So You Think You Can Divide?

A History of Division

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

October 10, 2011
"There is a story of a German merchant of the fifteenth century, which I have not succeeded in authenticating, but it is so characteristic of the situation then existing that I cannot resist the temptation of telling it. It appears that the merchant had a son whom he desired to give an advanced commercial education. He appealed to a prominent professor of a university for advice as to where he should send his son. The reply was that if the mathematical curriculum of the young man was to be confined to adding and subtracting, he perhaps could obtain the instruction in a German university; but the art of multiplying and dividing, he continued, had been greatly developed in Italy, which in his opinion was the only country where such advanced instruction could be obtained."

Outline

- Ancient Techniques
- Definitions
- Successive Subtraction
- Doubling
- Geometry
- Positional Notation
- Positional Definition
- Galley or Scratch
- Factor
- Napier's Rods and the "Modern" method
- Short Division and

Genaille's Rods

- Double Division
- Division Yielding Decimals
- Integer Division
- Modern Division
- Multiply by Reciprocal
- Iteration - Newton
- Iteration - Goldschmidt
- Iteration - EDSAC

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b=q r r$.

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b=q \mathrm{r} r$.
For rationals and reals, if $a=b \times c$ then $c=a / b$.

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b=q r r$.
For rationals and reals, if $a=b \times c$ then $c=a / b$.
Note: $\frac{a / b}{c / d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$, division is multiplication by reciprocal.

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b=q \mathrm{r} r$.
For rationals and reals, if $a=b \times c$ then $c=a / b$.
Note: $\frac{a / b}{c / d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$, division is multiplication by reciprocal. a / b takes a whole, divides it into b parts, chooses a. Dividing each part into d smaller parts means $a / b=(a d) /(b d)$.

Definitions

If a and b are natural numbers and $a=q b+r$, where q is a nonnegative integer and r is an integer satisfying $0 \leq r<b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b=q \mathrm{r} r$.
For rationals and reals, if $a=b \times c$ then $c=a / b$.
Note: $\frac{a / b}{c / d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$, division is multiplication by reciprocal.
a / b takes a whole, divides it into b parts, chooses a. Dividing each part into d smaller parts means $a / b=(a d) /(b d)$. So $\frac{a / b}{c / d}=\frac{(a d) /(b d)}{(b c) /(b d)}=\frac{a d}{b c}$ in terms of the smaller pieces.

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, $100-12=88,88-12=76,76-12=64$, $64-12=52,52-12=40,40-12=28,28-12=16$, $16-12=4$,

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, $100-12=88,88-12=76,76-12=64$, $64-12=52,52-12=40,40-12=28,28-12=16$, $16-12=4$, so $100=8 \times 12+4$ or $100 \div 12=8$ r 4 .

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, $100-12=88,88-12=76,76-12=64$, $64-12=52,52-12=40,40-12=28,28-12=16$, $16-12=4$, so $100=8 \times 12+4$ or $100 \div 12=8$ r 4 .

Or, $100=0 \cdot 12+100=1 \cdot 12+88=2 \cdot 12+76=3 \cdot 12+64=$ $4 \cdot 12+52=5 \cdot 12+40=6 \cdot 12+28=7 \cdot 12+16=8 \cdot 12+4$.

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
896

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$8 \quad 96 \quad 100-96=4$
So $100 / 12=8$ r 4,

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$896 \quad 100-96=4$
So $100 / 12=8$ r 4,

and	$1652 / 23:$
1	23
2	46
4	92
8	184
16	368
32	736
64	1472

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$8 \quad 96 \quad 100-96=4$
So $100 / 12=8$ r 4,

and	$1652 / 23:$
1	23
2	46
4	92
8	184
16	368
32	736
64	1472

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$896100-96=4$
So $100 / 12=8$ r 4 ,

and	$1652 / 23:$	
1	23	
2	46	
4	92	$180-92=88$
8	184	
16	368	
32	736	
64	1472	$1652-1472=180$

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$896100-96=4$
So $100 / 12=8$ r 4 ,

and	1652/23:	
1	23	
2	46	$88-46=42$
4	92	$180-92=88$
8	184	
16	368	
32	736	
64	1472	$1652-1472=180$

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$896 \quad 100-96=4$
So $100 / 12=8$ r 4 ,
and 1652/23:

1	23	$42-23=19$
2	46	$88-46=42$
4	92	$180-92=88$
8	184	
16	368	
32	736	
64	1472	$1652-1472=180$

Successive Doubling - Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:
112
224
448
$896 \quad 100-96=4$
So $100 / 12=8$ r 4,
and 1652/23:

1	23	$42-23=19$
2	46	$88-46=42$
4	92	$180-92=88$

8184
16368
32736
$64 \quad 1472 \quad 1652-1472=180$
$1+2+4+64=71$,
so $1652 / 23=71$ r 19 .

Geometry

Geometry

(a): $a<1$ so $a / 1=(a+b) /(1+C E), a+a C E=a+b$,
$C E=b / a$.

Geometry

(a): $a<1$ so $a / 1=(a+b) /(1+C E), a+a C E=a+b$,
$C E=b / a$.
(b): $a>1$ so $a / 1=b / A D, A D=b / a$.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor. $1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$, $6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor. $1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$, $6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$. $100-8 \times 12=100-96=4$ as before.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor. $1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$, $6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$. $100-8 \times 12=100-96=4$ as before.

1652/23: $10 \times 23=230,100 \times 23=2300$, two digit divisor.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor. $1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$, $6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$. $100-8 \times 12=100-96=4$ as before.

1652/23: $10 \times 23=230,100 \times 23=2300$, two digit divisor.
$1 \times 23=23,2 \times 23=46,3 \times 23=69,4 \times 23=92,5 \times 23=115$, $6 \times 23=138,7 \times 23=161,8 \times 23=184,9 \times 23=207$.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor.
$1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$,
$6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$.
$100-8 \times 12=100-96=4$ as before.
1652/23: $10 \times 23=230,100 \times 23=2300$, two digit divisor.
$1 \times 23=23,2 \times 23=46,3 \times 23=69,4 \times 23=92,5 \times 23=115$, $6 \times 23=138,7 \times 23=161,8 \times 23=184,9 \times 23=207$.
Tens digit: $1652-70 \times 23=1652-1610=42$.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor.
$1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$,
$6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$.
$100-8 \times 12=100-96=4$ as before.
1652/23: $10 \times 23=230,100 \times 23=2300$, two digit divisor.
$1 \times 23=23,2 \times 23=46,3 \times 23=69,4 \times 23=92,5 \times 23=115$,
$6 \times 23=138,7 \times 23=161,8 \times 23=184,9 \times 23=207$.
Tens digit: $1652-70 \times 23=1652-1610=42$. Ones digit: $42-1 \times 23=42-23=19.1652 / 23=71 \mathrm{r} 19$ as before.

Positional Notation Simplification

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12=12,10 \times 12=120$, so expect a one digit divisor.
$1 \times 12=12,2 \times 12=24,3 \times 12=36,4 \times 12=48,5 \times 12=60$,
$6 \times 12=72,7 \times 12=84,8 \times 12=96,9 \times 12=108$.
$100-8 \times 12=100-96=4$ as before.
1652/23: $10 \times 23=230,100 \times 23=2300$, two digit divisor.
$1 \times 23=23,2 \times 23=46,3 \times 23=69,4 \times 23=92,5 \times 23=115$,
$6 \times 23=138,7 \times 23=161,8 \times 23=184,9 \times 23=207$.
Tens digit: $1652-70 \times 23=1652-1610=42$. Ones digit: $42-1 \times 23=42-23=19.1652 / 23=71 \mathrm{r} 19$ as before.
It would be nice to set out the computation more cleanly.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.
e.g. 4883/7: $\begin{array}{lllll}4 & 8 & 8 & 3 \\ 7 & & & \end{array}$

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.
$\begin{array}{lllll}\text { e.g. } 4883 / 7: & 4 & 8 & 8 & 3 \\ 7 & 7 & & \end{array}$

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.
e.g. $4883 / 7$:

$$
\begin{array}{llll|l}
4 & 8 & 8 & 3 & 6 \\
7 & 7 & & &
\end{array}
$$

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6			
e.g. $4883 / 7:$	A	8	8	3	6
	π	π	7		

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6				
e.g. $4883 / 7:$	A	8	8	3	6	9

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	5			
e.g. $4883 / 7:$	A	8	8	3	6	9

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		\varnothing	5				
e.g. 4883/7:	A	\varnothing	8	3	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		\varnothing	$\not D$	4			
e.g. 4883/7:	A	\varnothing	\varnothing	β	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

```
\begin{tabular}{lllll|lll} 
& & \(\varnothing\) & \(\not D\) & 4 & & & \\
e.g. 4883/7: & \(A\) & \(\varnothing\) & \(\varnothing\) & \(\beta\) & 6 & 9 & 7
\end{tabular}
e.g. \(9592 / 47\) : \(47 \times 1=47,47 \times 2=\)
\(94,47 \times 3=141,47 \times 4=188,47 \times\)
\(5=235,47 \times 6=282,47 \times 7=329\),
\(47 \times 8=376,47 \times 9=423\).
```


Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. $9592 / 47$: $47 \times 1=47,47 \times 2=$
$94,47 \times 3=141,47 \times 4=188,47 \times$
$5=235,47 \times 6=282,47 \times 7=329$, $47 \times 8=376,47 \times 9=423$.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. $9592 / 47$: $47 \times 1=47,47 \times 2=$ $94,47 \times 3=141,47 \times 4=188,47 \times$ $5=235,47 \times 6=282,47 \times 7=329$, $47 \times 8=376,47 \times 9=423$.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. 4883/7:	A	\varnothing	8	$\not B$	6	9	7

e.g. $9592 / 47: 47 \times 1=47,47 \times 2=$	1				
$94,47 \times 3=141,47 \times 4=188,47 \times$	9	5	9	2	2
$5=235,47 \times 6=282,47 \times 7=329$,	A	7			
$47 \times 8=376,47 \times 9=423$.					

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. 4883/7:	A	\varnothing	8	β	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. 4883/7:	A	\varnothing	8	$\not B$	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		\varnothing	$\not D$	4			
e.g. 4883/7:	A	\varnothing	\varnothing	β	6	9	7

e.g. $9592 / 47: 47 \times 1=47,47 \times 2=$	1	1			
$94,47 \times 3=141,47 \times 4=188,47 \times$	9	5	9	2	2
0	0				
$5=235,47 \times 6=282,47 \times 7=329$,	A	$\not 7$	7		
$47 \times 8=376,47 \times 9=423$.		4			

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. $4883 / 7:$	A	\varnothing	\varnothing	$\not B$	6	9	7

e.g. $9592 / 47: 47 \times 1=47,47 \times 2=$	1	1			
$94,47 \times 3=141,47 \times 4=188,47 \times$	9	Δ	9	2	2
0					
$5=235,47 \times 6=282,47 \times 7=329$,	A	$\not 7$	π	7	
$47 \times 8=376,47 \times 9=423$.		A	4		
47×8					

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. $4883 / 7:$	A	\varnothing	\varnothing	$\not B$	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. $4883 / 7:$	A	\varnothing	\varnothing	$\not B$	6	9	7

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17 th century. Successively subtract multiples of the divisor appropriately shifted.

		6	$\not D$	4			
e.g. $4883 / 7:$	A	\varnothing	\varnothing	$\not B$	6	9	7

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.
E.g. $24286 \div 168=24286 \div(3 \times 7 \times 8)$.

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.
E.g. $24286 \div 168=24286 \div(3 \times 7 \times 8)$.
$24286=8095 \times 3+1,8095=1156 \times 7+3,1156=144 \times 8+4$.

Factor Division

Fibonacci suggested splitting the divisor if possible:
$a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.
E.g. $24286 \div 168=24286 \div(3 \times 7 \times 8)$.
$24286=8095 \times 3+1,8095=1156 \times 7+3,1156=144 \times 8+4$.
Working backwards, $8095=(144 \times 8+4) \times 7+3=144 \times 8 \times 7$ $+4 \times 7+3=144 \times 56+31$,

Factor Division

Fibonacci suggested splitting the divisor if possible:
$a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.
E.g. $24286 \div 168=24286 \div(3 \times 7 \times 8)$.
$24286=8095 \times 3+1,8095=1156 \times 7+3,1156=144 \times 8+4$.
Working backwards, $8095=(144 \times 8+4) \times 7+3=144 \times 8 \times 7$ $+4 \times 7+3=144 \times 56+31, \quad 24286=(144+31) \times 3+1$
$=144 \times 56 \times 3+31 \times 31+1=144 \times 168+94$.

Factor Division

Fibonacci suggested splitting the divisor if possible:
$a \div(b c)=(a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.
E.g. $24286 \div 168=24286 \div(3 \times 7 \times 8)$.
$24286=8095 \times 3+1,8095=1156 \times 7+3,1156=144 \times 8+4$.
Working backwards, $8095=(144 \times 8+4) \times 7+3=144 \times 8 \times 7$ $+4 \times 7+3=144 \times 56+31, \quad 24286=(144+31) \times 3+1$
$=144 \times 56 \times 3+31 \times 31+1=144 \times 168+94$.
But, finding factors means more division problems, factors may not be small, and multiple single digit divisions aren't easier than a single division.

Napier's Rods

0
$0 / 0$
$0 / 0$
$0 / 0$
$0 / 0$
$0 / 0$
$0 / 0$
0
0
0
0
0
0

Napier's Rods, Divisor Multiples, the Modern Method

Napier's Rods, Divisor Multiples, the Modern Method

244 392/878:

$$
\left.\begin{array}{llllllll}
8 & 7 & 8
\end{array}\right) \begin{array}{llllll}
2 & 4 & 4 & 3 & 9 & 2
\end{array}
$$

Napier's Rods, Divisor Multiples, the Modern Method

244 392/878:

$$
\left.\begin{array}{lll}
8 & 7 & 8
\end{array}\right)
$$

Napier's Rods, Divisor Multiples, the Modern Method

1
$0 / 2$
0
0/4
$0 / 5$
$0 / 6$
$0 / 7$
0
$0 / 9$

244 392/878:

$$
\left.\begin{array}{lllllll}
8 & 7 & 8
\end{array}\right) \begin{array}{llllll}
& & & & \\
\hline 2 & 4 & 4 & 3 & 9 & 2 \\
1 & 7 & 5 & 6 & & \\
\hline & 6 & 8 & 7 & 9 &
\end{array}
$$

Napier's Rods, Divisor Multiples, the Modern Method

1
$0 / 2$
0
0/4
$0 / 5$
$0 / 6$
$0 / 7$
0
$0 / 9$

244 392/878:

$\left.\begin{array}{llllllll}8 & 7 & 8\end{array}\right)$| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Napier's Rods, Divisor Multiples, the Modern Method

1
$0 / 2$
0
0/4
$0 / 5$
$0 / 6$
$0 / 7$
0
$0 / 9$

244 392/878:

$$
\left.\begin{array}{lllllll}
8 & 7 & 8
\end{array}\right) \begin{array}{llllll}
& & & & 2 & 7 \\
\hline
\end{array}
$$

Napier's Rods, Divisor Multiples, the Modern Method

1
$0 / 2$
0
0/4
$0 / 5$
$0 / 6$
$0 / 7$
0
$0 / 9$

244 392/878:

$$
\left.\begin{array}{lllllll}
8 & 7 & 8
\end{array}\right) \begin{array}{llllll}
& & & & 2 & 7 \\
\hline
\end{array}
$$

Napier's Rods, Divisor Multiples, the Modern Method

1
$0 / 2$
0
0/4
$0 / 5$
$0 / 6$
$0 / 7$
0
$0 / 9$

244 392/878:

Other Layouts

English speaking world, China,
Japan, India:
697
$7 \lcm{4883}$
428
$\frac{63}{5} 3$
$\frac{49}{4}$

Other Layouts

English speaking world, China, Japan, India:

$$
\begin{array}{rr}
697 \\
\hline \begin{array}{r}
6883 \\
42 \\
68
\end{array} & \frac{42}{68} \\
\frac{63}{53} & \frac{49}{4} \\
\frac{49}{4} &
\end{array}
$$

Much of Latin

America:

$$
4883 \div 7=697
$$

Other Layouts

English speaking world, China, Japan, India:

$$
\begin{gathered}
697 \\
\frac{4883}{68}
\end{gathered}
$$

$$
\frac{63}{5} 3
$$

$$
\frac{49}{4}
$$

Much of Latin
America:

$$
\begin{aligned}
& 4883 \div 7=697 \\
& \begin{array}{r}
4297 \\
\hline 68 \\
\frac{43}{5} 3 \\
683 \\
\frac{49}{4}
\end{array} \quad 53 \\
& \\
& \hline 4
\end{aligned}
$$

Mexico:

More Layouts

Spain, Italy, France, Portugal, Romania, Russia:

$$
\begin{aligned}
& 4883 \mid 7 \\
& -42 \\
& \hline 68 \\
& -\frac{63}{6} 3 \\
& \hline-\frac{49}{4}
\end{aligned}
$$

Brazil and Colombia, no | before quotient.

More Layouts

Spain, Italy, France, Portugal, Romania, Russia:

$$
\begin{aligned}
& \begin{array}{r}
48 \\
-43 \\
-42 \\
\hline 68 \\
-\frac{63}{5} 3 \\
\hline
\end{array} \\
& -\frac{49}{4}
\end{aligned}
$$

France:

$$
\begin{array}{rrr}
48 & 8 & 7 \\
-42 & 697 \\
\hline 6 & 8 \\
-\frac{6}{4} 3 \\
\hline & 3 & \\
-\frac{49}{4} &
\end{array}
$$

No decimals.

Brazil and Colombia, no | before quotient.

More Layouts

Spain, Italy, France, Portugal, Romania, Russia:

$$
\begin{aligned}
& 4883 \mid 7 \\
& -42 \\
& \hline 68 \\
& -\frac{63}{69} \\
& \hline-\frac{49}{4}
\end{aligned}
$$

Brazil and Colombia, no | before quotient.

France:

No decimals.

Germany, Norway, Poland, Croatia, Slovenia, Hungary, Czech Republic, Slovakia, Bulgaria:

$$
\begin{aligned}
& 4883: 7=697 \\
& -\quad 42 \\
& \hline 68 \\
& -\frac{63}{53} \\
& -\frac{49}{4}
\end{aligned}
$$

Short Division

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number.

Short Division

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number.

Short Division

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number. For compactness, carry the single digit to the left as a subscript - short division, as opposed to traditional long division.

Short Division

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number. For compactness, carry the single digit to the left as a subscript - short division, as opposed to traditional long division.

Genaille's Rods for Short Division

-WN-O	のutwn-o	$u+\omega N-0$	AWN-0	W N-O	N-O	-0	\%
∞	\checkmark	の	u	-	ω	N	\bigcirc

Example: $4883 \div$?

	4		8		8	3	R	D	
7					$\begin{aligned} & 1 \\ & 6 \end{aligned}$		$\begin{array}{\|c\|} \hline 0 \\ 1 \end{array}$	2	
$\begin{aligned} & 1 \\ & 4 \\ & 8 \end{aligned}$					$\left\{\begin{array}{l} 1 \\ 4 \\ 7 \end{array}\right.$		$-\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	3	
$\begin{array}{\|l} 3 \\ 6 \\ 8 \end{array}$					$\gg \begin{aligned} & 0 \\ & 3 \\ & 5 \\ & 8 \end{aligned}$	x	$\begin{array}{\|} \hline 0 \\ 1 \\ 2 \\ 3 \end{array}$	4	
$\begin{array}{\|l\|} \hline 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ \hline \end{array}$		1 3 5 7 9					0 1 2 3 4	5	

Example: $4883 \div$?

	4		8		8		3	R	D	
$\begin{array}{\|l\|} \hline 2 \\ 7 \end{array}$								0	2	
$\begin{array}{\|l\|} \hline 1 \\ 4 \\ 8 \\ \hline \end{array}$				$\begin{aligned} & 2 \\ & 6 \\ & 9 \end{aligned}$				0	3	
$\begin{array}{\|l\|} \hline 1 \\ 3 \\ 6 \\ 8 \\ \hline \end{array}$								$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	4	
0 2 4 6 8		$\begin{aligned} & 1 \\ & 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$		1 3 5 7 9				0 1 2 3 4	5	

So
$4883 \div 2=2441$ r 1 ,

Example: $4883 \div$?

So

$$
\begin{aligned}
& 4883 \div 2=2441 \text { r } 1, \\
& 4883 \div 3=1627 \text { r } 2,
\end{aligned}
$$

Example: $4883 \div$?

	4		8		8		3	R	D	
$\begin{array}{\|l\|} \hline 2 \\ 7 \end{array}$								0	2	
$\begin{array}{\|l\|} \hline 1 \\ 4 \\ 8 \\ \hline \end{array}$				$\begin{aligned} & 2 \\ & 6 \\ & 9 \end{aligned}$				0	3	
$\begin{array}{\|l\|} \hline 1 \\ 3 \\ 6 \\ 8 \\ \hline \end{array}$								$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	4	
0 2 4 6 8		$\begin{aligned} & 1 \\ & 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$		1 3 5 7 9				0 1 2 3 4	5	

So

$$
\begin{aligned}
& 4883 \div 2=2441 \text { r } 1, \\
& 4883 \div 3=1627 \text { r } 2, \\
& 4883 \div 4=1220 \text { r } 3
\end{aligned}
$$

So You Think You Can Divide?

Example: $4883 \div$?

	4		8		8		3	R	D	
7								-8	2	
$\begin{array}{\|l\|} \hline 1 \\ 4 \\ 8 \end{array}$				$\begin{aligned} & 2 \\ & 6 \\ & 9 \end{aligned}$				$\left\{\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right.$	3	
$\begin{array}{\|l\|} \hline 1 \\ 3 \\ 6 \\ 8 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 2 \\ 4 \\ 7 \\ 9 \\ \hline \end{array}$						$\left\{\begin{array}{l} 0 \\ 1 \\ 2 \\ 3 \end{array}\right.$	4	
$\begin{array}{\|l\|} \hline 0 \\ 2 \\ 4 \\ 6 \\ 8 \end{array}$		$\begin{array}{\|l\|} \hline 1 \\ 3 \\ 5 \\ 7 \\ 9 \end{array}$		$\begin{array}{\|l\|} \hline 1 \\ 3 \\ 5 \\ 7 \\ 9 \end{array}$				0 1 2 3 4	5	

So

$$
\begin{aligned}
& 4883 \div 2=2441 \text { r } 1, \\
& 4883 \div 3=1627 \text { r } 2, \\
& 4883 \div 4=1220 \text { r } 3, \\
& 4883 \div 5=976 \text { r } 3, \\
& \text { and so on. }
\end{aligned}
$$

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor.

Double Division

> Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

$$
7 \quad 4 \begin{array}{llll}
4 & 8 & 8 & 3
\end{array}
$$

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

1_{\times}	7	$)$	4	8	8	3	
2_{\times}	14	2	8	0	0	400	
4_{\times}	28	2	0	8	3		
8_{\times}	56	1	4	0	0		

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

1_{\times}	7	$)$	4	8	8	3	
$2 \times$	14	2	8	0	0	400	
$4 \times$	28	2	0	8	3		
4_{\times}	56	1	4	0	0	200	
		6	8	3			
		5	6	0	80		
			1	2	3		

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

1_{\times}	7	4	8	8	3	
$2 \times$	14	2	8	0	0	400
$4 \times$	28	2	0	8	3	
$8 \times$	56	1	4	0	0	200
			6	8	3	
			5	6	0	80
			1	2	3	
				7	0	10
				5	3	

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

$1 \times$	7) 4	4	8	3	
$2 \times$	14	2	8	0	0	400
$4 \times$	28	2	0	8	3	
$8 \times$	56	1	4	0	0	200
			6	8	3	
			5	6	0	80
			1	2	3	
				7	0	10
				5	3	
				2	8	4
				2	5	

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor. Double division (Jeff Wilson, 2005) uses the first three doubles of the divisor as the chunks.

Another Example

$214) \longdiv { 7 } 3 4 8 8$

Another Example

$1_{\times} \quad 214$) $7 \begin{array}{lllll} & 3 & 4 & 8 & 5\end{array}$
2×428
4×856
8×1712

Another Example

	$1 \times$	214	$)$	7	3	4	8	5
$2 \times$	428	4	2	8	0	0		200
$4 \times$	856	3	0	6	8	5		
$8 \times$	1712							

Another Example

1_{\times}	214	$)$	7	3	4	8	5
$2 \times$	428	4	2	8	0	0	
$4 \times$	856	200					
4_{\times}	3	0	6	8	5		
8_{\times}	1712	2	1	4	0	0	100
			9	2	8	5	

Another Example

Another Example

1^{\times}	214	7	3	4	8		200
$2 \times$	428	4	2	8	0		
$4 \times$	856	3	0	6	8		
$8 \times$	1712	2	1	4	0		100
			9	2	8		
			8	5	6		40
				7	2		
				4	2		2
				2	9		

Another Example

Another Example

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a-1}{10}+\frac{a-2}{10^{2}}+\frac{a-3}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}$

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}=a_{-1}+\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$,

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}=a_{-1}+\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$,
so $a_{-1}=6$ and $\frac{7}{8}=\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$.

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}=a_{-1}+\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$, so $a_{-1}=6$ and $\frac{7}{8}=\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$.

Times 10: $10 \times \frac{7}{8}=\frac{70}{8}=8 \frac{3}{4}$

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}=a_{-1}+\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$, so $a_{-1}=6$ and $\frac{7}{8}=\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$.

Times 10: $10 \times \frac{7}{8}=\frac{70}{8}=8 \frac{3}{4}=a_{-2}+\frac{a_{-3}}{10}+\frac{a_{-4}}{10^{2}}+\frac{a_{-5}}{10^{3}}+\cdots$,

Using Integer Division

Given that $(p<q) \frac{p}{q}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$, successively multiply by ten, stop if repeated or zero remainder.

For example, $\frac{11}{16}=\frac{a_{-1}}{10}+\frac{a_{-2}}{10^{2}}+\frac{a_{-3}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{11}{16}=\frac{110}{16}=6 \frac{7}{8}=a_{-1}+\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$, so $a_{-1}=6$ and $\frac{7}{8}=\frac{a_{-2}}{10}+\frac{a_{-3}}{10^{2}}+\frac{a_{-4}}{10^{3}}+\cdots$.

Times 10: $10 \times \frac{7}{8}=\frac{70}{8}=8 \frac{3}{4}=a_{-2}+\frac{a_{-3}}{10}+\frac{a_{-4}}{10^{2}}+\frac{a_{-5}}{10^{3}}+\cdots$,
so $a_{-2}=8$ and $\frac{3}{4}=\frac{a_{-3}}{10}+\frac{a_{-4}}{10^{2}}+\frac{a_{-5}}{10^{3}}+\cdots$.

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}$

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$,

Integer Division Example, continued

$$
\begin{aligned}
& \text { Times } 10: 10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots, \\
& \text { so } a_{-3}=7 \text { and } \frac{1}{2}=\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots .
\end{aligned}
$$

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$,
so $a_{-3}=7$ and $\frac{1}{2}=\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{1}{2}=5$

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$,
so $a_{-3}=7$ and $\frac{1}{2}=\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$.
Times 10: $10 \times \frac{1}{2}=5=a_{-4}+\frac{a_{-5}}{10}+\frac{a_{-6}}{10^{2}}+\frac{a_{-7}}{10^{3}}+\cdots$,

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$, so $a_{-3}=7$ and $\frac{1}{2}=\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$.

Times 10: $10 \times \frac{1}{2}=5=a_{-4}+\frac{a_{-5}}{10}+\frac{a_{-6}}{10^{2}}+\frac{a_{-7}}{10^{3}}+\cdots$, so $a_{-4}=5$ and $a_{-5}=a_{-6}=\cdots=0$.

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4}=\frac{30}{4}=7 \frac{1}{2}=a_{-3}+\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$, so $a_{-3}=7$ and $\frac{1}{2}=\frac{a_{-4}}{10}+\frac{a_{-5}}{10^{2}}+\frac{a_{-6}}{10^{3}}+\cdots$.

Times 10: $10 \times \frac{1}{2}=5=a_{-4}+\frac{a_{-5}}{10}+\frac{a_{-6}}{10^{2}}+\frac{a_{-7}}{10^{3}}+\cdots$, so $a_{-4}=5$ and $a_{-5}=a_{-6}=\cdots=0$.

Of course, process could also be periodic.

Decimal Long Division

Each of the steps of the previous example $(11 / 16)$ is equivalent to one step in dividing 110000 by 16 , just shifted to deal with the position of the decimal. So we can use standard long division with a decimal point.

Decimal Long Division

$$
\begin{aligned}
& 990) \frac{22.3161}{22093.0000 \ldots} \\
& \begin{array}{r}
1980 \\
2293 .
\end{array} \\
& \begin{array}{r}
1980 . \\
\hline 313.0
\end{array} \\
& \frac{297.0}{16.00} \\
& \frac{9.90}{6.100} \\
& \frac{5.940}{1600} \\
& \begin{array}{r}
990 \\
\hline 61
\end{array}
\end{aligned}
$$

Each of the steps of the previous example ($11 / 16$) is equivalent to one step in dividing 110000 by 16 , just shifted to deal with the position of the decimal. So we can use standard long division with a decimal point.
For example, 22093/990 = 22.31616161616....

Multiply by Reciprocal

Since $a b=a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

Multiply by Reciprocal

Since $a b=a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example, $\frac{13}{8}=13 \times 0.125=1.625$.

Multiply by Reciprocal

Since $a b=a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example, $\frac{13}{8}=13 \times 0.125=1.625$.
But what about $13 / 6=13 \times 0.166666 \ldots$?

Multiply by Reciprocal

Since $a b=a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example, $\frac{13}{8}=13 \times 0.125=1.625$.
But what about $13 / 6=13 \times 0.166666 \ldots$? The best we can do is approximate: $13.6 \approx 13 \times 0.166667=2.1666671$, which should be compared to the exact $2.166666 \ldots$...

Multiply by Reciprocal

Since $a b=a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example, $\frac{13}{8}=13 \times 0.125=1.625$.
But what about $13 / 6=13 \times 0.166666 \ldots$? The best we can do is approximate: $13.6 \approx 13 \times 0.166667=2.1666671$, which should be compared to the exact $2.166666 \ldots$

This technique was used by the Ancient Babylonians in base sixty which is a highly composite number, so most reciprocals have a finite radix sixty representation.

A Bad Joke

Two mathematicians are working on a proof.

A Bad Joke

Two mathematicians are working on a proof.
Mathematician \#1: Wow! This is turning into a really long and complex proof! We've almost run out of letters to name our variables. We should start subscripting them.

A Bad Joke

Two mathematicians are working on a proof.
Mathematician \#1: Wow! This is turning into a really long and complex proof! We've almost run out of letters to name our variables. We should start subscripting them.

Mathematician \#2: Y-naught.

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate $1 / a$, use Newton's method to solve $f(x)=\frac{1}{x}-a=0$, which leads to $x_{n+1}=x_{n}\left(2-a x_{n}\right)$.

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate $1 / a$, use Newton's method to solve $f(x)=\frac{1}{x}-a=0$, which leads to $x_{n+1}=x_{n}\left(2-a x_{n}\right)$.

For example $1 / 7$ with $x_{0}=0.2$,
$x_{1}=x_{0}\left(2-7 \times x_{0}\right)=0.2(2-7 \times 0.2)=0.12$,
$x_{2}=x_{1}\left(2-7 \times x_{1}\right)=0.12(2-7 \times 0.12)=0.1392$,
$x_{3}=x_{2}\left(2-7 \times x_{2}\right)=0.1392(2-7 \times 0.1392)=0.14276352$,
$x_{4}=x_{3}\left(2-7 \times x_{3}\right)=0.14276352(2-7 \times 0.14276352)=$
0.1428570815004672 . True is 0.142857142857143 .

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate $1 / a$, use Newton's method to solve $f(x)=\frac{1}{x}-a=0$, which leads to $x_{n+1}=x_{n}\left(2-a x_{n}\right)$.

For example $1 / 7$ with $x_{0}=0.2$,
$x_{1}=x_{0}\left(2-7 \times x_{0}\right)=0.2(2-7 \times 0.2)=0.12$,
$x_{2}=x_{1}\left(2-7 \times x_{1}\right)=0.12(2-7 \times 0.12)=0.1392$,
$x_{3}=x_{2}\left(2-7 \times x_{2}\right)=0.1392(2-7 \times 0.1392)=0.14276352$,
$x_{4}=x_{3}\left(2-7 \times x_{3}\right)=0.14276352(2-7 \times 0.14276352)=$ 0.1428570815004672 . True is 0.142857142857143 .

Accuracy doubles at every step, given a close enough initial guess.

Graphical Proof

If $x \approx 1 / a$ and we ignore the top left rectangle, then $(1 / x) \cdot(1 / a) \approx a x+2(1-a x), 1 / a \approx x(a x+2-2 a x)$, or $1 / a \approx x(2-a x)$.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p / q, start with y_{0} close to $1 / q$. Then $p_{1} / q_{1}=\left(p y_{0}\right) /\left(q y_{0}\right)$ where q_{1} is close to one.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p / q, start with y_{0} close to $1 / q$. Then
$p_{1} / q_{1}=\left(p y_{0}\right) /\left(q y_{0}\right)$ where q_{1} is close to one.
To move the denominator closer to one, let $q_{1}=1+e_{1}$. Then let $p_{2} / q_{2}=\left(p_{1} y_{1}\right) /\left(q_{1} y_{1}\right)$ where $y_{1}=1-e_{1}$. So $p_{2}=p_{1}\left(1-e_{1}\right)$ and $q_{2}=\left(1+e_{1}\right)\left(1-e_{1}\right)=1-e_{1}^{2}$. Eliminating e_{1} we can write $y_{1}=2-q_{1}$.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p / q, start with y_{0} close to $1 / q$. Then
$p_{1} / q_{1}=\left(p y_{0}\right) /\left(q y_{0}\right)$ where q_{1} is close to one.
To move the denominator closer to one, let $q_{1}=1+e_{1}$. Then let $p_{2} / q_{2}=\left(p_{1} y_{1}\right) /\left(q_{1} y_{1}\right)$ where $y_{1}=1-e_{1}$. So $p_{2}=p_{1}\left(1-e_{1}\right)$ and $q_{2}=\left(1+e_{1}\right)\left(1-e_{1}\right)=1-e_{1}^{2}$. Eliminating e_{1} we can write $y_{1}=2-q_{1}$.

Algorithm: given p_{i} and q_{i} where $q_{i} \approx 1$, let $y_{i}=2-q_{i}$ then $p_{i+1}=y_{i} p_{i}$ and $q_{i+1}=y_{i} q_{i}$.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation.
To calculate p / q, start with y_{0} close to $1 / q$. Then
$p_{1} / q_{1}=\left(p y_{0}\right) /\left(q y_{0}\right)$ where q_{1} is close to one.
To move the denominator closer to one, let $q_{1}=1+e_{1}$. Then let $p_{2} / q_{2}=\left(p_{1} y_{1}\right) /\left(q_{1} y_{1}\right)$ where $y_{1}=1-e_{1}$. So $p_{2}=p_{1}\left(1-e_{1}\right)$ and $q_{2}=\left(1+e_{1}\right)\left(1-e_{1}\right)=1-e_{1}^{2}$. Eliminating e_{1} we can write $y_{1}=2-q_{1}$.

Algorithm: given p_{i} and q_{i} where $q_{i} \approx 1$, let $y_{i}=2-q_{i}$ then $p_{i+1}=y_{i} p_{i}$ and $q_{i+1}=y_{i} q_{i}$.

Identical to Newton with $p_{i}=x_{i-1}$ and $q_{i}=a x_{i-1}$. So why use it?
The two multiplications can be done in parallel, essentially doubling the speed!

EDSAC's method

EDSAC was the first stored program controlled electronic computer (1949).

EDSAC's method

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q}=\frac{p_{1}}{q_{1}}=\frac{p y_{0}}{q y_{0}}$ as before.

EDSAC's method

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q}=\frac{p_{1}}{q_{1}}=\frac{p y_{0}}{q y_{0}}$ as before.
Let $c_{1}=1-q y_{0}$, so $\frac{p}{q}=\frac{p_{1}}{1-c_{1}}$

EDSAC's method

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q}=\frac{p_{1}}{q_{1}}=\frac{p y_{0}}{q y_{0}}$ as before.
Let $c_{1}=1-q y_{0}$, so $\frac{p}{q}=\frac{p_{1}}{1-c_{1}} \cdot \frac{1+c_{1}}{1+c_{1}}=\frac{p_{1}\left(1+c_{1}\right)}{1-c_{1}^{2}}=\frac{p_{2}}{1-c_{2}}$
where $p_{2}=p_{1}\left(1+c_{1}\right)$ and $c_{2}=c_{1}^{2}$.

EDSAC's method

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q}=\frac{p_{1}}{q_{1}}=\frac{p y_{0}}{q y_{0}}$ as before.
Let $c_{1}=1-q y_{0}$, so $\frac{p}{q}=\frac{p_{1}}{1-c_{1}} \cdot \frac{1+c_{1}}{1+c_{1}}=\frac{p_{1}\left(1+c_{1}\right)}{1-c_{1}^{2}}=\frac{p_{2}}{1-c_{2}}$
where $p_{2}=p_{1}\left(1+c_{1}\right)$ and $c_{2}=c_{1}^{2}$.
In general, $p_{i+1}=\left(1+c_{i}\right) p_{i}$ and $c_{i+1}=c_{i}^{2}$ with $c_{1}=1-q y_{0}$.

Conclusion

So, just how would you like to divide now?

