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1 Introduction

Felgenhauer and Jarvis famously showed in [2], although it was first men-
tioned earlier, in [7], that there are 6,670,903,752,021,072,936,960 possible
completed Sudoku boards. In a later paper, Jarvis and Russell [8] used a
Sudoku symmetry group of size 3, 359, 232 · 9! = 1, 218, 998, 108, 160 and
Burnside’s Lemma to show that there are 5,472,730,538 essentially different
Sudoku boards. Both of these results required extensive use of computers as
magnitude of the numbers makes non-computer exploration of these prob-
lems prohibitively difficult. The ongoing goal of this project is to find and
implement methods to attack these and similar questions without the aid of
a computer.

One step in this direction is to reduce the size of the symmetry group
with purely algebraic, non-computer methods. The strategy of [1], applied
to the analogous symmetry group for a 4 × 4 Sudoku variation known as
Shidoku, was to partition the set of Shidoku boards into so-called H4-nests
and S4-nests and then use the interplay between the physical and relabeling
symmetries to find certain subgroups of G4 that were both complete and
minimal. A symmetry group is complete if its action partitions the set of
Shidoku boards into the two possible orbits, and minimal if no group of
smaller size would do the same.

In [4], Lorch and Weld investigated a 9 × 9 variation of Sudoku called
modular-magic Sudoku that has sufficiently restrictive internal structure to
allow for non-computer investigation. In this paper we will apply the tech-
niques from [1] to find a minimal complete symmetry group for the modular-
magic Sudoku variation studied in [4], as well as for another Sudoku variation
that we will call semi-magic Sudoku.
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We conclude this paper with a simple calculator computation which leads
to the non-obvious fact that the full Sudoku symmetry group is, in fact,
already minimal and complete.

2 Modular-magic Sudoku

A Sudoku board is a 9 grid with nine 3 × 3 designated blocks. We call the
rows, columns and diagonals of these blocks mini-rows, mini-columns and
mini-diagonals respectively. We call a rows and columns of 3 × 3 blocks
bands and pillars respectively. A modular-magic Sudoku board is a standard
Sudoku board using the numbers 0–8 with the additional constraint that
each 3× 3 block is a magic square modulo 9, in the sense that the entries of
every mini-row, mini-column and mini-diagonal have a sum that is divisible
by 9; see Figure 1. In this section we find a complete minimal symmetry
group for modular-magic Sudoku (Theorem 3).

0 2 7 3 1 5 6 4 8

1 3 5 8 6 4 2 0 7

8 4 6 7 2 0 1 5 3

3 5 1 6 4 8 0 7 2

4 6 8 2 0 7 5 3 1

2 7 0 1 5 3 4 8 6

6 8 4 0 7 2 3 1 5

7 0 2 5 3 1 8 6 4

5 1 3 4 8 6 7 2 0

Figure 1: A modular-magic Sudoku board.

2.1 Modular-magic Sudoku Properties

In this subsection, we review some facts about modular-magic Sudoku boards.
For details see [4].

Most, but not all, of the usual physical Sudoku symmetries in [2] are
valid for modular-magic Sudoku. In particular, band swaps, pillar swaps,
transpose, rotation, and row or column swaps that do not change the set
of entries in the mini-diagonals, all preserve the modular-magic condition.
However, row or column swaps that change the center cell of a block are not
modular-magic Sudoku symmetries. For example, swapping the first and
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second rows of the board in Figure 1 would result in a board that fails the
modular-magic mini-diagional condition. The order of the full group Hmm

of physical modular-magic Sudoku symmetries is 4608.
The set of allowable relabeling symmetries is greatly reduced for modular-

magic Sudoku, as very few relabelings will preserve the modular-magic con-
dition. In fact, there are only 36 elements in the group Smm of modular-
magic relabeling symmetries on the digits 0–8, namely, the permutation

ρ = (12)(45)(78)

and permutations of the form

µk,l(n) = kn+ l mod 9

for k ∈ {1, 2, 4, 5, 7, 8} and l ∈ {0, 3, 6}. Together with the physical sym-
metries this gives a full modular-magic Sudoku symmetry group Gmm of
size 165,888. Since there are only 32,256 possible modular-magic Sudoku
boards, this symmetry group is clearly larger than necessary. Furthermore,
the largest orbit of Gmm has 27,648 elements, hence this is the smallest size
possible for a complete modular-magic Sudoku symmetry group. Our goal
is to determine if this minimum can be obtained.

In [4] it is shown that the set of modular-magic boards breaks into two
orbits under the action of Gmm, with representatives shown in Figure 2.

1 8 0 7 5 6 4 2 3

2 3 4 8 0 1 5 6 7

6 7 5 3 4 2 0 1 8

7 5 6 4 2 3 1 8 0

8 0 1 5 6 7 2 3 4

3 4 2 0 1 8 6 7 5

4 2 3 1 8 0 7 5 6

5 6 7 2 3 4 8 0 1

0 1 8 6 7 5 3 4 2

1 8 0 7 5 6 4 2 3

2 3 4 8 0 1 5 6 7

6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0

7 0 2 4 6 8 1 3 5

3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6

4 6 8 1 3 5 7 0 2

0 2 7 6 8 4 3 5 1 .

Figure 2: Representatives of the two Gmm-orbits in the set of modular-magic
boards.

Every 3 × 3 block in a modular-magic Sudoku board has two mini-
diagonals, one of which must be from the set {0, 3, 6}. Therefore each
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modular-magic Sudoku board has exactly three blocks with center entry 0,
three with center entry 3, and three with center entry 6. In any block we will
call the off-diagonal set the set of the two corner entries of the mini-diagonal
whose entries are not from {0, 3, 6}. For example, in the first modular-magic
Sudoku board from Figure 2, the off-diagonal set of the first block is {1, 5}.
The following lemma will be useful for proving our first theorem in the next
section.

Lemma 1. If M is a modular-magic Sudoku board then the three blocks with
center j have at least two off-diagonal sets in common, for j = 0, 3, 6.

Proof. Observe that the lemma holds for the two Gmm-orbit representatives
in Figure 2, and further that the property described in the lemma is invariant
under the action of Gmm. The latter assertion is quickly seen by applying
generators of Gmm to these representatives. We conclude that the lemma
holds for all modular-magic sudoku boards.

2.2 H-nest representatives for modular-magic Sudoku

Following the method of [1], in this subsection we identify modular-magic Su-
doku boards that can serve as representatives for equivalence classes, called
Hmm-nests, defined from the modular-magic physical symmetries. This will
allow us to identify a restricted set of relabeling symmetries that, together
with the physical symmetries, forms a minimal complete modular-magic
Sudoku symmetry group.

We say that two modular-magic Sudoku boards are in the same Hmm-
nest when one can be obtained from the other by a sequence of physical
symmetries from Hmm. In Theorem 2 we describe a unique representative
for each Hmm-nest.

Theorem 2. Each Hmm-nest has a unique representative of the form shown
in Figure 3, where α < β and the two entries marked γ are equal.

Proof. Band, pillar, row, and column swaps from Hmm can transform the
upper-left block of any modular-magic board into one with {0, 3, 6} on the
decreasing mini-diagonal as shown in Figure 3, and with further band, pillar,
row, and column swaps from Hmm we can obtain a board M of the form
shown in Figure 4.

In light of Lemma 1, we can apply band/pillar permutations to ensure
that {α2, β2} = {α3, β3}. By applying the transpose symmetry in Hmm (if
necessary) we may assume that α1 < β1. Since α1 + 3 +β1 must be divisible
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0 α 3 6

3 6 0

β 6 0 3

3 6 0 γ

6 0 3

0 3 6

6 0 γ 3

0 3 6

3 6 0

Figure 3: An Hmm-nest representative.

0 α1 3 6

3 6 0

β1 6 0 3

3 6 0 α2

6 0 3

0 3 β2 6

6 0 α3 3

0 3 6

3 β3 6 0

Figure 4: Modular-magic sudoku board M .

by 9, the condition α1 < β1 means that we must have α1 = 1, 2, or 7. By
completing partial boards it can be shown that if α1 = 1, then the only
possible values for α2 and α3 are 1, 2, and 8. This, together with the fact
that {α2, β2} = {α3, β3}, implies that α2 = α3 when α1 = 1. A similar
argument can be applied for the other possible values of α1, and therefore
M has the form of Figure 3.

We denote boards as depicted in Figure 3 by [α, γ]. Note that this data
completely determines every entry of the board. Suppose that [α, γ] and
[α′, γ′] are Hmm-equivalent. Then either α = α′ and γ = γ′, in which case
the boards are identical, or α = γ′, γ = γ′, and γ = α′, in which case
α = γ = α′ = γ′ and again the boards are identical. We conclude that the
representatives M are unique.
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Following Theorem 2 we find that there are only nine possible Hmm-
representatives, corresponding to the following pairs [α, γ]:

[1, 1] [2, 2] [7, 7]
[1, 2] [2, 1] [7, 2]
[1, 8] [2, 7] [7, 5]

For example, the modular-magic Sudoku board shown in Figure 1 is the
representative board [7, 2].

As mentioned in the proof of Lemma 1, the set of modular-magic boards
is a union of two Gmm-orbits. Observe that the three Hmm-nests represented
by [1, 1], [2, 2], and [7, 7] lie in the Gmm-orbit containing the left board of
Figure 2, which has size 4608 according to [4]. Meanwhile, the remaining
six Hmm-nests lie in the same Gmm-orbit as the right-hand board of Figure
2, which has size 27648 by [4]. This tells us that the three Hmm-nests
represented by [1, 1], [2, 2], and [7, 7] have size 4608/3 = 1536 each while the
remaining six Hmm-nests are each of size 27, 648/6 = 4608.

2.3 A minimal complete modular-magic Sudoku symmetry
group

The modular-magic Sudoku relabeling symmetries group Smm described in
Section 2.1 can be expressed as

Smm = 〈ρ, µ4,0, µ5,3, µ5,6〉,

since the four permutations ρ = (12)(45)(78), µ4,0(n) = (147)(285), µ5,3(n) =
(03)(187245), and µ5,6 = (06)(127548) generate the entire group.

Now define Hmm-nest graph for a group S to be the graph that consists of
nine vertices, one for each modular-magic Hmm-representative board, where
two vertices A and B are connected by a directed edge σ if the permutation
σ ∈ S takes the modular-magic representative board A to a board that
is Hmm-equivalent to representative board B. It is sufficient to consider
edges defined by a set of generators for S. Since the set of modular-magic
Sudoku boards has two orbits under the action of Gmm = Smm ×Hmm (see
proof of Lemma 1), the Hmm-nest graph for Smm corresponding to the four
permutations ρ, µ4,0, µ5,3 and µ5,6 must have two components.

If S′ is a subgroup of Smm, then S′×Hmm is a complete modular-magic
Sudoku symmetry group if the Hmm-nest graph for S′ corresponding to a set
of generators for S′ has two components. In fact, if we take

S′ = 〈ρ, µ4,0〉,
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then this is precisely what happens, as shown in Figure 5. In this figure the
single arrow represents the permutation ρ and the double arrow represents
µ4,0.

[1, 2] oo //

��

[2, 1]

|�

[1, 1]
OO

�� ��
[2, 7] oo //

��

[1, 8]

KS

[2, 2]

��
[7, 5] oo //

<D

[7, 2]

KS

[7, 7]
VVHH

Figure 5: Action of 〈ρ, µ4,0〉 on the set of Hmm-nests.

Furthermore, since 〈ρ, µ4,0〉 has order 27,648, which is equal to the largest
orbit of Gmm, we know that this group is of minimal size. This proves our
first main result of this paper:

Theorem 3. Hmm×〈ρ, µ4,0〉 is a minimal complete modular-magic sudoku
symmetry group.

3 Semi-magic Sudoku

A semi-magic square is a 3×3 array containing all of the symbols {0, 1, . . . , 8}
with each row and column adding to 12, and no condition on the diagonals.
A semi-magic Sudoku board is a Sudoku board whose 3 × 3 subsquares are
semi-magic, see Figure 6.

3.1 Properties of semi-magic Sudoku

Lemma 4. Mini-rows in a semi-magic Sudoku subsquare must be permuta-
tions of {0, 4, 8}, {5, 6, 1}, and {7, 2, 3} and the mini-columns permutations
of {0, 5, 7}, {4, 6, 2}, and {8, 1, 3} or vice versa. (See Figure 6 as an exam-
ple.)

Proof. A simple combinatorial argument shows that these are the only two
ways to partition the set {0, . . . , 8} into three sets of three that sum to
twelve. Once the first mini-row has been set, all other mini-rows must be
from one subset and all mini-columns from the other.
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0 4 8 7 2 3 5 6 1

5 6 1 0 4 8 7 2 3

7 2 3 5 6 1 0 4 8

8 0 4 1 5 6 3 7 2

1 5 6 3 7 2 8 0 4

3 7 2 8 0 4 1 5 6

4 8 0 2 3 7 6 1 5

6 1 5 4 8 0 2 3 7

2 3 7 6 1 5 4 8 0

Figure 6: A semi-magic Sudoku board.

From the lemma, we can conclude that there are 3! · 3! · 2 = 72 distinct
3 × 3 semi-magic Sudoku subsquares. We will use the term gnomon to
denote the union of the first pillar and first band of a semi-magic Sudoku
board. Again, using the lemma, we see there are 72 · 3! · 2 · 3! = 722 possible
semi-magic Sudoku bands and 723 semi-magic Sudoku gnomons. We call
the gnomon in Figure 7 the standard gnomon.

0 4 8 7 2 3 5 6 1

5 6 1 0 4 8 7 2 3

7 2 3 5 6 1 0 4 8

8 0 4

1 5 6

3 7 2 b

4 8 0 a

6 1 5

2 3 7

Figure 7: The standard semi-magic Sudoku gnomon.

The gnomon-preserving physical symmetries are generated by transpose,
any row swap within a band or column swap within a pillar, and swapping
pillars two and three or swapping bands two and three. We denote the group
generated by these symmetries HΓ. Following the method used in Section 6
of [1], we partition the set of modular-magic Sudoku boards into HΓ-nests,
where two semi-magic Sudoku boards are in the same nest if and only if
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one can be obtained from the other by a sequence of physical symmetries
from HΓ. The following theorem describes a unique representative for each
HΓ-nest:

Theorem 5. Using gnomon-preserving physical symmetries from HΓ, any
semi-magic Sudoku board can be transformed so that its gnomon is the stan-
dard gnomon. There are sixteen HΓ-nests, uniquely represented by a board
of the form [a, b] as shown in Figure 7.

Proof. We can easily take a semi-magic Sudoku board and set the standard
gnomon using transpose, row, column, and 2-3-band and pillar swaps. Once
the standard gnomon has been set, the board is completely determined by
the entries in the (7,6) and (6,7) position in the 9 × 9 grid. The possible
entries in the (7,6) position are {4, 5, 6, 0} and {1, 2, 3, 6} in the (6,7) po-
sition. Therefore there are 16 distinct semi-magic Sudoku boards with the
standard gnomon.

We call these 16 representatives the standard semi-magic Sudoku boards,
and denote them by [a, b], as in Figure 7. For example, the semi-magic
Sudoku board in Figure 6 is denoted [7,1]. We have now determined that
there are 723 · 16 = 5,971,968 distinct semi-magic Sudoku boards.

All of the physical Sudoku symmetries from [1] are valid semi-magic
Sudoku symmetries, denoted H9. On the other hand, the group Ssm of
semi-magic Sudoku relabeling symmetries is far smaller than the group of
sudoku relabelings. One can show that Ssm is isomorphic to the group of
physical symmetries preserving semi-magic squares; meanwhile Lemma 4
indicates that this group of physical symmetries is isomorphic to (S3×S3)o
Z2, generated by row permutations, column permutation, and transpose.
Therefore Ssm ∼= (S3×S3)oZ2, and so the full group of semi-magic Sudoku
symmetries, Gsm = H9 × Ssm, has order 3,359,232·72 = 241,864,704. As
with modular magic Sudoku and Shidoku, the size of this group is large
compared with the set of semi-magic Sudoku boards that it is acting upon.
In the next section, we use the techniques of [1] to find a minimal, complete
group of symmetries for semi-magic Sudoku.

3.2 Orbits and HΓ-Nests for semi-magic Sudoku

As described in the previous section, the sixteen boards denoted [a, b] are
representatives of theHΓ-nests. Clearly each nest sits inside aGsm orbit. We
need to determine which nests are in the same orbits. Applying additional
non-gnomon-preserving physical symmetries to these boards, we find the
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four orbits shown below. In the diagram, the single arrow is the symmetry,
u, swapping band 1 and 2 and the double arrow, v, is the symmetry swapping
pillar 1 and 2. Adding just a single relabeling, µ = (12)(45)(78), connects
the middle two connected components in the diagram with the dashed line
giving us three distinct semi-magic Sudoku components, denoted, top to
bottom, O1,O2 and O3.

[7, 8]
RZ

��

[5, 8]
��

||xxxxxxxx
//__________________ [7, 4]

��

x� xx
xx

xx
xx

xx
xx

xx
xx

[7, 1]
RZ

// [5, 1]
RZ

bbFFFFFFFF

[2, 8]
VV

+3 [2, 4]
VV

^f FFFFFFFF

FFFFFFFF

[5, 4]
'/

||xxxxxxxx
[6, 8]

'/

||xxxxxxxx
[2, 6]

rz

||xxxxxxxx

[7, 6] /7// [6, 1] 2:

bbFFFFFFFF

[2, 1] /7// [5, 6]
ow

bbFFFFFFFF

[6, 4]dl
// [6, 6]

ow

bbFFFFFFFF

Figure 8: Action of 〈u, v, µ〉 on HΓ-nests

The diagram shows that there are at most three Gsm orbits. A brute
force computation can confirm that there are no fewer. However, a more
elegant argument uses the notion of Keedwell boards and linearity from [6].
In general, a Sudoku board is Keedwell if any subsquare can be obtained
by permuting the rows and/or columns of the upper-left subsquare. More
precisely, we have the following definition from [3]:

Definition 6. Let α be the operator on subsquares that acts by cycling down
one mini-row and let β the operator on subsquares that acts by cycling right
one mini-column. A Sudoku board B with upper-left subsquare K is Keed-
well if there exists matrices {cij} and {dij} such that
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• c00 = 1 and d00 = 1, and

• the (i, j)th subsquare of B is αcijβdijK.

For example, the Sudoku board [7, 1] shown in Figure 6 and in set O2 of

Figure 3.2 is Keedwell; its upper-left block is K =
[

0 4 8
5 6 1
7 2 3

]
, and with respect

to this block, board [7, 1] is of the form

[7, 1] =

K αK α2K

βK α2βK αβK

β2K αβ2K α2β2K

.

Interestingly, all sixteen of the standard semi-magic Sudoku boards shown
in Figure 3.2 are Keedwell. For example, board [7, 8] from set O1 of Fig-
ure 3.2 and board [7, 6] from set O3 have the same upper-left block K as
[7, 1] and are of the form

[7, 8] =

K αK α2K

βK αβK α2βK

β2K αβ2K α2β2K

and [7, 6] =

K αK α2K

βK α2βK αβ2K

β2K αβ2K α2βK

.

We will show that each of the three collections of HΓ-nests shown in
Figure 3.2 can be distinguished by the following notion of linearity degree:

Definition 7. A matrix {mij} is quasi-linear if mij = mi0+m0j. Suppose
B is a Keedwell Sudoku board with upper-left block K and exponent matrices
{cij} and {dij} for the cycles α and β. Then the linearity degree of B is
equal to the number of its exponent matrices that are quasi-linear.

For example, board [7, 8] from orbit O1 has linearity degree 2, board
[7, 1] from orbit O2 has linearity degree 1, and board [7, 6] from orbit O3

has linearity degree 0. As we will soon see, the collections Oi shown in
Figure 3.2 are in fact completely characterized by linearity degree, and this
fact will enable us to prove that these three collections are in fact distinct
orbits of Gsm.

Now let Gk be the set of Keedwell-preserving symmetries; that is, the
largest subgroup of the full Sudoku symmetry group whose elements pre-
serve the set of Keedwell boards. It is easy to see that all relabeling sym-
metries in S9 are Keedwell-preserving, as well as compositions of transpose,
pillar swaps, band swaps, 3-cycle permutations of rows within a band, and
3-cycle permutations of columns within a pillar. The final group of Keedwell-
preserving transformations is the set of triple-transpositions of rows (or
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columns) consisting of one row transposition in each of the three bands
(or one column transposition in each of the three pillars). Note that triple-
transpositions reverse the “orientation” of all three bands (or pillars) in
the sense that the order of the mini-rows (or mini-columns) of each band
(or pillar) changes by a odd-degree permutation. It is the fact that triple-
transpositions reverse the orientation of all bands (or pillars) simultaneously
that makes triple-transpositions Keedwell-preserving. In fact, Gk consists
precisely of the symmetries that either preserve orientation in all the pil-
lars/bands or reverse the orientation in all pillars/bands. As a result of this,
we have the following lemma.

Lemma 8. Let B1 be a Keedwell board and g an element of the full Sudoku
symmetry group. If g ·B1 = B2 and B2 is Keedwell, then g ∈ Gk.

Now we can relate linearity degree to Keedwell-preserving symmetries.

Lemma 9. Linearity degree is invariant under Gk.

Proof. Clearly linearity degree is preserved by relabelings, transpose, pil-
lar and band swaps, and 3-cycle permutations of rows within a band or
columns within a pillar. The only non-trivial case is to prove that triple-
transpositions preserve linearity degree. We will prove this case for pillars;
the case for bands is similar.

Suppose we transform a Keedwell Sudoku boardB by a triple-transposition
g given by transpositions τ1 in the first pillar, τ2 in the second pillar, and τ3

in the third pillar. If the original board B is given by

B =

K αc01βd01K αc02βd02K

αc10βd10K αc11βd11K αc12βd12K

αc20βd20K αc21βd21K αc22βd22K

,

then gB is the Keedwell Sudoku board given by

gB =

τ1K τ2α
c01βd01K τ3α

c02βd02K

τ1α
c10βd10K τ2α

c11βd11K τ3α
c12βd12K

τ1α
c20βd20K τ2α

c21βd21K τ3α
c22βd22K

.

For each k we have τkα = ατk and τkβ = β2τk, so for all i, j, k we have

τkα
cijβcijK = αcijτkτ1β

2dij (τ1K).
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Since τkτ1 is a 3-cycle for each k, we have τ2τ1β
2di1 = β2di1+r and τ3τ1β

2di2 =
β2di2+s. Therefore gB can be written

gB =

τ1K αc01β2d01+r(τ1K) αc02β2d02+s(τ1K)

αc10β2d10(τ1K) αc11β2d11+r(τ1K) αc12β2d12+s(τ1K)

αc20β2d20(τ1K) αc21β2d21+r(τ1K) αc22β2d22+s(τ1K)

,

which clearly has the same linearity degree as B.

With the two previous lemmas we are now able to show that the three
connected components O1, O2, and O3 of HΓ-nests from Figure 3.2 are in
fact precisely the orbits of the semi-magic Sudoku boards under the action
of Gsm.

Theorem 10. There are exactly three Gsm-orbits on the set of semi-magic
Sudoku boards.

Proof. We have already produced three sets of semi-magic Sudoku boards,
O1,O2 and O3 shown in Figure 3.2, that are connected by elements of Gsm.
Suppose, for example, that O1 and O2 were not distinct Gsm-orbits. Then
there exists a g ∈ Gsm such that g · [7, 8] = [5, 8]. By Lemma 8, g ∈ Gk. But
Lemma 9 states that [7,8] and [5,8] have the same linearity degree. This
is a contradiction to the fact that [7,8] has linearity degree 2 and [5,8] has
linearity degree 1. Therefore, there are exactly three Gsm-orbits of semi-
magic Sudoku boards

3.3 A minimal complete semi-magic Sudoku symmetry group

Since each standard semi-magic Sudoku board represents 723 distinct semi-
magic Sudoku boards, the three orbits described in Section 3.2 have order
723, 6 · 723 and 9 · 723. The order of each orbit must divide the order
of any semi-magic Sudoku symmetry group. Therefore, a minimal semi-
magic Sudoku symmetry group must be a multiple of lcm(723, 6 · 723, 9 ·
723) = 18 · 723. The group used in producing the three orbits in Figure
3.2 consists of all of the Sudoku physical symmetries and the relabeling
symmetry, (12)(45)(78). This group, G = H9 × 〈(12)(45)(78)〉, has order
18 · 723, so is, in fact, a minimal complete semi-magic Sudoku symmetry
group.

4 A minimal complete Sudoku symmetry group

A natural question to ask is whether the techniques we used in this paper to
investigate modular-magic Sudoku and semi-magic Sudoku can be applied to
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standard 9×9 Sudoku to reduce the size of the Sudoku symmetry group. The
full physical Sudoku symmetry group H9 contains all possible band, pillar,
row and column swaps as well as all of the symmetries of the square. This
group has order 3,359,232 and as all 9! elements of S9 are valid relabelings,
the full Sudoku symmetry group G9 = H9×S9 has order 1,218,998,108,160.
In fact, this group is already minimal because there exist Sudoku boards that
are not fixed by any non-identity element of G9 so the size of the largest
orbit is |G9|.

To see this, consider that there are 6,670,903,752,021,072,936,960 pos-
sible Sudoku boards and N =5,472,730,538 orbits under the action of G9

[2]. Therefore the average size of an orbit is 1,218,935,174,261. Suppose,
for a contradiction, that every Sudoku board is fixed by at least one non-
identity element of G9. If the N orbits have corresponding stabilizer groups
K1, . . . ,KN then

Average orbit size =

|G9|
|K1| + · · ·+ |G9|

|KN |

N
≤

|G9|
2 + · · ·+ |G9|

2

N
=

1

2
|G9|,

which is clearly far less than the actual average orbit size stated above.
Therefore at least one Sudoku board is not fixed by any non-identity element
of G9.

Since the full Sudoku symmetry group is already minimal, the techniques
in this paper cannot be used to reduce it. However, these techniques should
be helpful in analyzing other types of puzzles, including Sudoku variants.
As seen in [1], reduction of the symmetry group can be of great practical
use towards the goal of analyzing Sudoku-style puzzles from a theoretical
perspective.
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