So You Think You Can Divide?

A History of Division

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

October 10, 2011

"There is a story of a German merchant of the fifteenth century, which I have not succeeded in authenticating, but it is so characteristic of the situation then existing that I cannot resist the temptation of telling it. It appears that the merchant had a son whom he desired to give an advanced commercial education. He appealed to a prominent professor of a university for advice as to where he should send his son. The reply was that if the mathematical curriculum of the young man was to be confined to adding and subtracting, he perhaps could obtain the instruction in a German university; but the art of multiplying and dividing, he continued, had been greatly developed in Italy, which in his opinion was the only country where such advanced instruction could be obtained."

Ancient	Techniques

Outline

- Ancient Techniques
 - Definitions
 - Successive Subtraction
 - Doubling
 - Geometry
- Positional Notation
 - Positional Definition
 - Galley or Scratch
 - Factor
 - Napier's Rods and the "Modern" method
 - Short Division and Genaille's Rods
 - Double Division

- Division Yielding Decimals
 - Integer Division
 - Modern Division
 - Multiply by Reciprocal
 - Iteration Newton
 - Iteration Goldschmidt
 - Iteration EDSAC

Ancient	Techniques
0000	

Division Yielding Decimals

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

Ancient	Techniques
0000	

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b = q$ r r.

Ancient	Techniques
0000	

Division Yielding Decimals

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b = q$ r r.

For rationals and reals, if $a = b \times c$ then c = a/b.

Ancient	Techniques
0000	

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b = q$ r r.

For rationals and reals, if $a = b \times c$ then c = a/b.

Note: $\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$, division is multiplication by reciprocal.

Ancient	Techniques
0000	

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b = q$ r r.

For rationals and reals, if $a = b \times c$ then c = a/b.

Note: $\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$, division is multiplication by reciprocal. a/b takes a whole, divides it into *b* parts, chooses *a*. Dividing each part into *d* smaller parts means a/b = (ad)/(bd).

Ancient	Techniques
0000	

Definitions

If a and b are natural numbers and a = qb + r, where q is a nonnegative integer and r is an integer satisfying $0 \le r < b$, then q is the quotient and r is the remainder after integer division. Also, a is the dividend and b is the divisor.

We often write $a \div b = q$ r r.

For rationals and reals, if $a = b \times c$ then c = a/b.

Note: $\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$, division is multiplication by reciprocal. a/b takes a whole, divides it into *b* parts, chooses *a*. Dividing each part into *d* smaller parts means a/b = (ad)/(bd). So $\frac{a/b}{c/d} = \frac{(ad)/(bd)}{(bc)/(bd)} = \frac{ad}{bc}$ in terms of the smaller pieces. Ancient Techniques

Positional Notation

Division Yielding Decimals

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, 100 - 12 = 88, 88 - 12 = 76, 76 - 12 = 64, 64 - 12 = 52, 52 - 12 = 40, 40 - 12 = 28, 28 - 12 = 16, 16 - 12 = 4,

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, 100 - 12 = 88, 88 - 12 = 76, 76 - 12 = 64, 64 - 12 = 52, 52 - 12 = 40, 40 - 12 = 28, 28 - 12 = 16, 16 - 12 = 4, so $100 = 8 \times 12 + 4$ or $100 \div 12 = 8$ r 4.

Successive Subtraction

As multiplication (of natural numbers) is successive addition, division is successive subtraction.

For example, 100 - 12 = 88, 88 - 12 = 76, 76 - 12 = 64, 64 - 12 = 52, 52 - 12 = 40, 40 - 12 = 28, 28 - 12 = 16, 16 - 12 = 4, so $100 = 8 \times 12 + 4$ or $100 \div 12 = 8$ r 4.

 $\begin{array}{l} \text{Or, } 100 = 0 \cdot 12 + 100 = 1 \cdot 12 + 88 = 2 \cdot 12 + 76 = 3 \cdot 12 + 64 = \\ 4 \cdot 12 + 52 = 5 \cdot 12 + 40 = 6 \cdot 12 + 28 = 7 \cdot 12 + 16 = 8 \cdot 12 + 4. \end{array}$

Division Yielding Decimals

Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

For example, 100/12 again:

- 1 12
- 2 24
- 4 48
- 8 96


```
For example, 100/12 again:

1 12

2 24

4 48

8 96 100 - 96 = 4

So 100/12 = 8 r 4,
```


For example, $100/12$ again:	and 1652/23:
1 12	1 23
2 24	2 46
4 48	4 92
8 96 100 - 96 = 4	8 184
So $100/12 = 8$ r 4,	16 368
	32 736
	64 1472

For example, 100/12 again:	and 1652/23:
1 12	1 23
2 24	2 46
4 48	4 92
8 96 100 - 96 = 4	8 184
So $100/12 = 8 r 4$,	16 368
	32 736
	64 1472 1652 - 1472 = 180

Division Yielding Decimals

Successive Doubling – Egyptian

For example, $100/12$ again:	and	1652/2	3:
1 12	1	23	
2 24	2	46	
4 48	4	92	180 - 92 = 88
8 96 100 - 96 = 4	8	184	
So $100/12 = 8$ r 4,	16	368	
	32	736	
	64	1472	1652 - 1472 = 180

Successive Doubling – Egyptian

For example, $100/12$ again:	and	1652/2	3:
1 12	1	23	
2 24	2	46	88 - 46 = 42
4 48	4	92	180 - 92 = 88
8 96 100 - 96 = 4	8	184	
So $100/12 = 8 r 4$,	16	368	
	32	736	
	64	1472	1652 - 1472 = 180

Division Yielding Decimals

Successive Doubling – Egyptian

```
For example, 100/12 again:

1 12

2 24

4 48

8 96 100 - 96 = 4

So 100/12 = 8 r 4,
```

1652/2	3:
23	42 - 23 = 19
46	88 - 46 = 42
92	180 - 92 = 88
184	
368	
736	
1472	1652 - 1472 = 180
	23 46 92 184 368 736

Successive Doubling – Egyptian

Successively doubling the divisor gives powers of two of the divisor to subtract.

```
For example, 100/12 again:

1 12

2 24

4 48

8 96 100 - 96 = 4

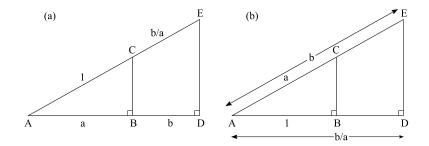
So 100/12 = 8 r 4,
```

and 1652/23: 23 42 - 23 = 191 2 46 88 - 46 = 424 92 180 - 92 = 888 184 16 368 32 736 $64 \quad 1472 \quad 1652 - 1472 = 180$ 1 + 2 + 4 + 64 = 71, so 1652/23 = 71 r 19.

Ancient	Techniques
0000	

Division Yielding Decimals

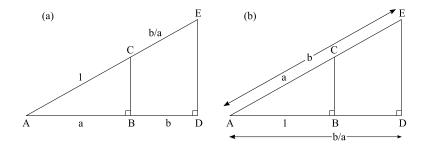
Geometry



Ancient	Techniques
0000	

Division Yielding Decimals

Geometry

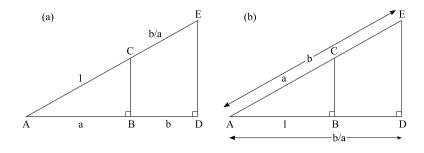


(a): a < 1 so a/1 = (a + b)/(1 + CE), a + aCE = a + b, CE = b/a.

Ancient	Techniques
0000	

Division Yielding Decimals

Geometry



(a):
$$a < 1$$
 so $a/1 = (a + b)/(1 + CE)$, $a + aCE = a + b$, $CE = b/a$.

(b): a > 1 so a/1 = b/AD, AD = b/a.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

1652/23: $10 \times 23 = 230$, $100 \times 23 = 2300$, two digit divisor.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

1652/23: $10 \times 23 = 230$, $100 \times 23 = 2300$, two digit divisor. $1 \times 23 = 23$, $2 \times 23 = 46$, $3 \times 23 = 69$, $4 \times 23 = 92$, $5 \times 23 = 115$, $6 \times 23 = 138$, $7 \times 23 = 161$, $8 \times 23 = 184$, $9 \times 23 = 207$.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

1652/23: $10 \times 23 = 230$, $100 \times 23 = 2300$, two digit divisor. $1 \times 23 = 23$, $2 \times 23 = 46$, $3 \times 23 = 69$, $4 \times 23 = 92$, $5 \times 23 = 115$, $6 \times 23 = 138$, $7 \times 23 = 161$, $8 \times 23 = 184$, $9 \times 23 = 207$. Tens digit: $1652 - 70 \times 23 = 1652 - 1610 = 42$.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

 $1652/23: 10 \times 23 = 230, 100 \times 23 = 2300$, two digit divisor. $1 \times 23 = 23, 2 \times 23 = 46, 3 \times 23 = 69, 4 \times 23 = 92, 5 \times 23 = 115,$ $6 \times 23 = 138, 7 \times 23 = 161, 8 \times 23 = 184, 9 \times 23 = 207.$ Tens digit: $1652 - 70 \times 23 = 1652 - 1610 = 42$. Ones digit: $42 - 1 \times 23 = 42 - 23 = 19$. 1652/23 = 71 r 19 as before.

Multiplying by ten just shifts the digits, so we just need a table of one to nine times the divisor.

100/12: $1 \times 12 = 12$, $10 \times 12 = 120$, so expect a one digit divisor. $1 \times 12 = 12$, $2 \times 12 = 24$, $3 \times 12 = 36$, $4 \times 12 = 48$, $5 \times 12 = 60$, $6 \times 12 = 72$, $7 \times 12 = 84$, $8 \times 12 = 96$, $9 \times 12 = 108$. $100 - 8 \times 12 = 100 - 96 = 4$ as before.

 $1652/23: 10 \times 23 = 230, 100 \times 23 = 2300$, two digit divisor. $1 \times 23 = 23, 2 \times 23 = 46, 3 \times 23 = 69, 4 \times 23 = 92, 5 \times 23 = 115,$ $6 \times 23 = 138, 7 \times 23 = 161, 8 \times 23 = 184, 9 \times 23 = 207.$ Tens digit: $1652 - 70 \times 23 = 1652 - 1610 = 42.$ Ones digit: $42 - 1 \times 23 = 42 - 23 = 19.$ 1652/23 = 71 r 19 as before. It would be nice to set out the computation more cleanly.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

Galley or Scratch Division

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 4883/7: 4 8 8 3 7

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 4883/7: 4 8 8 3 7 7

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

Т

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

9 5 9

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

9 5 9 2 4 7

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$. 1 ¢9592 A7

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$. 1 9 5 9 7

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 =$ 94, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times$ 5 = 235, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 = 94$, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times 5 = 235$, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 = 94$, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times 5 = 235$, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 = 94$, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times 5 = 235$, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 = 94$, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times 5 = 235$, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Originally developed by the Hindus, most popular method in Europe until the end of the 17th century. Successively subtract multiples of the divisor appropriately shifted.

e.g. 9592/47: $47 \times 1 = 47$, $47 \times 2 = 94$, $47 \times 3 = 141$, $47 \times 4 = 188$, $47 \times 5 = 235$, $47 \times 6 = 282$, $47 \times 7 = 329$, $47 \times 8 = 376$, $47 \times 9 = 423$.

Ancient	Techniques

Division Yielding Decimals

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

Division Yielding Decimals

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

E.g. $24286 \div 168 = 24286 \div (3 \times 7 \times 8)$.

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

E.g. $24286 \div 168 = 24286 \div (3 \times 7 \times 8)$.

 $24\,286 = 8095 \times 3 + 1$, $8095 = 1156 \times 7 + 3$, $1156 = 144 \times 8 + 4$.

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

E.g.
$$24286 \div 168 = 24286 \div (3 \times 7 \times 8)$$
.

 $24\,286 = 8095 \times 3 + 1$, $8095 = 1156 \times 7 + 3$, $1156 = 144 \times 8 + 4$.

Working backwards, $8095 = (144 \times 8 + 4) \times 7 + 3 = 144 \times 8 \times 7 + 4 \times 7 + 3 = 144 \times 56 + 31$,

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

E.g.
$$24286 \div 168 = 24286 \div (3 \times 7 \times 8)$$
.

 $24\,286 = 8095 \times 3 + 1$, $8095 = 1156 \times 7 + 3$, $1156 = 144 \times 8 + 4$.

Working backwards, $8095 = (144 \times 8 + 4) \times 7 + 3 = 144 \times 8 \times 7$ +4 × 7 + 3 = 144 × 56 + 31, 24 286 = (144 + 31) × 3 + 1 = 144 × 56 × 3 + 31 × 31 + 1 = 144 × 168 + 94.

Factor Division

Fibonacci suggested splitting the divisor if possible: $a \div (bc) = (a \div b) \div c$. Galley division is easier when the divisor is small, particularly single digits.

E.g.
$$24286 \div 168 = 24286 \div (3 \times 7 \times 8)$$
.

 $24\,286 = 8095 \times 3 + 1$, $8095 = 1156 \times 7 + 3$, $1156 = 144 \times 8 + 4$.

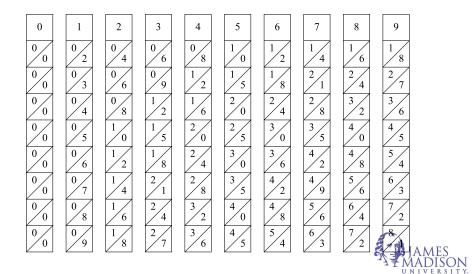
Working backwards, $8095 = (144 \times 8 + 4) \times 7 + 3 = 144 \times 8 \times 7 + 4 \times 7 + 3 = 144 \times 56 + 31$, $24\,286 = (144 + 31) \times 3 + 1 = 144 \times 56 \times 3 + 31 \times 31 + 1 = 144 \times 168 + 94$.

But, finding factors means more division problems, factors may not be small, and multiple single digit divisions aren't easier than a single division.

Positional Notation

Division Yielding Decimals

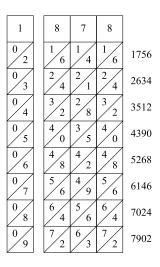
Napier's Rods



Positional Notation

Division Yielding Decimals

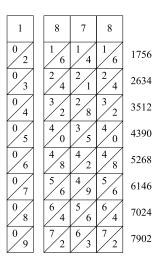
Napier's Rods, Divisor Multiples, the Modern Method



Positional Notation

Division Yielding Decimals

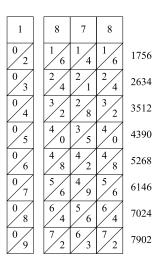
Napier's Rods, Divisor Multiples, the Modern Method



Positional Notation

Division Yielding Decimals

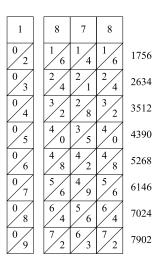
Napier's Rods, Divisor Multiples, the Modern Method



Positional Notation

Division Yielding Decimals

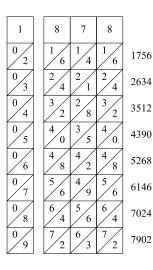
Napier's Rods, Divisor Multiples, the Modern Method



Positional Notation

Division Yielding Decimals

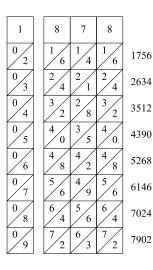
Napier's Rods, Divisor Multiples, the Modern Method

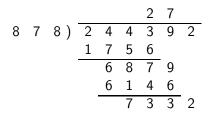


Positional Notation

Division Yielding Decimals

Napier's Rods, Divisor Multiples, the Modern Method

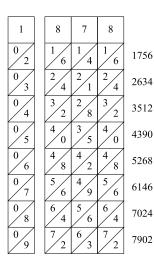




Positional Notation

Division Yielding Decimals

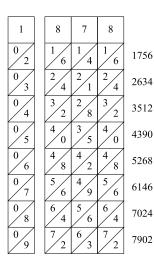
Napier's Rods, Divisor Multiples, the Modern Method

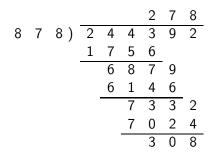


Positional Notation

Division Yielding Decimals

Napier's Rods, Divisor Multiples, the Modern Method





Division Yielding Decimals

Other Layouts

English speaking world, China, Japan, India: 697 7)4883 42 68 63 53 49 4

Positional Notation

Division Yielding Decimals

Other Layouts

English speaking world, China,	Much of Latin America:
Japan, India:	4 8 8 3 ÷ 7 =
697	4 2
7)4883	68
4 2	63
68	53
63	49
53	4
49	
4	

7 = 697

Positional Notation

Division Yielding Decimals

Other Layouts

English speaking world, China, Japan, India:						
			6	9	7	
7)	4	8	8	3	
		4	2			
			6	8		
			6	3		
				5	3	
				4	9	
					4	

Much of Latin America:	Mexico:		
	697		
$4 8 8 3 \div 7 = 697$	7)4883		
4 2	68		
6 8	53		
63	4		
5 3			
49			
4			

Positional Notation

Division Yielding Decimals

More Layouts

Spain, Italy, France, Portugal, Romania, Russia:

no | before quotient.

Positional Notation

Division Yielding Decimals

More Layouts

Spain, Italy, France, France: Portugal, Romania, 837 8 Russia: 4 2 697 48 -42 6 8 837 697 6 3 6 8 53 - 6 3 53 49 No decimals.

Brazil and Colombia, no | before quotient.

Positional Notation

Division Yielding Decimals

More Layouts

Spain, Italy, France, Portugal, Romania, Russia:

837

53

Brazil and Colombia, no | before quotient.

697

8

6 8

- 6 3

 $\begin{array}{c}
4 & 8 & 8 & 3 \\
- & 4 & 2 \\
\hline
& 6 & 8 \\
- & 6 & 3 \\
\hline
& 5 & 3 \\
& - & 4 & 9 \\
\hline
& 5 & 1 \\
\hline
& 6 & 1 \\
\hline
& 6 & 1 \\
\hline
& 7 & 1 \\
\hline
&$

France:

Germany, Norway, Poland, Croatia, Slovenia, Hungary, Czech Republic, Slovakia, Bulgaria:

$$4 883: 7 = 697$$

$$- 4 2$$

$$- 63$$

$$- 63$$

$$- 49$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

$$4 9$$

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number.

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number.

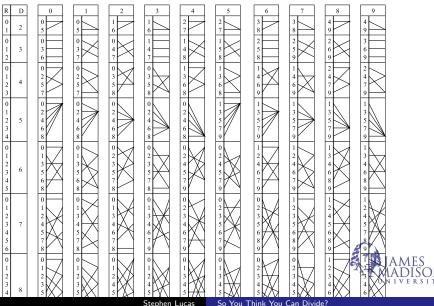
With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number. For compactness, carry the single digit to the left as a subscript – short division, as opposed to traditional long division.

With single digit divisors, each step will involve at most two digit numbers, and subtraction leaves a one digit number. For compactness, carry the single digit to the left as a subscript – short division, as opposed to traditional long division.

Positional Notation

Division Yielding Decimals

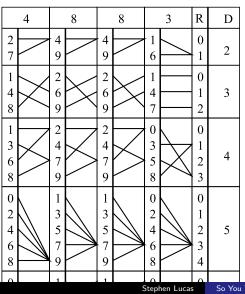
Genaille's Rods for Short Division



Positional Notation

Division Yielding Decimals

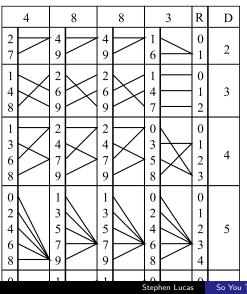
Example: 4883÷?



Positional Notation

Division Yielding Decimals

Example: 4883÷?

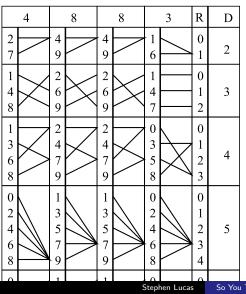


So
$$4883 \div 2 = 2441 \text{ r} 1$$
,

Positional Notation

Division Yielding Decimals

Example: 4883÷?



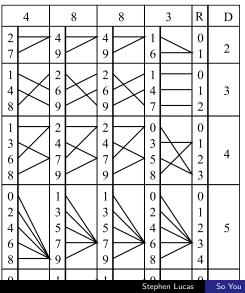
So

$$4883 \div 2 = 2441 \text{ r} 1$$
,
 $4883 \div 3 = 1627 \text{ r} 2$

Positional Notation

Division Yielding Decimals

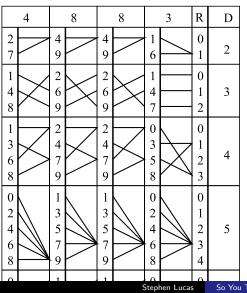
Example: 4883÷?



Positional Notation

Division Yielding Decimals

Example: 4883÷?



So

$$4883 \div 2 = 2441 \text{ r } 1$$
,
 $4883 \div 3 = 1627 \text{ r } 2$,
 $4883 \div 4 = 1220 \text{ r } 3$,
 $4883 \div 5 = 976 \text{ r } 3$,
and so on.

Positional Notation

Division Yielding Decimals

Double Division

Chunking (UK, late 1990's) takes away "easy" (100, 10, 5, 2 etc.) multiples of the divisor.

Double Division

Positional Notation

Division Yielding Decimals

Double Division

8 3 7 8

Positional Notation

Division Yielding Decimals

Double Division

Ancient	Techniques

Positional Notation

Division Yielding Decimals

Double Division

Positional Notation

Division Yielding Decimals

Double Division

Positional Notation

Division Yielding Decimals

Double Division

Positional Notation

Division Yielding Decimals

Double Division

$$1_{\times}$$

 2_{\times}
 4_{\times}
 8_{\times}

-

Positional Notation

Division Yielding Decimals

Double Division

7

14 28 56

$$1_{\times}$$

 2_{\times}
 4_{\times}
 8_{\times}

8 8 3

4

Positional Notation

400

Division Yielding Decimals

Double Division

7

14

28 56

$$1_{\times}$$

 2_{\times}
 4_{\times}
 8_{\times}

8 8 3

8 0 0

0

Positional Notation

Division Yielding Decimals

Double Division

5

$$1_{\times}$$

 2_{\times} 1
 4_{\times} 2
 8_{\times} 5

8 8 3

Positional Notation

Division Yielding Decimals

Double Division

$$1_{\times}$$
 1_{\times}
 2_{\times} 1_{\times}
 4_{\times} 28
 8_{\times} 56

8 8 3

Positional Notation

Division Yielding Decimals

Another Example

214) 7 3 4 8 5

Ancient	Techniques

Positional Notation

Division Yielding Decimals

Positional Notation

Division Yielding Decimals

Positional Notation

Division Yielding Decimals

$1_{ imes}$	214)	7	3	4	8	5	
$2_{ imes}$	428		4	2	8	0	0	200
4_{\times}	856		3	0	6	8	5	
8×	1712		2	1	4	0	0	100
				9	2	8	5	

Positional Notation

Division Yielding Decimals

$1_{ imes}$	214)	7	3	4	8	5	-
2_{\times}		,	4	2	8	0	0	200
4_{\times}	856		3	0	6	8	5	•
8×	1712		2	1	4	0	0	100
				9	2	8	5	•
				8	5	6	0	40
					7	2	5	-

Positional Notation

Division Yielding Decimals

$1_{ imes}$	214)	7	3	4	8	5	•
2_{\times}	428	,	4	2	8	0	0	200
4_{\times}	856		3	0	6	8	5	
8×	1712		2	1	4	0	0	100
				9	2	8	5	
				8	5	6	0	40
					7	2	5	
					4	2	8	2
					2	9	7	

Positional Notation

Division Yielding Decimals

$1_{ imes}$	214)	7	3	4	8	5	
2_{\times}	428	,	4	2	8	0	0	200
4_{\times}	856		3	0	6	8	5	
8×	1712		2	1	4	0	0	100
				9	2	8	5	
				8	5	6	0	40
					7	2	5	
					4	2	8	2
					2	9	7	
					2	1	4	1
						8	3	

Positional Notation

Division Yielding Decimals

$1_{ imes}$	214)	7	3	4	8	5	
2_{\times}^{-1}	428)	4	2	8	0	0	200
4_{\times}	856		3	0	6	8	5	
8×	1712		2	1	4	0	0	100
				9	2	8	5	
				8	5	6	0	40
					7	2	5	
					4	2	8	2
					2	9	7	
					2	1	4	1
						8	3	343

Positional Notation

Division Yielding Decimals

Using Integer Division

Given that $(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$, successively multiply by ten, stop if repeated or zero remainder.

Positional Notation

Division Yielding Decimals

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8}$$

Positional Notation

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8} = a_{-1} + \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$$

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8} = a_{-1} + \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$$
,
so $a_{-1} = 6$ and $\frac{7}{8} = \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$.

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8} = a_{-1} + \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$$
,
so $a_{-1} = 6$ and $\frac{7}{8} = \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$.

Times 10: $10 \times \frac{7}{8} = \frac{70}{8} = 8\frac{3}{4}$

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8} = a_{-1} + \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$$
,
so $a_{-1} = 6$ and $\frac{7}{8} = \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$.

Times 10:
$$10 \times \frac{7}{8} = \frac{70}{8} = 8\frac{3}{4} = a_{-2} + \frac{a_{-3}}{10} + \frac{a_{-4}}{10^2} + \frac{a_{-5}}{10^3} + \cdots$$

UNIVERSITY

Using Integer Division

Given that
$$(p < q) \frac{p}{q} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
, successively multiply by ten, stop if repeated or zero remainder.

For example,
$$\frac{11}{16} = \frac{a_{-1}}{10} + \frac{a_{-2}}{10^2} + \frac{a_{-3}}{10^3} + \cdots$$
.

Times 10:
$$10 \times \frac{11}{16} = \frac{110}{16} = 6\frac{7}{8} = a_{-1} + \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$$
,
so $a_{-1} = 6$ and $\frac{7}{8} = \frac{a_{-2}}{10} + \frac{a_{-3}}{10^2} + \frac{a_{-4}}{10^3} + \cdots$.

Times 10:
$$10 \times \frac{7}{8} = \frac{70}{8} = 8\frac{3}{4} = a_{-2} + \frac{a_{-3}}{10} + \frac{a_{-4}}{10^2} + \frac{a_{-5}}{10^3} + \cdots$$
,
so $a_{-2} = 8$ and $\frac{3}{4} = \frac{a_{-3}}{10} + \frac{a_{-4}}{10^2} + \frac{a_{-5}}{10^3} + \cdots$.

Positional Notation

Division Yielding Decimals

Times 10:
$$10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2}$$

Positional Notation

Division Yielding Decimals

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$

Positional Notation

Division Yielding Decimals ○●○○○○○○○

Integer Division Example, continued

Times 10: $10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$, so $a_{-3} = 7$ and $\frac{1}{2} = \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$.

Positional Notation

Division Yielding Decimals

Times 10:
$$10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$$
,
so $a_{-3} = 7$ and $\frac{1}{2} = \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$.
Times 10: $10 \times \frac{1}{2} = 5$

Positional Notation

Division Yielding Decimals

Times 10:
$$10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$$
,
so $a_{-3} = 7$ and $\frac{1}{2} = \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$.
Times 10: $10 \times \frac{1}{2} = 5 = a_{-4} + \frac{a_{-5}}{10} + \frac{a_{-6}}{10^2} + \frac{a_{-7}}{10^3} + \cdots$,

Positional Notation

Division Yielding Decimals

Times 10:
$$10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$$
,
so $a_{-3} = 7$ and $\frac{1}{2} = \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$.

Times 10:
$$10 \times \frac{1}{2} = 5 = a_{-4} + \frac{a_{-5}}{10} + \frac{a_{-6}}{10^2} + \frac{a_{-7}}{10^3} + \cdots$$
,
so $a_{-4} = 5$ and $a_{-5} = a_{-6} = \cdots = 0$.

Positional Notation

Division Yielding Decimals

Integer Division Example, continued

Times 10:
$$10 \times \frac{3}{4} = \frac{30}{4} = 7\frac{1}{2} = a_{-3} + \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$$
,
so $a_{-3} = 7$ and $\frac{1}{2} = \frac{a_{-4}}{10} + \frac{a_{-5}}{10^2} + \frac{a_{-6}}{10^3} + \cdots$.

Times 10:
$$10 \times \frac{1}{2} = 5 = a_{-4} + \frac{a_{-5}}{10} + \frac{a_{-6}}{10^2} + \frac{a_{-7}}{10^3} + \cdots$$
,
so $a_{-4} = 5$ and $a_{-5} = a_{-6} = \cdots = 0$.

Of course, process could also be periodic.

Positional Notation

Division Yielding Decimals

Decimal Long Division

Each of the steps of the previous example (11/16) is equivalent to one step in dividing 110 000 by 16, just shifted to deal with the position of the decimal. So we can use standard long division with a decimal point.

Positional Notation

Division Yielding Decimals

Decimal Long Division

						2	2		3	1	6	1	
9	9	0)	2	2	0	9	3		0	0	0	0	• • •
			1	9	8	0							
				2	2	9	3						
				1	9	8	0						
					3	1	3	•	0				
					2	9	7		0				
						1	6		0	0			
							9	•	9	0			
							6		1	0	0		
							5	•	9	4	0		
									1	6	0	0	
										9	9	0	
											6	1	

Each of the steps of the previous example (11/16) is equivalent to one step in dividing 110 000 by 16, just shifted to deal with the position of the decimal. So we can use standard long division with a decimal point. For example, 22093/990 = 22.31616161616....

.

Positional Notation

Division Yielding Decimals

Multiply by Reciprocal

Since $ab = a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

Positional Notation

Division Yielding Decimals

Multiply by Reciprocal

Since $ab = a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example, $\frac{13}{8} = 13 \times 0.125 = 1.625$.

Multiply by Reciprocal

Since $ab = a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example,
$$\frac{13}{8} = 13 \times 0.125 = 1.625$$
.

But what about $13/6 = 13 \times 0.166666 \dots$?

Multiply by Reciprocal

Since $ab = a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example,
$$\frac{13}{8} = 13 \times 0.125 = 1.625$$
.

But what about $13/6 = 13 \times 0.166666 \dots$? The best we can do is approximate: $13.6 \approx 13 \times 0.166667 = 2.1666671$, which should be compared to the exact $2.166666 \dots$

Multiply by Reciprocal

Since $ab = a \times \frac{1}{b}$, we can divide by multiplying if we have a table of reciprocals.

For example,
$$\frac{13}{8} = 13 \times 0.125 = 1.625$$
.

But what about $13/6 = 13 \times 0.166666 \dots$? The best we can do is approximate: $13.6 \approx 13 \times 0.166667 = 2.1666671$, which should be compared to the exact $2.166666 \dots$

This technique was used by the Ancient Babylonians in base sixty – which is a highly composite number, so most reciprocals have a finite radix sixty representation.

Division Yielding Decimals

Two mathematicians are working on a proof.



Two mathematicians are working on a proof.

Mathematician #1: Wow! This is turning into a really long and complex proof! We've almost run out of letters to name our variables. We should start subscripting them.

Two mathematicians are working on a proof.

Mathematician #1: Wow! This is turning into a really long and complex proof! We've almost run out of letters to name our variables. We should start subscripting them.

Mathematician #2: Y-naught.

Positional Notation

Division Yielding Decimals

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

Positional Notation

Division Yielding Decimals

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate 1/a, use Newton's method to solve $f(x) = \frac{1}{x} - a = 0$, which leads to $x_{n+1} = x_n(2 - ax_n)$.

Positional Notation

Division Yielding Decimals

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate 1/a, use Newton's method to solve $f(x) = \frac{1}{x} - a = 0$, which leads to $x_{n+1} = x_n(2 - ax_n)$.

For example
$$1/7$$
 with $x_0 = 0.2$,
 $x_1 = x_0(2 - 7 \times x_0) = 0.2(2 - 7 \times 0.2) = 0.12$,
 $x_2 = x_1(2 - 7 \times x_1) = 0.12(2 - 7 \times 0.12) = 0.1392$,
 $x_3 = x_2(2 - 7 \times x_2) = 0.1392(2 - 7 \times 0.1392) = 0.14276352$,
 $x_4 = x_3(2 - 7 \times x_3) = 0.14276352(2 - 7 \times 0.14276352) = 0.1428570815004672$. True is 0.142857142857143 .

Positional Notation

Division Yielding Decimals

Newton's Iteration

Long division is much slower than multiplication. If only division could be rewritten in terms of multiplication...

To calculate 1/a, use Newton's method to solve $f(x) = \frac{1}{x} - a = 0$, which leads to $x_{n+1} = x_n(2 - ax_n)$.

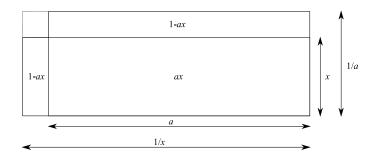
For example
$$1/7$$
 with $x_0 = 0.2$,
 $x_1 = x_0(2 - 7 \times x_0) = 0.2(2 - 7 \times 0.2) = 0.12$,
 $x_2 = x_1(2 - 7 \times x_1) = 0.12(2 - 7 \times 0.12) = 0.1392$,
 $x_3 = x_2(2 - 7 \times x_2) = 0.1392(2 - 7 \times 0.1392) = 0.14276352$,
 $x_4 = x_3(2 - 7 \times x_3) = 0.14276352(2 - 7 \times 0.14276352) = 0.1428570815004672$. True is 0.142857142857143 .

Accuracy doubles at every step, given a close enough initial guess.

Positional Notation

Division Yielding Decimals

Graphical Proof



If $x \approx 1/a$ and we ignore the top left rectangle, then $(1/x) \cdot (1/a) \approx ax + 2(1 - ax)$, $1/a \approx x(ax + 2 - 2ax)$, or $1/a \approx x(2 - ax)$.

Division Yielding Decimals

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation. To calculate p/q, start with y_0 close to 1/q. Then $p_1/q_1 = (py_0)/(qy_0)$ where q_1 is close to one.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation. To calculate p/q, start with y_0 close to 1/q. Then $p_1/q_1 = (py_0)/(qy_0)$ where q_1 is close to one.

To move the denominator closer to one, let $q_1 = 1 + e_1$. Then let $p_2/q_2 = (p_1y_1)/(q_1y_1)$ where $y_1 = 1 - e_1$. So $p_2 = p_1(1 - e_1)$ and $q_2 = (1 + e_1)(1 - e_1) = 1 - e_1^2$. Eliminating e_1 we can write $y_1 = 2 - q_1$.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation. To calculate p/q, start with y_0 close to 1/q. Then $p_1/q_1 = (py_0)/(qy_0)$ where q_1 is close to one.

To move the denominator closer to one, let $q_1 = 1 + e_1$. Then let $p_2/q_2 = (p_1y_1)/(q_1y_1)$ where $y_1 = 1 - e_1$. So $p_2 = p_1(1 - e_1)$ and $q_2 = (1 + e_1)(1 - e_1) = 1 - e_1^2$. Eliminating e_1 we can write $y_1 = 2 - q_1$.

Algorithm: given p_i and q_i where $q_i \approx 1$, let $y_i = 2 - q_i$ then $p_{i+1} = y_i p_i$ and $q_{i+1} = y_i q_i$.

Goldschmidt's Iteration

Robert Goldschmidt, 1964 M.I.T. Masters dissertation. To calculate p/q, start with y_0 close to 1/q. Then $p_1/q_1 = (py_0)/(qy_0)$ where q_1 is close to one.

To move the denominator closer to one, let $q_1 = 1 + e_1$. Then let $p_2/q_2 = (p_1y_1)/(q_1y_1)$ where $y_1 = 1 - e_1$. So $p_2 = p_1(1 - e_1)$ and $q_2 = (1 + e_1)(1 - e_1) = 1 - e_1^2$. Eliminating e_1 we can write $y_1 = 2 - q_1$.

Algorithm: given p_i and q_i where $q_i \approx 1$, let $y_i = 2 - q_i$ then $p_{i+1} = y_i p_i$ and $q_{i+1} = y_i q_i$.

Identical to Newton with $p_i = x_{i-1}$ and $q_i = ax_{i-1}$. So why use it? The two multiplications can be done in parallel, essentially doubling the speed!

EDSAC was the first stored program controlled electronic computer (1949).

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q} = \frac{p_1}{q_1} = \frac{py_0}{qy_0}$ as before.

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q} = \frac{p_1}{q_1} = \frac{py_0}{qy_0}$ as before.

Let
$$c_1 = 1 - qy_0$$
, so $\frac{p}{q} = \frac{p_1}{1 - c_1}$

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q} = \frac{p_1}{q_1} = \frac{py_0}{qy_0}$ as before. Let $c_1 = 1 - qy_0$, so $\frac{p}{q} = \frac{p_1}{1 - c_1} \cdot \frac{1 + c_1}{1 + c_1} = \frac{p_1(1 + c_1)}{1 - c_1^2} = \frac{p_2}{1 - c_2}$ where $p_2 = p_1(1 + c_1)$ and $c_2 = c_1^2$.

EDSAC was the first stored program controlled electronic computer (1949).

Predating Goldschmidt: start with $\frac{p}{q} = \frac{p_1}{q_1} = \frac{py_0}{qy_0}$ as before.

Let
$$c_1 = 1 - qy_0$$
, so $\frac{p}{q} = \frac{p_1}{1 - c_1} \cdot \frac{1 + c_1}{1 + c_1} = \frac{p_1(1 + c_1)}{1 - c_1^2} = \frac{p_2}{1 - c_2}$
where $p_2 = p_1(1 + c_1)$ and $c_2 = c_1^2$.

In general, $p_{i+1} = (1 + c_i)p_i$ and $c_{i+1} = c_i^2$ with $c_1 = 1 - qy_0$.

Conclusion

So, just how would you like to divide now?

