing some plate theory, we establish that a defor-

mation where a finite piece of the plate takes the shape of the sphere is physically

unrealisable, and that the contact region must be a ring. However, for small de-

flections using classical theory and looking at some typical parameter values, we

find that the radius of the ring is so small that for practical purposes it should be

considered as a point load. We also outline the case for large deflections.

Keywords: thin plate, contact, deformation, ring load.

1 Introduction

At the February 2000 meeting of the Mathematics in Industry Study Group (MISG) in
Adelaide, South Australia, one of the problems presented involved a lens fracture test,
where a spectacle lens is put under an applied load through a spherical indentor made
of steel (see Lucas & Hill [1]). If the lens deflects too far, or breaks, then it fails the test.
The purpose of this paper is to outline some results obtained for the idealised problem
of contact between a rigid sphere and a thin flat plate.
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While there is an enormous amount of literature on problems involving plates and shells,
and many excellent texts, such as Timoshenko & Woinowsky-Krieger [2] and Szilard [3],
there seems to be relatively little relevant material on contact or obstacle problems. A
closely related problem can be found in Essenburg [4], where the solution for the defor-
mation of a clamped circular plate by a paraboloid of revolution is derived. However,
the classical plate equations are adjusted to allow for transverse shear deformation, and
while the paper indicates that far better results are obtained than those using classi-
cal theory, it is beyond the scope of this paper. Westbrook [5] reformulates obstacle
problems for beams and plates as variational inequalities, and solves them using finite
elements. While classical theory is used, the problem addressed is one where the beam or
plate is deformed by a given force, with a rigid barrier that may impede its deformation.
We are more interested in the case where the applied force is not known a priori, but
is determined as a function of the position of the indenting sphere. Finally, Yau & Gao
[6] in a sense extend Westbrook’s work (although completely independently) by devel-
oping a nonlinear variational inequality for the obstacle problem using the von Kármán
equations for thin plates where the deformation is large compared to the plate thick-
ness. They discuss uniqueness and existence of solutions, but do not develop numerical
techniques based on their methods.

There has also been some work done on the indentation of thick plates. Keer and Miller
[7] combine an infinite layer solution with plate bending theory. They use the boundary
condition that there is no stress on the lower surface of the plate, which is true only for
very thick plates. Tsai [8] considers the indentation of a thick plate supported by a rigid
foundation, using the solution for the indentation of an elastic half-space (in effect, an
infinitely thick plate). However these methods are not applicable to the indentation of
a plate which has a thickness measured in millimeters.

2 Classical Plate Theory

2.1 Governing Equations

A plate is a flat noncurved solid whose thickness is at least an order of magnitude smaller
than the smallest of its other dimensions. Its middle surface is defined as a surface that
bisects the plate in its thickness dimension. We assume that the material of the plate is
elastic, homogeneous and isotropic, the plate is of equal thickness throughout, and that
deflections are small compared to plate thickness. Typically we allow deformations up to
1/5 of the thickness of the plate. We also assume that the slope of the deformed middle
surface is small, that straight lines initially normal to the middle surface remain straight
and normal to the middle surface (ie transverse shear is neglected), that stresses normal
to the middle surface are negligible, and that the deflection of the plate is produced by
the displacement of points of the middle surface normal to its initial position.
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Under these conditions, the linear theory of elasticity can be used to derive the governing
differential equation for a plate subjected to lateral loads (see, for example [3, §1.2], which
we follow in the discussion of this section). This is known as classical plate theory, and
the governing equation is

D∇2∇2w = pz, (1)

where w is the deflection of the plate under the lateral load pz, and ∇2 is the Laplacian
operator. It is usual to assume that the initially flat middle surface of the plate lies
in the x-y plane, and deflection is positive in the negative z direction. The constant
D = Eh3/12(1−ν2) is known as the flexural rigidity of the plate, with Young’s modulus
E, Poisson’s ratio ν, and thickness h. Equation (1) is a fourth order nonhomogeneous
partial differential equation whose solution can often be found analytically. The bending
moments acting on the plate are given in terms of w as

mx = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

, and my = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

. (2)

For a circular plate with axisymmetric loading and boundary conditions, and with polar
coordinates (r, θ), w is independent of θ, and (1) in terms of the Laplacian operator

∇2
r =

d2

dr2
+

1

r

d

dr
is the ordinary differential equation

∇2
r∇2

rw(r) =
d4w

dr4
+

2

r

d3w

dr3
− 1

r2

d2w

dr2
+

1

r3

dw

dr
=

pz(r)

D
. (3)

The bending moments in this case are

mr = −D

(

d2w

dr2
+

ν

r

dw

dr

)

, and mθ = −D

(

ν
d2w

dr2
+

1

r

dw

dr

)

. (4)

A variety of physically realistic boundary conditions can be posed for plate problems.
The two we will be interested in pursuing here for circular plates are the simple support
conditions,

w(r)|r=r0
= 0, and mr(r)|r=r0

= −D

(

d2w

dr2
+

ν

r

dw

dr

)∣

∣

∣

∣

∣

r=r0

= 0, (5)

which are equivalent to the plate sitting on a rigid support at radius r0 with deflection
and bending moment zero, and the clamped edge condition,

w(r)|r=r0
= 0, and

dw(r)

dr

∣

∣

∣

∣

∣

r=r0

= 0, (6)

which sets the deflection and slope of the plate at the edge to zero.

The governing equation (3) with one of (5) or (6) can often be solved analytically for a
particular load pz. Using linearity, the solution can be written as the sum of homogeneous
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(wh) and particular (wp) solutions. The solution to the homogeneous ode ∇2
r∇2

rwh = 0
can be written as wh = C1 + C2(r/r0)

2 + C3 ln(r/r0) + C4r
2 ln(r/r0). For the deflections

and moments at the center of the plate to be well behaved, we require C3 = C4 = 0. For
the case of an annular plate, these constants would be set by adding additional boundary
conditions at the inner edge of the annulus. The particular solution wp for a circular
plate can be found by direct integration of (3) as

wp(r) =
1

D

∫ r

0

1

δ

{

∫ δ

0
γ

[

∫ γ

0

1

β

(

∫ β

0
pz(α)α dα

)

dβ

]

dγ

}

dδ. (7)

In the case of pz(r) being either a point load at the center of the plate, or a ring load
at some radius r1, the deflections can be found in similar ways, with the discontinuities
in the third derivative depending on the total load, and the boundary conditions giving
the value of the constants. For a point load of strength P at the center of the plate with
simple support and clamped edges, the deflections of the middle surface are

w(r) =
Pr2

0

16πD

[

3 + ν

1 + ν

(

1 − ρ2
)

+ 2ρ2 ln ρ
]

and w(r) =
Pr2

0

16πD

(

1 − ρ2 + 2ρ2 ln ρ
)

, (8)

respectively, with ρ = r/r0. For a ring load of total load P at radius r1, the deflection
with simple support is

w(r) =























P

8πD

[

(

r2
1 + r2

)

ln
r1

r0
+
(

r2
0 − r2

1

) (3 + ν)r2
0 − (1 − ν)r2

2(1 + ν)r2
0

]

, r ≤ r1,

P

8πD

[

(

r2
1 + r2

)

ln
r

r0

+
(

r2
0 − r2

) (3 + ν)r2
0 − (1 − ν)r2

1

2(1 + ν)r2
0

]

, r ≥ r1.

(9)

The same case with clamped edges is

w(r) =























P

16πD

[(

1 − r2
1

r2
0

)

(

r2
0 + r2

)

+ 2
(

r2
1 + r2

)

ln
r1

r0

]

r ≤ r1,

P

16πD

[(

1 − r2

r2
0

)

(

r2
0 + r2

1

)

+ 2
(

r2
1 + r2

)

ln
r

r0

]

, r ≥ r1.

(10)

2.2 Spherically Prescribed Deflection

We are interested in finding the deformed shape of a circular plate due to contact
with a rigid sphere at a given position, and also in finding the required load pz, since

2π
∫ r0

0
pz(r)r dr is the total force with which the sphere pushes on the plate. The tech-

nique we anticipate using is common to many contact problems: assume a certain pro-
portion of the sphere is in contact with the plate. In the contact region, the deformation
is the shape of the sphere. There is no load on the rest of the plate, and so a solution
can be found which takes into account the edge boundary conditions. We then require
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continuity of the deformation and its first and second derivatives at the point where the
sphere leaves the plate. These conditions cannot in general be satisfied, and in principle
we end up with a single nonlinear equation for the proportion of the sphere that contacts
the plate. Once this proportion has been found, pz and the total load on the plate can be
calculated. For a much more general discussion on contact-impact problems and contact
regions within the domain of finite element approximation methods, see Zhong [9].

Assume that the undeformed plate is in the x-y plane, and the deformation w of the
middle surface is measured as positive in the negative z direction. The plate is deformed
by a sphere of radius R and center (x, y, z) = (0, 0, c) (we require R − c > 0 so that the
sphere actually contacts the plate). If r1 is the radius of the region of contact between
the plate and the sphere, then the deformation of the top surface of the plate (half
the height of the plate above the middle surface) is w(r) − h/2 = −c +

√
R2 − r2 for

0 ≤ r ≤ r1. Note that the geometry requires r1 < R, and the minus sign in front of the c
is due to w being positive down. Then, from (3) on [0, r1], the load due to the spherical
deformation is

pz(r)

D
=

r4 − 8R2r2 − 8R4

(R2 − r2)7/2
. (11)

An immediately obvious problem is that pz(0) = −8/R3 < 0. The real positive solution

to r4 − 8R2r2 − 8R4 = 0 is r =
√

4 + 2
√

6R, which is greater than R, and so pz(r) < 0
on [0, r1]. This indicates that to force the inner part of the plate to take the shape of
a sphere, a force is required to push the plate up onto the sphere. This is clearly not
a physically reasonable result, and so the plate cannot take the shape of a sphere on
any finite region within [0, R], including an annular region [a, b], 0 < a < b ≤ R, due to
contact alone. This indicates that perhaps a point load solution is more appropriate as
a solution to this contact problem.

2.3 Point Source Solution

The solutions in (8) above are the deformations of a thin circular plate with a point load
at its center, with simply supported and clamped edge conditions. We are interested in
whether these solutions can be matched with the deformation due to contact with the
sphere. If the sphere only touches the plate at r = 0, then for the simply supported and
clamped boundary conditions we have that

P =
16πD(R − c + h/2)(1 + ν)

r2
0(3 + ν)

and P =
16πD(R − c + h/2)

r2
0

, (12)

respectively. The deformations due to these point loads are then

w(r) =

(

R − c +
h

2

)

[

1 − ρ2 +
1 + ν

3 + ν
2ρ2 ln ρ

]

and w(r) =

(

R − c +
h

2

)

(

1 − ρ2 + 2ρ2 ln ρ
)

.
(13)
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Unfortunately, neither of these solutions are acceptable. For a finite length the surface
of the sphere is below that of the plate, a physically impossible situation. We can see
this by considering the radius of curvature of the solutions (13). Using the fact that the

radius of curvature of the function y = f(x) is
√

1 + (f ′(x))2
/

f ′′(x) (with a negative

solution indicating the center of the circle is down), derivatives of the solutions in (13)
show that the curves have radius of curvature zero at r = 0. Since the sphere has radius
of curvature R, near r = 0 the curve for the plate is above that of the sphere.

2.4 Ring Source Solution

Johnson [10] is a classic text on contact problems, and includes a two page section on
plates and shells. The example considered in most detail is that of a flat plate of length
2l, width w and thickness 2b deformed by contact with a rigid cylinder of radius R whose
axis is perpendicular to the length of the plate, such that the contact arc is of length
2a. Johnson then states that the contact loading is along two lines parallel to the axis
of the cylinder at positions x = ±a, and with a given load P the position of the contact
a satisfies P (l− a)/2 = 2Ewb3/3R(1− ν2). Without any more detail, Johnson observes
that as the load increases, the pressure is concentrated at the edges. He also mentions,
with reference to Essenburg [4], that the contact pressure due to a circle of contact is
concentrated into a ring of force, which we will now investigate.

The deformations of a circular plate by a ring force at radius r1 with force per unit
length p and total load P = 2πr1p with simple support and clamped edges are given by
(9) and (10) respectively. After extensive algebra, one can show that these solutions are
the same as using the approach that the plate is deformed a specific distance at r = r1,
with no other load, and continuity of deformation and its first derivative at r = r1. In
both cases we find that the second derivative of the deformation is continuous, and there
is a discontinuity in the third derivative of magnitude P/2πDr1 = p/D, the force per
unit length of the ring force scaled by D. This result is encouraging, since we would
expect a discontinuity in the third derivative of the solution of a fourth order equation
with a point force.

Given that the deformation is caused by a sphere with center a distance c above the
undeformed plate position, we wish to find the point r1 and load P such that the ring
source solution touches the sphere at r = r1 with tangent the same as that of the sphere.
For the simply supported case, we find from (9) and its derivative that we require

P

8πD

[

2r2
1 ln

r1

r0
+
(

r2
0 − r2

1

) (3 + ν)r2
0 − (1 − ν)r2

1

2(1 + ν)r2
0

]

=
h

2
− c +

√

R2 − r2
1,

P

8πD

[

2r1 ln
r1

r0
− (r2

0 − r2
1)

(1 − ν)r1

(1 + ν)r2
0

]

=
−r1

√

R2 − r2
1

.



























(14)
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These equations can be rewritten as

P =
8πD

√

R2 − r2
1

/[(

1 − r2
1

r2
0

)

(1 − ν)

(1 + ν)
− 2 ln

r1

r0

]

, (15)

and
[

2r2
1 ln

r1

r0
+
(

r2
0 − r2

1

) (3 + ν)r2
0 − (1 − ν)r2

1

2(1 + ν)r2
0

]

√

R2 − r2
1

[(

1 − r2
1

r2
0

)

(1 − ν)

(1 + ν)
− 2 ln

r1

r0

] =
h

2
− c +

√

R2 − r2
1. (16)

For any given problem, one could specify r0, ν, R, D, then given any c, solve (16) for
the position of the ring load r1, then substitute in (15) to explicitly find the total load.
However, the approach we will take here is to choose various r1, and see how c changes
by solving (16) explicitly.
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Figure 1: Sphere center c versus radius of ring load r1.

For a particular case of interest [1], we choose r0 = 3.5×10−2, ν = 0.4, R = 7.95×10−3,
h = 2 × 10−3 (lengths in meters), and are interested in varying r1 so that c lies in the
range of 8.95×10−3 down to 6.95×10−3, which corresponds to a deformation of the plate
of zero up to two millimeters. Figure 1 shows the results with these parameter values,
where we found the limits of r1 by trial and error. Noting in particular the logarithmic
scale, we see that the position of the radius is at most 10−22 meters – about 9 orders of
magnitude smaller than the nucleus of an atom. This is so incredibly small that it is
beyond the limit at which the continuum hypothesis can be applied for an elastic solid.
This tells us that despite the results of section 2.3 above, the contact between a rigid
sphere and a thin plate, at least in the small deformation case, is to all intents and
purposes a single point, so the loads and deformations in (12) and (13) respectively are
the ones we should use.
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3 Von Kármán Theory

3.1 Governing Equations

The work described in the previous section is considered valid if the deflection of the
plate is small in comparison to the thickness of the plate. In the regime where linear
elastic theory is still applicable, but the deformation is of the same order or larger than
the plate thickness, the analysis needs to be adjusted. Lateral deflections of the middle
surface of the plate are now accompanied by stretching, which can substantially increase
the load-carrying capacity of the plate. The equations for large deformation of circular
plates of constant thickness h with axisymmetric boundary conditions are (based on
formulae in [2, 3]),

∇2
r∇2

rw(r)=
h

Dr

(

d2w

dr2

dΦ

dr
+

dw

dr

d2Φ

dr2

)

+
pz(r)

D
,

∇2
r∇2

rΦ(r) =−E

r

dw

dr

d2w

dr2
,

(17)

where Φ is an Airy type stress function. These equations are a special form of von
Kármán’s equations, first derived by him in 1910 [11]. An alternative formulation of
these equations given in [2]) is,

d3w

dr3
+

1

r

d2w

dr2
− 1

r2

dw

dr
=

12

h2

dw

dr





du

dr
+

ν

r
u +

1

2

(

dw

dr

)2


+
1

Dr

∫ r

0
rpz(r)dr,

d2u

dr2
+

1

r

du

dr
− 1

r2
u=−(1 − ν)

2r

(

dw

dr

)2

− dw

dr

d2w

dr2
,

(18)

where u is the radial displacement of the plate. We will use this formulation.

To solve the equations (18), we require a total of five boundary conditions, three for w as
well as two for u. The requirement that w is an even function and u is odd (and so well
behaved at r = 0) gives us two conditions w′(0) = u(0) = 0. For a circular plate simply
supported at r = r0, the two boundary conditions on w in (5) are imposed. The final
boundary condition on u depends on whether the edge of the plate is allowed to move in
the radial direction. If we allow the movement then Timoshenko and Woinowsky-Krieger
[2] state the final boundary condition is nr(r0) = 0, that is there is no force in the radial
direction on the outside edge of the plate. If we had formulated the equations in terms
of a stress function Φ instead of u this condition is equivalent to Φ′(r0) = 0, which
is given in the literature as a boundary condition for equations (17) (see for example
Miersemann & Mittelman [12]). In terms of u and w this condition is

ν
u(r0)

r0

+
du

dr
(r0) +

1

2

(

dw

dr
(r0)

)2

=0. (19)
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3.2 Spherically Prescribed Deflection

If we assume that the plate is in contact with a sphere, as in section 2.2 above, then we
have that w(r) = h/2− c+

√
R2 − r2 for 0 ≤ r ≤ r1, where r1 is the (initially unknown)

radius of contact. We then need to solve the equations (18) in the regions [0, r1] and
[r1, r0]. In [0, r1], w is given, and so we need to solve for u and pz. In [r1, r0], pz = 0 and
we need to solve for both w and u. Boundary conditions would be continuity of w and
u and their derivatives across r = r1, and satisfying these conditions should also give a
position for r1.

Unfortunately, an analytic solution to this problem is not available; the particular inte-
gral for u in [0, r1] cannot be evaluated in closed form. In any event, a solution in [r1, r0]
cannot be found analytically due to its nonlinear nature. A full numerical solution would
be needed, which would also give the load pz.

Solving equations (18) numerically for various load distributions using it was observed
that the value of u is very small. For the particular case of interest with r0, ν and R as
given in section 2.4, E = 2 × 109 and h = 0.002m, with a point load of magnitude P =
66.3719 resulting in a deflection of 2mm at the center, the maximum u is approximately
2.7 × 10−6, and occurs at r = 5.85mm. To investigate whether contact over a region is
possible we assume that within the contact region u is zero. As we expect the contact
region, if it exists, to be small this assumption is reasonable. We can then use the first
of the equations in (18) to solve for pz. This gives

∫ r

0
rpz(r) dr =−D

6r2

h2

(

R2 − r2
)

−5/2
(

r4 −
(

R2 +
h2

6

)

r2 +
2h2

3
R2

)

. (20)

Unfortunately equation (20) doesn’t give us enough information about the load required
for spherical deformation. To obtain the actual load function pz(r) instead of the integral
we consider the fourth order equation:

d4w

dr4
+

2

r

d3w

dr3
− 1

r2

d2w

dr2
+

1

r3

dw

dr

=
pz(r)

D
+

12

h2



r
dw

dr





u

r
+ ν

du

dr
+

ν

2

(

dw

dr

)2


+
d2w

dr2





du

dr
+

1

2

(

dw

dr

)2

+ ν
u

r







 ,(21)

obtained by differentiating the first equation in (18) with respect to r. Substituting
u = du/dr = 0, w = h/2 − c +

√
R2 − r2 and derivatives and rearranging we find

pz(r)=D(R2 − r2)−7/2
(

νdr6 + (1 − νdR2 − 8dR2)r4 + 8R2(dR2 − 1)r2 − 8R4
)

,(22)

where d = 6/h2. We can see that pz(0) = D(R2)−7/2 (−8R4) = −8D/R3. As for the
small deflection case, since the load at r = 0 is negative and the z-axis is positive down,
this implies that a force is pushing the plate upward onto the sphere. This rules out
contact over a region including r = 0, however contact on an annular region a ≤ r ≤ b,
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where 0 < a ≤ b < R, may be possible, as pz(r) is not negative on the entire region
[0, R].

Note that the expression we have found for pz(r) does not depend on c, the position of
the indenting sphere’s center, but only on R, its radius. This is because the load we
have found is just the force required for the plate to take the shape of the sphere, not
the total force on the plate. The force required to shape the plate to the sphere depends
only on the sphere’s radius and the size of the region of contact, not on where the sphere
is positioned.

3.3 Annular contact

From Gladwell [13], if there is contact on an annular region a ≤ r ≤ b the load at the
endpoints of this region should be zero, that is p(a) = p(b) = 0. We can use this to find
the boundaries of the (possible) annular contact region for given constants. Continuing
to work with the assumption that u = 0 over the contact region, the deflection of the
plate w must satisfy the fourth order differential equation (21), with pz(r) = 0 for
0 ≤ r ≤ a, b ≤ r ≤ r0. As the sphere is in contact with the plate over the region
a ≤ r ≤ b, we know that in this region w is given by w = h/2 − c +

√
R2 − r2. The

edges of the contact region, a and b, are the zeros of the load function (22).

With R = 0.00795 the contact region (a, b) is a = 0.00082557 and b = 0.00786583,
regardless of the value of c. The total load on the plate, calculated by numerically
integrating rpz(r) over (a, b) (using Matlab’s quadl routine), comes out as P ≈ 5660000.
Again this is independent of c. This load seems excessively large.

Figure 2 shows a plot of the solution, for c = 0.007, over (0, b) with the points (−r0, 0)
and (r0, 0), the simply supported boundary of the plate, marked with asterisks. The
dotted line shows the middle surface of the plate, the solid line touching the sphere is
the upper surface of the plate. It can be seen that the plate is in contact with the sphere
over such a large region that parts of the plate are above zero. The solution over (b, r0)
can not be calculated as the numerical method used to find the solution on [0, b) will
not converge in this situation. Figure 3 shows the small deflection analytic solution for
the middle surface of the plate for the same values of R, c, a and b, with the borders of
the contact region marked by the asterisks.

It is clear that this solution is not realistic. The contact between the sphere and the
plate cannot extend past the point where w = 0. For w(b) ≤ 0, the position of the
sphere center c must be less than 0.001154. However this would result in a deflection at
r = 0 greater than 0.0068m, which is obviously larger than the maximum permissable
deflection of 2mm. We suspect that the extremely large value of P calculated corresponds
to the situation where the sphere center is positioned in such a way that annular contact
over (a, b) gives a reasonable shape to the deflected plate, if not a reasonable scale. For
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Figure 3: Small deflection solution for
annular contact over (a, b)

this to occur c would have to be large and negative. This would result in a deflection
much larger than the maximum allowable deflection of 2mm.

3.4 Contact on a ring

We have determined that contact over a region is not possible. We now consider contact
on a ring. In this analysis we no longer use the simplifying assumption that u = 0.
However we assume that the thickness of the plate after it is deformed is still uniform
and given by h. In reality this is not the case due to the stretching of the plate but
since u is small the change in the thickness of the plate as a result of this stretching is
negligible. If the contact between the sphere of radius R and the plate occurs along a
ring of radius r1, then we have the equation

R2 =(w(r1) − h/2 + c)2 + (u(r1) + r1)
2, (23)

where c is the position of the sphere center. Rearranging equation (23) we find

c= h/2 − w(r1) +
√

R2 − (u(r1) + r1)2. (24)

Figure 4 is a plot of c against r1 for different load values, using R = 0.00795. The values
of c in Figure 4 are reasonable, implying that contact on a ring is possible. However
this choice of R is arbitrary. Figure 5 is a plot of the deformed shape of the sphere for
r1 = 0.0025 with a sphere of this radius and we can see that while the equation gives
a reasonable value of c and the deformed plate does touch the sphere at r1, the sphere
passes through the plate. This is obviously not physically possible.

If we also impose the condition that the derivative of the deformation must be continuous
at r1, that is the slope of the plate must be smooth, then implicitly differentiating the
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Figure 5: plate and indenting sphere
P = 250, r1 = 0.0025, R = 0.00795

equation

c = h/2 − w(r) +
√

R2 − (u(r) + r)2

gives

dw

dr
= −(R2 − (u(r) + r)2)−1/2(u + r)

(

du

dr
+ 1

)

. (25)

We can use this to calculate the value of R. Rearranging equation (25) and evaluating
it at r = r1 gives

R =



(u(r1) + r1)
2



1 +

(

u′(r1) + 1

w′(r1)

)2








1/2

. (26)

For r1 = 0.0025 and P = 250, the values used to produce Figure 5, we find R ≈ 0.05.
This is larger than the radius of the plate r0 = 0.035. Figure 6 shows the plate with a
sphere of this radius. The sphere is never below the plate, and there is contact at r1,
however the physical situation we are interested in involves the indentation of a plate
by a much smaller sphere.

Figures 7 and 8 are plots of R against r1 for different load values. Figure 7 also shows
(as dotted lines which appear slightly below the large deflection plots for the same load
values) R calculated using u = u′ = 0 and the small deflection solution (9) to find
w′(r1). Figure 8 has an asterisk at the point corresponding to the values of P , R and r1

for Figure 6.

It is obvious that for small loads R is larger than the radius of the plate. However as
P increases, R becomes smaller. Perhaps if the load is large enough, a ring load may
become possible. Figure 9 is a plot of R against the load magnitude P for r1 = 0.00005.
With a point load at the center (which results in a larger deflection at r = 0 than the
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Figure 6: plate and sphere P = 250, r1 = 0.0025, R calculated from (26)

ring load of the same magnitude) a deflection of 2mm or 2×10−3m, the largest allowable,
is achieved with a load P ≈ 66.3719. A reasonable value of R is 0.00795. With P = 300,
R is still larger than this (R ≈ 0.0126), but we cannot have a load this large and achieve
reasonable values for the deflection. To have maximum deflection (w(0)) in the range 0
to 2mm requires c in the range R + h/2 − 0.002 to R + h/2, that is 0.00695 to 0.00895.
Figure 10 shows the indenting sphere’s radius R and center position c as r1 varies for
P = 66.3719. For r = 1× 10−5, we have c ≈ 0.0382 and R ≈ 0.0392, which are nowhere
near our required values.

R also decreases as r1 decreases. With tiny r1 it is expected that R would become
reasonable. We know that this is the case for small loads. However it is impossible to
solve numerically for r1 small enough to see this.

3.5 Point contact

The radius of curvature of a function f(x) is given by rc =
(√

1 + (f ′(x))2
)

/(f ′′(x)).
The radius of curvature of the sphere is obviously of magnitude R. The radius of
curvature of the plate at r = 0, where u = 0, will be

rc =

√

1 + (w′(0))2

w′′(0)
=

1

w′′(0)
,

since w′(0) = 0.
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The solid line in Figure 11 is a plot of the radius of curvature of the plate under various
loads, for our chosen h, v and E. A point solution is physically impossible if the mag-
nitude of the radius of curvature of the plate is smaller than that of the sphere as this
would imply that the sphere is below the plate for some finite length near r = 0. The
straight line across the plot near the top is R = 0.00795 so this appears to show that a
point load is possible.

It was stated in section 2.3 above that the radius of curvature for the plate using small
deflection theory is zero at r = 0. This implies that for some finite length near r = 0, the
surface of the sphere is below that of the plate, a physical impossibility, so the sphere
cannot touch the plate at just a single point. The dotted line in Figure 11 is the radius
of curvature calculated using small deflection with r = 0.0003. This seems to show that
the radius of curvature at r = 0 is indeed zero in the larger deflection case also and it is
just numerical error which is showing point contact to be possible. When the number of
points used to evaluate the numerical solutions from which the radius of curvature was
calculated is increased the estimate of the radius of curvature decreases in magnitude.

We may find the radius of curvature for large deflection analytically by using a series
expansion solution for w and u around r = 0. As the load term contains 1/r we
will need to have a negative power in the series expansions. Let w, which is even,
(w′(0) = w(3)(0) = 0), be given by

w = a−2r
−2 + a0 + a2r

2 + a4r
4 + a6r

6 + . . .

and u, which is odd, (u(0) = u′′(0) = 0), by

u= b−1r
−1 + b1r + b3r

3 + b5r
5 + . . . .

Substituting these expressions and their derivatives into the first of equations (18) with
a point load at the center so that the load term 1/Dr

∫ r
0 rpz(r)dr = P/2πDr, we find

the radius of curvature to be

rc =
1

w′′(0)
=

1

2a2
=

24(1 − ν)b−1πD

Ph2
.

We know that u(0) = 0, and we have approximated u by u = b−1r
−1 + b1r + b3r

3 + . . . so
it is possible for u(0) = 0 only if b−1 = 0. This means the radius of curvature at r = 0
is zero.

For the small deflection case, despite the radius of curvature result, the conclusion drawn
was that for small deflection contact between the sphere and plate is effectively at a point
as the contact occurs over a ring of tiny radius. This result still holds for large deflection
theory for small loads (resulting in deformation within the region of applicability of the
small deflection theory) as the solutions are identical. Figure 12 shows the deformed
plate with the indenting sphere for a load P = 66.3719, which produces a maximum
deflection of 2mm, the thickness of the plate. The plot does not provide any evidence
that point contact between the sphere and plate is not possible. For P = 10, r = 1e−109,
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the radius of curvature from the small deflection analytic expression is −0.0079565. So
the radius of curvature of the plate is of magnitude less than R only for r < 1e − 109.
This means that the sphere is definitely above the plate for r ≥ 1e − 109, so the finite
length near r = 0, for which the surface of the sphere is below that of the plate, is so
tiny that we will never see it on a plot.

4 Conclusions

The analysis has shown that for both large and small deflection theory the contact be-
tween the sphere and the plate is practically at a point. It was demonstrated analytically
for small deflection theory that the contact is over a ring of such small magnitude that
it is in practical terms at a point. For large deflection this will also be the case. It has
been shown that contact over a region, either annular or including r = 0, is not possible
so the contact must be either over a ring or at a point. It appears that contact over a
ring would be possible if it were numerically possible to solve for small enough r1 so the
contact is most likely again over a ring of tiny magnitude. For large deflection contact
at a point is possible numerically if not analytically, so in both numerical and practical
terms the contact between the sphere and plate is at a point.
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