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Tobias Dantzig: Number (1930, p26)

“There is a story of a German merchant of the fifteenth century,
which I have not succeeded in authenticating, but it is so
characteristic of the situation then existing that I cannot resist the
temptation of telling it. It appears that the merchant had a son
whom he desired to give an advanced commercial education. He
appealed to a prominent professor of a university for advice as to
where he should send his son. The reply was that if the
mathematical curriculum of the young man was to be confined to
adding and subtracting, he perhaps could obtain the instruction in
a German university; but the art of multiplying and dividing, he
continued, had been greatly developed in Italy, which in his opinion
was the only country where such advanced instruction could be
obtained.”
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.

We often write a ÷ b = q r r .
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.

We often write a ÷ b = q r r .

For rationals and reals, if a = b × c then c = a/b.
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.

We often write a ÷ b = q r r .

For rationals and reals, if a = b × c then c = a/b.

Note:
a/b

c/d
=

a

b
×

d

c
=

ad

bc
, division is multiplication by reciprocal.
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.

We often write a ÷ b = q r r .

For rationals and reals, if a = b × c then c = a/b.

Note:
a/b

c/d
=

a

b
×

d

c
=

ad

bc
, division is multiplication by reciprocal.

a/b takes a whole, divides it into b parts, chooses a. Dividing each
part into d smaller parts means a/b = (ad)/(bd).
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Definitions

If a and b are natural numbers and a = qb + r , where q is a
nonnegative integer and r is an integer satisfying 0 ≤ r < b, then
q is the quotient and r is the remainder after integer division.
Also, a is the dividend and b is the divisor.

We often write a ÷ b = q r r .

For rationals and reals, if a = b × c then c = a/b.

Note:
a/b

c/d
=

a

b
×

d

c
=

ad

bc
, division is multiplication by reciprocal.

a/b takes a whole, divides it into b parts, chooses a. Dividing each
part into d smaller parts means a/b = (ad)/(bd). So
a/b

c/d
=

(ad)/(bd)

(bc)/(bd)
=

ad

bc
in terms of the smaller pieces.
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Successive Subtraction

As multiplication (of natural numbers) is successive addition,
division is successive subtraction.
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Successive Subtraction

As multiplication (of natural numbers) is successive addition,
division is successive subtraction.

For example, 100 − 12 = 88, 88 − 12 = 76, 76 − 12 = 64,
64 − 12 = 52, 52 − 12 = 40, 40 − 12 = 28, 28 − 12 = 16,
16 − 12 = 4,
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Successive Subtraction

As multiplication (of natural numbers) is successive addition,
division is successive subtraction.

For example, 100 − 12 = 88, 88 − 12 = 76, 76 − 12 = 64,
64 − 12 = 52, 52 − 12 = 40, 40 − 12 = 28, 28 − 12 = 16,
16 − 12 = 4, so 100 = 8 × 12 + 4 or 100 ÷ 12 = 8 r 4.
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Successive Subtraction

As multiplication (of natural numbers) is successive addition,
division is successive subtraction.

For example, 100 − 12 = 88, 88 − 12 = 76, 76 − 12 = 64,
64 − 12 = 52, 52 − 12 = 40, 40 − 12 = 28, 28 − 12 = 16,
16 − 12 = 4, so 100 = 8 × 12 + 4 or 100 ÷ 12 = 8 r 4.

Or, 100 = 0 · 12 + 100 = 1 · 12 + 88 = 2 · 12 + 76 = 3 · 12 + 64 =
4 · 12 + 52 = 5 · 12 + 40 = 6 · 12 + 28 = 7 · 12 + 16 = 8 · 12 + 4.
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23
2 46
4 92
8 184
16 368
32 736
64 1472
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23
2 46
4 92
8 184
16 368
32 736
64 1472 1652 − 1472 = 180
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23
2 46
4 92 180 − 92 = 88
8 184
16 368
32 736
64 1472 1652 − 1472 = 180
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23
2 46 88 − 46 = 42
4 92 180 − 92 = 88
8 184
16 368
32 736
64 1472 1652 − 1472 = 180
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23 42 − 23 = 19
2 46 88 − 46 = 42
4 92 180 − 92 = 88
8 184
16 368
32 736
64 1472 1652 − 1472 = 180
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Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor
to subtract.

For example, 100/12 again:
1 12
2 24
4 48
8 96 100 − 96 = 4

So 100/12 = 8 r 4,

and 1652/23:
1 23 42 − 23 = 19
2 46 88 − 46 = 42
4 92 180 − 92 = 88
8 184
16 368
32 736
64 1472 1652 − 1472 = 180

1 + 2 + 4 + 64 = 71,
so 1652/23 = 71 r 19.
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Geometry
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Geometry

(a): a < 1 so a/1 = (a + b)/(1 + CE ), a + aCE = a + b,
CE = b/a.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Geometry

(a): a < 1 so a/1 = (a + b)/(1 + CE ), a + aCE = a + b,
CE = b/a.

(b): a > 1 so a/1 = b/AD, AD = b/a.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.

1652/23: 10 × 23 = 230, 100 × 23 = 2300, two digit divisor.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.

1652/23: 10 × 23 = 230, 100 × 23 = 2300, two digit divisor.
1× 23 = 23, 2× 23 = 46, 3× 23 = 69, 4× 23 = 92, 5× 23 = 115,
6 × 23 = 138, 7 × 23 = 161, 8 × 23 = 184, 9 × 23 = 207.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.

1652/23: 10 × 23 = 230, 100 × 23 = 2300, two digit divisor.
1× 23 = 23, 2× 23 = 46, 3× 23 = 69, 4× 23 = 92, 5× 23 = 115,
6 × 23 = 138, 7 × 23 = 161, 8 × 23 = 184, 9 × 23 = 207.
Tens digit: 1652 − 70 × 23 = 1652 − 1610 = 42.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.

1652/23: 10 × 23 = 230, 100 × 23 = 2300, two digit divisor.
1× 23 = 23, 2× 23 = 46, 3× 23 = 69, 4× 23 = 92, 5× 23 = 115,
6 × 23 = 138, 7 × 23 = 161, 8 × 23 = 184, 9 × 23 = 207.
Tens digit: 1652 − 70 × 23 = 1652 − 1610 = 42. Ones digit:
42 − 1 × 23 = 42 − 23 = 19. 1652/23 = 71 r 19 as before.
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Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of
one to nine times the divisor.

100/12: 1 × 12 = 12, 10 × 12 = 120, so expect a one digit divisor.
1 × 12 = 12, 2 × 12 = 24, 3 × 12 = 36, 4 × 12 = 48, 5 × 12 = 60,
6 × 12 = 72, 7 × 12 = 84, 8 × 12 = 96, 9 × 12 = 108.
100 − 8 × 12 = 100 − 96 = 4 as before.

1652/23: 10 × 23 = 230, 100 × 23 = 2300, two digit divisor.
1× 23 = 23, 2× 23 = 46, 3× 23 = 69, 4× 23 = 92, 5× 23 = 115,
6 × 23 = 138, 7 × 23 = 161, 8 × 23 = 184, 9 × 23 = 207.
Tens digit: 1652 − 70 × 23 = 1652 − 1610 = 42. Ones digit:
42 − 1 × 23 = 42 − 23 = 19. 1652/23 = 71 r 19 as before.

It would be nice to set out the computation more cleanly...
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7: 4 8 8 3
7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7: 4 8 8 3
6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7: 4 8 8 3 6
6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6

6 4 6 8 8 3 6
6 7 6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6

6 4 6 8 8 3 6 9
6 7 6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 5

6 4 6 8 6 8 3 6 9
6 7 6 7 6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 5

6 4 6 8 6 8 3 6 9 7
6 7 6 7 6 7 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

9 5 9 2
4 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

9 5 9 2 2
4 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

1
6 9 5 9 2 2
6 4 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 1
6 9 6 5 9 2 2
6 4 6 7
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 1
6 9 6 5 9 2 2
6 4 6 7 7

4
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 1
6 9 6 5 9 2 2 0
6 4 6 7 7

4
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 1
6 9 6 5 9 2 2 0
6 4 6 7 6 7 7

6 4 4
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 1
6 9 6 5 9 2 2 0 4
6 4 6 7 6 7 7

6 4 4
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 6 1 3
6 9 6 5 6 9 2 2 0 4
6 4 6 7 6 7 7

6 4 6 4
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Galley or Scratch Division

Originally developed by the Hindus, most popular method in
Europe until the end of the 17th century. Successively subtract
multiples of the divisor appropriately shifted.

e.g. 4883/7:
6 6 6 5 4

6 4 6 8 6 8 6 3 6 9 7
6 7 6 7 6 7 6 7

e.g. 9592/47: 47 × 1 = 47, 47 × 2 =
94, 47 × 3 = 141, 47 × 4 = 188, 47 ×
5 = 235, 47 × 6 = 282, 47 × 7 = 329,
47 × 8 = 376, 47 × 9 = 423.

6 1 6 1 6 3 4
6 9 6 5 6 9 6 2 2 0 4
6 4 6 7 6 7 6 7

6 4 6 4
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.

E.g. 24 286 ÷ 168 = 24 286 ÷ (3 × 7 × 8).
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.

E.g. 24 286 ÷ 168 = 24 286 ÷ (3 × 7 × 8).

24 286 = 8095 × 3 + 1, 8095 = 1156 × 7 + 3, 1156 = 144 × 8 + 4.
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.

E.g. 24 286 ÷ 168 = 24 286 ÷ (3 × 7 × 8).

24 286 = 8095 × 3 + 1, 8095 = 1156 × 7 + 3, 1156 = 144 × 8 + 4.

Working backwards, 8095 = (144 × 8 + 4) × 7 + 3 = 144 × 8 × 7
+4 × 7 + 3 = 144 × 56 + 31,
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.

E.g. 24 286 ÷ 168 = 24 286 ÷ (3 × 7 × 8).

24 286 = 8095 × 3 + 1, 8095 = 1156 × 7 + 3, 1156 = 144 × 8 + 4.

Working backwards, 8095 = (144 × 8 + 4) × 7 + 3 = 144 × 8 × 7
+4 × 7 + 3 = 144 × 56 + 31, 24 286 = (144 + 31) × 3 + 1
= 144 × 56 × 3 + 31 × 31 + 1 = 144 × 168 + 94.
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Factor Division

Fibonacci suggested splitting the divisor if possible:
a ÷ (bc) = (a ÷ b) ÷ c . Galley division is easier when the divisor is
small, particularly single digits.

E.g. 24 286 ÷ 168 = 24 286 ÷ (3 × 7 × 8).

24 286 = 8095 × 3 + 1, 8095 = 1156 × 7 + 3, 1156 = 144 × 8 + 4.

Working backwards, 8095 = (144 × 8 + 4) × 7 + 3 = 144 × 8 × 7
+4 × 7 + 3 = 144 × 56 + 31, 24 286 = (144 + 31) × 3 + 1
= 144 × 56 × 3 + 31 × 31 + 1 = 144 × 168 + 94.

But, finding factors means more division problems, factors may not
be small, and multiple single digit divisions aren’t easier
than a single division.
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Napier’s Rods
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Napier’s Rods, Divisor Multiples, the Modern Method
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

8 7 8 ) 2 4 4 3 9 2
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
6 8 7 9
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2 7
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
6 8 7 9
6 1 4 6
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2 7
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
6 8 7 9
6 1 4 6

7 3 3 2
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2 7 8
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
6 8 7 9
6 1 4 6

7 3 3 2
7 0 2 4
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Napier’s Rods, Divisor Multiples, the Modern Method

244 392/878:

2 7 8
8 7 8 ) 2 4 4 3 9 2

1 7 5 6
6 8 7 9
6 1 4 6

7 3 3 2
7 0 2 4

3 0 8
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Other Layouts

English speaking
world, China,
Japan, India:

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4
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Other Layouts

English speaking
world, China,
Japan, India:

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4

Much of Latin
America:

4 8 8 3 ÷ 7 = 69 7
4 2

6 8
6 3

5 3
4 9

4
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Other Layouts

English speaking
world, China,
Japan, India:

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4

Much of Latin
America:

4 8 8 3 ÷ 7 = 69 7
4 2

6 8
6 3

5 3
4 9

4

Mexico:

6 9 7
7 ) 4 8 8 3

6 8
5 3

4
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More Layouts

Spain, Italy, France,
Portugal, Romania,
Russia:

4 8 8 3 7
− 4 2 6 9 7

6 8
− 6 3

5 3
− 4 9

4
Brazil and Colombia,
no | before quotient.
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More Layouts

Spain, Italy, France,
Portugal, Romania,
Russia:

4 8 8 3 7
− 4 2 6 9 7

6 8
− 6 3

5 3
− 4 9

4
Brazil and Colombia,
no | before quotient.

France:

4 8 8 3 7
− 4 2 6 9 7

6 8
− 6 3

5 3
− 4 9

4
No decimals.
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More Layouts

Spain, Italy, France,
Portugal, Romania,
Russia:

4 8 8 3 7
− 4 2 6 9 7

6 8
− 6 3

5 3
− 4 9

4
Brazil and Colombia,
no | before quotient.

France:

4 8 8 3 7
− 4 2 6 9 7

6 8
− 6 3

5 3
− 4 9

4
No decimals.

Germany, Norway,
Poland, Croatia,
Slovenia, Hungary,
Czech Republic,
Slovakia, Bulgaria:

4 8 8 3 : 7 = 6 9 7
− 4 2

6 8
− 6 3

5 3
− 4 9

4
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Short Division

With single digit divisors, each step will involve at most two digit
numbers, and subtraction leaves a one digit number.
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Short Division

With single digit divisors, each step will involve at most two digit
numbers, and subtraction leaves a one digit number.

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4
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Short Division

With single digit divisors, each step will involve at most two digit
numbers, and subtraction leaves a one digit number. For
compactness, carry the single digit to the left as a subscript – short
division, as opposed to traditional long division.

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4
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Short Division

With single digit divisors, each step will involve at most two digit
numbers, and subtraction leaves a one digit number. For
compactness, carry the single digit to the left as a subscript – short
division, as opposed to traditional long division.

6 9 7
7 ) 4 8 8 3

4 2
6 8
6 3

5 3
4 9

4

or
6 9 7

7 ) 4 8 68 53 4
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Genaille’s Rods for Short Division
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Example: 4883÷?
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Example: 4883÷?

So
4883 ÷ 2 = 2441 r 1,
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Example: 4883÷?

So
4883 ÷ 2 = 2441 r 1,
4883 ÷ 3 = 1627 r 2,
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Example: 4883÷?

So
4883 ÷ 2 = 2441 r 1,
4883 ÷ 3 = 1627 r 2,
4883 ÷ 4 = 1220 r 3,
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Example: 4883÷?

So
4883 ÷ 2 = 2441 r 1,
4883 ÷ 3 = 1627 r 2,
4883 ÷ 4 = 1220 r 3,
4883 ÷ 5 = 976 r 3,
and so on.
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Double Division

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
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Double Division

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

7 ) 4 8 8 3

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Double Division

1× 7 ) 4 8 8 3
2× 14
4× 28
8× 56

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3 Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

7 0 10
5 3

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

7 0 10
5 3
2 8 4
2 5

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

7 0 10
5 3
2 8 4
2 5
1 4 2
1 1

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

7 0 10
5 3
2 8 4
2 5
1 4 2
1 1

7 1
4

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Double Division

1× 7 ) 4 8 8 3
2× 14 2 8 0 0 400
4× 28 2 0 8 3
8× 56 1 4 0 0 200

6 8 3
5 6 0 80
1 2 3

7 0 10
5 3
2 8 4
2 5
1 4 2
1 1

7 1
4 697

Chunking (UK, late 1990’s)
takes away “easy” (100, 10, 5,
2 etc.) multiples of the divisor.
Double division (Jeff Wilson,
2005) uses the first three
doubles of the divisor as the
chunks.
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Another Example

214 ) 7 3 4 8 5
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Another Example

1× 214 ) 7 3 4 8 5
2× 428
4× 856
8× 1712
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712 2 1 4 0 0 100

9 2 8 5
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712 2 1 4 0 0 100

9 2 8 5
8 5 6 0 40

7 2 5
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712 2 1 4 0 0 100

9 2 8 5
8 5 6 0 40

7 2 5
4 2 8 2
2 9 7
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712 2 1 4 0 0 100

9 2 8 5
8 5 6 0 40

7 2 5
4 2 8 2
2 9 7
2 1 4 1

8 3
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Another Example

1× 214 ) 7 3 4 8 5
2× 428 4 2 8 0 0 200
4× 856 3 0 6 8 5
8× 1712 2 1 4 0 0 100

9 2 8 5
8 5 6 0 40

7 2 5
4 2 8 2
2 9 7
2 1 4 1

8 3 343
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
= a−1 +

a−2

10
+

a−3

102
+

a−4

103
+ · · · ,
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
= a−1 +

a−2

10
+

a−3

102
+

a−4

103
+ · · · ,

so a−1 = 6 and
7

8
=

a−2

10
+

a−3

102
+

a−4

103
+ · · · .
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
= a−1 +

a−2

10
+

a−3

102
+

a−4

103
+ · · · ,

so a−1 = 6 and
7

8
=

a−2

10
+

a−3

102
+

a−4

103
+ · · · .

Times 10: 10 ×
7

8
=

70

8
= 8

3

4
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
= a−1 +

a−2

10
+

a−3

102
+

a−4

103
+ · · · ,

so a−1 = 6 and
7

8
=

a−2

10
+

a−3

102
+

a−4

103
+ · · · .

Times 10: 10 ×
7

8
=

70

8
= 8

3

4
= a−2 +

a−3

10
+

a−4

102
+

a−5

103
+ · · · ,
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Using Integer Division

Given that (p < q)
p

q
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · , successively

multiply by ten, stop if repeated or zero remainder.

For example,
11

16
=

a−1

10
+

a−2

102
+

a−3

103
+ · · · .

Times 10: 10 ×
11

16
=

110

16
= 6

7

8
= a−1 +

a−2

10
+

a−3

102
+

a−4

103
+ · · · ,

so a−1 = 6 and
7

8
=

a−2

10
+

a−3

102
+

a−4

103
+ · · · .

Times 10: 10 ×
7

8
=

70

8
= 8

3

4
= a−2 +

a−3

10
+

a−4

102
+

a−5

103
+ · · · ,

so a−2 = 8 and
3

4
=

a−3

10
+

a−4

102
+

a−5

103
+ · · · .
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,

so a−3 = 7 and
1

2
=

a−4

10
+

a−5

102
+

a−6

103
+ · · · .
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,

so a−3 = 7 and
1

2
=

a−4

10
+

a−5

102
+

a−6

103
+ · · · .

Times 10: 10 ×
1

2
= 5
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,

so a−3 = 7 and
1

2
=

a−4

10
+

a−5

102
+

a−6

103
+ · · · .

Times 10: 10 ×
1

2
= 5 = a−4 +

a−5

10
+

a−6

102
+

a−7

103
+ · · · ,
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,

so a−3 = 7 and
1

2
=

a−4

10
+

a−5

102
+

a−6

103
+ · · · .

Times 10: 10 ×
1

2
= 5 = a−4 +

a−5

10
+

a−6

102
+

a−7

103
+ · · · ,

so a−4 = 5 and a−5 = a−6 = · · · = 0.
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Integer Division Example, continued

Times 10: 10 ×
3

4
=

30

4
= 7

1

2
= a−3 +

a−4

10
+

a−5

102
+

a−6

103
+ · · · ,

so a−3 = 7 and
1

2
=

a−4

10
+

a−5

102
+

a−6

103
+ · · · .

Times 10: 10 ×
1

2
= 5 = a−4 +

a−5

10
+

a−6

102
+

a−7

103
+ · · · ,

so a−4 = 5 and a−5 = a−6 = · · · = 0.

Of course, process could also be periodic.
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Decimal Long Division

Each of the steps of the previ-
ous example (11/16) is equivalent
to one step in dividing 110 000
by 16, just shifted to deal with
the position of the decimal. So
we can use standard long division
with a decimal point.
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Decimal Long Division

2 2 . 3 1 6 1
9 9 0) 2 2 0 9 3 . 0 0 0 0 · · ·

1 9 8 0
2 2 9 3 .
1 9 8 0 .

3 1 3 . 0
2 9 7 . 0

1 6 . 0 0
9 . 9 0
6 . 1 0 0
5 . 9 4 0

1 6 0 0
9 9 0

6 1
. . .

Each of the steps of the previ-
ous example (11/16) is equivalent
to one step in dividing 110 000
by 16, just shifted to deal with
the position of the decimal. So
we can use standard long division
with a decimal point.
For example,
22093/990=
22.31616161616 . . ..
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Multiply by Reciprocal

Since ab = a ×
1

b
, we can divide by multiplying if we have a table

of reciprocals.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

Multiply by Reciprocal

Since ab = a ×
1

b
, we can divide by multiplying if we have a table

of reciprocals.

For example,
13

8
= 13 × 0.125 = 1.625.
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Multiply by Reciprocal

Since ab = a ×
1

b
, we can divide by multiplying if we have a table

of reciprocals.

For example,
13

8
= 13 × 0.125 = 1.625.

But what about 13/6 = 13 × 0.166666 . . .?
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Multiply by Reciprocal

Since ab = a ×
1

b
, we can divide by multiplying if we have a table

of reciprocals.

For example,
13

8
= 13 × 0.125 = 1.625.

But what about 13/6 = 13 × 0.166666 . . .? The best we can do is
approximate: 13.6 ≈ 13 × 0.166667 = 2.1666671, which should be
compared to the exact 2.166666 . . ..
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Multiply by Reciprocal

Since ab = a ×
1

b
, we can divide by multiplying if we have a table

of reciprocals.

For example,
13

8
= 13 × 0.125 = 1.625.

But what about 13/6 = 13 × 0.166666 . . .? The best we can do is
approximate: 13.6 ≈ 13 × 0.166667 = 2.1666671, which should be
compared to the exact 2.166666 . . ..

This technique was used by the Ancient Babylonians in base sixty –
which is a highly composite number, so most reciprocals have a
finite radix sixty representation.
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A Bad Joke

Two mathematicians are working on a proof.

Stephen Lucas So You Think You Can Divide?



Ancient Techniques Positional Notation Division Yielding Decimals

A Bad Joke

Two mathematicians are working on a proof.

Mathematician #1: Wow! This is turning into a really long and
complex proof! We’ve almost run out of letters to name our
variables. We should start subscripting them.
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A Bad Joke

Two mathematicians are working on a proof.

Mathematician #1: Wow! This is turning into a really long and
complex proof! We’ve almost run out of letters to name our
variables. We should start subscripting them.

Mathematician #2: Y-naught.
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Newton’s Iteration

Long division is much slower than multiplication. If only division
could be rewritten in terms of multiplication...
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Newton’s Iteration

Long division is much slower than multiplication. If only division
could be rewritten in terms of multiplication...

To calculate 1/a, use Newton’s method to solve f (x) =
1

x
− a = 0,

which leads to xn+1 = xn(2 − axn).
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Newton’s Iteration

Long division is much slower than multiplication. If only division
could be rewritten in terms of multiplication...

To calculate 1/a, use Newton’s method to solve f (x) =
1

x
− a = 0,

which leads to xn+1 = xn(2 − axn).

For example 1/7 with x0 = 0.2,
x1 = x0(2 − 7 × x0) = 0.2(2 − 7 × 0.2) = 0.12,
x2 = x1(2 − 7 × x1) = 0.12(2 − 7 × 0.12) = 0.1392,
x3 = x2(2 − 7 × x2) = 0.1392(2 − 7 × 0.1392) = 0.14276352,
x4 = x3(2 − 7 × x3) = 0.14276352(2 − 7 × 0.14276352) =
0.1428570815004672. True is 0.142857142857143.
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Newton’s Iteration

Long division is much slower than multiplication. If only division
could be rewritten in terms of multiplication...

To calculate 1/a, use Newton’s method to solve f (x) =
1

x
− a = 0,

which leads to xn+1 = xn(2 − axn).

For example 1/7 with x0 = 0.2,
x1 = x0(2 − 7 × x0) = 0.2(2 − 7 × 0.2) = 0.12,
x2 = x1(2 − 7 × x1) = 0.12(2 − 7 × 0.12) = 0.1392,
x3 = x2(2 − 7 × x2) = 0.1392(2 − 7 × 0.1392) = 0.14276352,
x4 = x3(2 − 7 × x3) = 0.14276352(2 − 7 × 0.14276352) =
0.1428570815004672. True is 0.142857142857143.

Accuracy doubles at every step, given a close enough
initial guess.
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Graphical Proof

If x ≈ 1/a and we ignore the top left rectangle, then
(1/x) · (1/a) ≈ ax + 2(1 − ax), 1/a ≈ x(ax + 2 − 2ax), or
1/a ≈ x(2 − ax).
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Goldschmidt’s Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p/q, start with y0 close to 1/q. Then
p1/q1 = (py0)/(qy0) where q1 is close to one.
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Goldschmidt’s Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p/q, start with y0 close to 1/q. Then
p1/q1 = (py0)/(qy0) where q1 is close to one.

To move the denominator closer to one, let q1 = 1 + e1. Then let
p2/q2 = (p1y1)/(q1y1) where y1 = 1 − e1. So p2 = p1(1 − e1) and
q2 = (1 + e1)(1 − e1) = 1 − e2

1 . Eliminating e1 we can write
y1 = 2 − q1.
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Goldschmidt’s Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p/q, start with y0 close to 1/q. Then
p1/q1 = (py0)/(qy0) where q1 is close to one.

To move the denominator closer to one, let q1 = 1 + e1. Then let
p2/q2 = (p1y1)/(q1y1) where y1 = 1 − e1. So p2 = p1(1 − e1) and
q2 = (1 + e1)(1 − e1) = 1 − e2

1 . Eliminating e1 we can write
y1 = 2 − q1.

Algorithm: given pi and qi where qi ≈ 1, let yi = 2 − qi then
pi+1 = yipi and qi+1 = yiqi .
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Goldschmidt’s Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p/q, start with y0 close to 1/q. Then
p1/q1 = (py0)/(qy0) where q1 is close to one.

To move the denominator closer to one, let q1 = 1 + e1. Then let
p2/q2 = (p1y1)/(q1y1) where y1 = 1 − e1. So p2 = p1(1 − e1) and
q2 = (1 + e1)(1 − e1) = 1 − e2

1 . Eliminating e1 we can write
y1 = 2 − q1.

Algorithm: given pi and qi where qi ≈ 1, let yi = 2 − qi then
pi+1 = yipi and qi+1 = yiqi .

Identical to Newton with pi = xi−1 and qi = axi−1. So why use it?
The two multiplications can be done in parallel,
essentially doubling the speed!
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EDSAC’s method

EDSAC was the first stored program controlled electronic
computer (1949).
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EDSAC’s method

EDSAC was the first stored program controlled electronic
computer (1949).

Predating Goldschmidt: start with
p

q
=

p1

q1

=
py0

qy0

as before.
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EDSAC’s method

EDSAC was the first stored program controlled electronic
computer (1949).

Predating Goldschmidt: start with
p

q
=

p1

q1

=
py0

qy0

as before.

Let c1 = 1 − qy0, so
p

q
=

p1

1 − c1
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EDSAC’s method

EDSAC was the first stored program controlled electronic
computer (1949).

Predating Goldschmidt: start with
p

q
=

p1

q1

=
py0

qy0

as before.

Let c1 = 1 − qy0, so
p

q
=

p1

1 − c1
·
1 + c1

1 + c1
=

p1(1 + c1)

1 − c2
1

=
p2

1 − c2

where p2 = p1(1 + c1) and c2 = c2
1 .
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EDSAC’s method

EDSAC was the first stored program controlled electronic
computer (1949).

Predating Goldschmidt: start with
p

q
=

p1

q1

=
py0

qy0

as before.

Let c1 = 1 − qy0, so
p

q
=

p1

1 − c1
·
1 + c1

1 + c1
=

p1(1 + c1)

1 − c2
1

=
p2

1 − c2

where p2 = p1(1 + c1) and c2 = c2
1 .

In general, pi+1 = (1 + ci )pi and ci+1 = c2
i

with c1 = 1 − qy0.
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Conclusion

So, just how would you like to divide now?
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