Who Wins When Playing Dreidel

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

August 3 2015 MOVES Conference

Introduction	Markov Chains	ThePot	Two Player Game	More Players
●०००	000	000	00000	
Outline				

- What is Dreidel?
- Past Work
- Markov Chains
- The Pot
- Two Player
- Three Player

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dreidel?				

A dreidel is a four sided top, whose sides are labelled with the Hebrew letters Nun (\mathcal{N}) , Gimel (\mathcal{G}) , Hay (\mathcal{H}) and Shin (\mathcal{S}) .

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	eidel?			

A dreidel is a four sided top, whose sides are labelled with the Hebrew letters Nun (\mathcal{N}), Gimel (\mathcal{G}), Hay (\mathcal{H}) and Shin (\mathcal{S}). Each side is equally likely.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○●○○	000	000	00000	
What is Dre	eidel?			

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	idel?			

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○●○○	000	000	00000	
What is Dre	eidel?			

• \mathcal{N} : nothing happens, pass the dreidel.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	eidel?			

- \mathcal{N} : nothing happens, pass the dreidel.
- \mathcal{G} : win the pot, everyone contributes one to restart the pot.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	eidel?			

- \mathcal{N} : nothing happens, pass the dreidel.
- \mathcal{G} : win the pot, everyone contributes one to restart the pot.
- \mathcal{H} : win half the pot (rounded up).

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	eidel?			

- \mathcal{N} : nothing happens, pass the dreidel.
- \mathcal{G} : win the pot, everyone contributes one to restart the pot.
- \mathcal{H} : win half the pot (rounded up).
- \mathcal{S} : add one to the pot.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
What is Dre	eidel?			

- \mathcal{N} : nothing happens, pass the dreidel.
- \mathcal{G} : win the pot, everyone contributes one to restart the pot.
- \mathcal{H} : win half the pot (rounded up).
- \mathcal{S} : add one to the pot.

Players drop out if they have to give a counter owning none (or a given number of rounds or Gimels).

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○●○	000	000	00000	
History of D	Dreidel			

Jews have been playing the game of dreidel for centuries during the festival of Chanukah.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
History of [Dreidel			

Jews have been playing the game of dreidel for centuries during the festival of Chanukah. The game of dreidel is thought by many to date back to the Maccabean era (2nd century BCE), when the Ancient Greeks controlled the lands inhabited by Jews.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
History of D	Dreidel			

Jews have been playing the game of dreidel for centuries during the festival of Chanukah. The game of dreidel is thought by many to date back to the Maccabean era (2nd century BCE), when the Ancient Greeks controlled the lands inhabited by Jews.

However, it has less glamorous origins, and appears to have originated in sixteenth century England where children played a top spinning game called "teetotal."

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	
History of D	Dreidel			

Jews have been playing the game of dreidel for centuries during the festival of Chanukah. The game of dreidel is thought by many to date back to the Maccabean era (2nd century BCE), when the Ancient Greeks controlled the lands inhabited by Jews.

However, it has less glamorous origins, and appears to have originated in sixteenth century England where children played a top spinning game called "teetotal." The game made its way to Germany, and was adopted by Yiddish-speaking Jews.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Feinerman (1976) showed dreidel is unfair:

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Feinerman (1976) showed dreidel is unfair: the expected payout to a player on the *i*th spin with N players is $\frac{N}{4} + \left(\frac{5}{8}\right)^{(i-1)} \frac{(N-2)}{8}$.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Trachtenberg (1996) changed initial payout and \mathcal{G} to *a* and \mathcal{S} penalty to *b*.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Trachtenberg (1996) changed initial payout and G to a and S penalty to b. Expected payout is $Na/4 + (5/8)^{(N-1)}(Na-2p)/8$,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Trachtenberg (1996) changed initial payout and \mathcal{G} to a and \mathcal{S} penalty to b. Expected payout is $Na/4 + (5/8)^{(N-1)}(Na-2p)/8$, the game is fair for any number of players when p/a = N/2.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
○○○●	000	000	00000	
Past Work				

Trachtenberg (1996) changed initial payout and \mathcal{G} to a and \mathcal{S} penalty to b. Expected payout is $Na/4 + (5/8)^{(N-1)}(Na-2p)/8$, the game is fair for any number of players when p/a = N/2.

BUT this assumed the pot was a continuous variable, and no-one runs out of counters.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	●○○	000	00000	
Markov Chains				

A Markov chain is a sequence of random variables where the state of the random variable at some time t only depends on the value at the previous time t - 1.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	●○○	000	00000	
Markov Chains				

A Markov chain is a sequence of random variables where the state of the random variable at some time t only depends on the value at the previous time t - 1. Formally, $P(X_{t+1} = x | X_1 = x_1, X_2 = x_2, ..., X_t = x_t) = P(X_{t+1} = x | X_t = x_t)$.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	●○○	000	00000	
Markov Ch	nains			

A Markov chain is a sequence of random variables where the state of the random variable at some time t only depends on the value at the previous time t - 1. Formally, $P(X_{t+1} = x | X_1 = x_1, X_2 = x_2, ..., X_t = x_t) = P(X_{t+1} = x | X_t = x_t)$. Often, the probabilities are independent of time.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	●○○	000	00000	
Markov Chains				

A Markov chain is a sequence of random variables where the state of the random variable at some time t only depends on the value at the previous time t - 1. Formally, $P(X_{t+1} = x | X_1 = x_1, X_2 = x_2, ..., X_t = x_t) = P(X_{t+1} = x | X_t = x_t)$. Often, the probabilities are independent of time.

Given a finite number of possible states associated with 1, 2, ..., n, the probability distribution satisfies

$$x^{(t+1)} = x^{(t)}P, \quad p_{ij} = P(X_{t+1} = j | X_t = i).$$

Markov Example – Chutes and Ladders

Initially, probability 1/6 at (38, 2, 3, 14, 5, 6).

Introduction Markov Chains ThePot Two Player Game More Players 0000 000000

Markov Example – Chutes and Ladders

Initially, probability 1/6at (38, 2, 3, 14, 5, 6). Probability *p* at 48, next step probabilities p/6 added to (11, 50, 66, 52, 53, 54).

Introduction Markov Chains ThePot Two Player Game More Players 0000 00000

Markov Example – Chutes and Ladders

Initially, probability 1/6at (38, 2, 3, 14, 5, 6). Probability p at 48, next step probabilities p/6 added to (11, 50, 66, 52, 53, 54). $x^{(t+1)} = x^{(t)}P$ with vectors of length 100.

Introduction	Markov Chains	ThePot	Two Player Game	More Players	
0000	○○●	000	00000		
Chutes and Ladders Results					

• Six sided die: fastest finish is 7 moves.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	○○●	000	00000	
Chutes and	Ladders Res	sults		

- Six sided die: fastest finish is 7 moves.
- 50%: 32, 75%: 50, 99%: 128, 99.9%: 184.

- Six sided die: fastest finish is 7 moves.
- 50%: 32, 75%: 50, 99%: 128, 99.9%: 184.
- Best die: Twelve sided.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	●○○	00000	
The Pot				

$$\frac{0}{4} + \frac{1}{4} \sum_{i} i y_{i}^{(k)} + \frac{1}{4} \sum_{i} \left[\frac{i}{2} \right] y_{i}^{(k)} - \frac{1}{4}$$

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	●○○	00000	
The Pot				

$$\frac{0}{4} + \frac{1}{4} \sum_{i} i y_{i}^{(k)} + \frac{1}{4} \sum_{i} \left\lceil \frac{i}{2} \right\rceil y_{i}^{(k)} - \frac{1}{4} = \frac{1}{4} \sum_{i} \left(i + \left\lceil \frac{i}{2} \right\rceil \right) y_{i}^{(k)} - \frac{1}{4}$$

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	●○○	00000	
The Pot				

$$\frac{0}{4} + \frac{1}{4} \sum_{i} i y_{i}^{(k)} + \frac{1}{4} \sum_{i} \left\lceil \frac{i}{2} \right\rceil y_{i}^{(k)} - \frac{1}{4} = \frac{1}{4} \sum_{i} \left(i + \left\lceil \frac{i}{2} \right\rceil \right) y_{i}^{(k)} - \frac{1}{4}$$

 $\mathbf{y}^{(1)} = [0, 0, \dots, 0, 1]$, the one in the *N*th element.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	●○○	00000	
The Pot				

$$\frac{0}{4} + \frac{1}{4} \sum_{i} i y_{i}^{(k)} + \frac{1}{4} \sum_{i} \left\lceil \frac{i}{2} \right\rceil y_{i}^{(k)} - \frac{1}{4} = \frac{1}{4} \sum_{i} \left(i + \left\lceil \frac{i}{2} \right\rceil \right) y_{i}^{(k)} - \frac{1}{4}$$

 $\mathbf{y}^{(1)} = [0, 0, \dots, 0, 1]$, the one in the Nth element. Element j contributes $y_j^{(k)}/4$ to $y_j^{(k+1)}$ (\mathcal{N} , no payout), $y_N^{(k+1)}$ (\mathcal{G} , pot needs to be restarted), $y_{j-\lceil j/2 \rceil}^{(k+1)}$ (\mathcal{H} , remove half the pot rounded up), and $y_{j+1}^{(k+1)}$ (\mathcal{S} , add one to pot). The special case of \mathcal{H} with j = 1 is equivalent to \mathcal{G} .

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○●○	00000	
_				

Expected Payouts per Turn

	Number of players						
Turn	2	3	4	5	6	10	15
1	0.5000	1.0000	1.2500	1.7500	2.0000	3.5000	5.5000
2	0.5625	0.8750	1.1875	1.5000	1.8750	3.1875	4.8125
3	0.5781	0.8906	1.1250	1.4219	1.7344	2.9219	4.4062
4	0.5938	0.8906	1.1055	1.3906	1.6758	2.7617	4.1562
5	0.6025	0.8916	1.1016	1.3809	1.6514	2.6787	4.0244
6	0.6074	0.8928	1.1011	1.3765	1.6384	2.6414	3.9490
7	0.6102	0.8937	1.1009	1.3736	1.6313	2.6259	3.9051
8	0.6118	0.8943	1.1007	1.3718	1.6279	2.6192	3.8818
9	0.6128	0.8947	1.1005	1.3709	1.6264	2.6161	3.8712
10	0.6133	0.8949	1.1004	1.3705	1.6258	2.6144	3.8673
11	0.6136	0.8950	1.1003	1.3703	1.6255	2.6135	3.8665
12	0.6138	0.8950	1.1003	1.3702	1.6254	2.6130	3.8668

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Per	r Player			

• Four or more players, expected payout decreases monotonically,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Pe	r Player			

• Four or more players, expected payout decreases monotonically, first player has a better payout than the second, who has a better payout than the third, etc.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Pe	r Player			

- Four or more players, expected payout decreases monotonically, first player has a better payout than the second, who has a better payout than the third, etc.
- Three players, maximum payout, drop, then monotonic increase,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Pe	r Player			

- Four or more players, expected payout decreases monotonically, first player has a better payout than the second, who has a better payout than the third, etc.
- Three players, maximum payout, drop, then monotonic increase, first is best, but third slightly ahead of second (first four rounds 3.6792, 3.5559 and 3.5731).

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Per	r Player			

- Four or more players, expected payout decreases monotonically, first player has a better payout than the second, who has a better payout than the third, etc.
- Three players, maximum payout, drop, then monotonic increase, first is best, but third slightly ahead of second (first four rounds 3.6792, 3.5559 and 3.5731).
- Two players, monotonic increasing, second player has a better payout.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	○○●	00000	
Payouts Per	r Player			

- Four or more players, expected payout decreases monotonically, first player has a better payout than the second, who has a better payout than the third, etc.
- Three players, maximum payout, drop, then monotonic increase, first is best, but third slightly ahead of second (first four rounds 3.6792, 3.5559 and 3.5731).
- Two players, monotonic increasing, second player has a better payout.

But still assumes large numbers of counters per player. Who wins, and how long does it take?

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●○○○○	
Two Player				

As a Markov chain, let a(i,j) be the probability that after some turns, player one has i - 1 counters, player two has j - 1.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●○○○○	
Two Player				

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●००००	
Two Player				

If the next turn is player one, one fourth of a(i,j) is added to (new) \mathcal{N} : a(i,j), \mathcal{G} : a(i+p-1,j-1), \mathcal{H} : $a(i+\lceil p/2 \rceil, j)$, \mathcal{S} : a(i-1,j),

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●००००	00000000
Two Player				

If the next turn is player one, one fourth of a(i,j) is added to (new) \mathcal{N} : a(i,j), \mathcal{G} : a(i+p-1,j-1), \mathcal{H} : $a(i+\lceil p/2 \rceil, j)$, \mathcal{S} : a(i-1,j), with special cases for \mathcal{H} when p = 1 (effectively \mathcal{G}),

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●००००	00000000
Two Player				

If the next turn is player one, one fourth of a(i,j) is added to (new) \mathcal{N} : a(i,j), \mathcal{G} : a(i + p - 1, j - 1), \mathcal{H} : $a(i + \lceil p/2 \rceil, j)$, \mathcal{S} : a(i - 1, j), with special cases for \mathcal{H} when p = 1 (effectively \mathcal{G}), \mathcal{G} when j = 1, \mathcal{S} when i = 1 (someone loses).

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	●○○○○	
Two Player				

If the next turn is player one, one fourth of a(i,j) is added to (new) \mathcal{N} : a(i,j), \mathcal{G} : a(i+p-1,j-1), \mathcal{H} : $a(i+\lceil p/2\rceil,j)$, \mathcal{S} : a(i-1,j), with special cases for \mathcal{H} when p = 1 (effectively \mathcal{G}), \mathcal{G} when j = 1, \mathcal{S} when i = 1 (someone loses).

Turn number determines who moves, accumulate probability at each turn that the game finishes, and who wins.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	○●○○○	
Probability	Player One W	/ins		

					m_1			
		1	2	3	4	5	6	7
	1	0.5441	0.7285	0.8030	0.8459	0.8738	08932	0.9075
	2	0.3516	0.5283	0.6340	0.7002	0.7463	0.7801	0.8060
	3	0.2555	0.4135	0.5200	0.5939	06481	0.6895	0.7223
m_2	4	0.1989	0.3387	0.4401	0.5148	0.5719	0.6170	0.6535
	5	0.1629	0.2866	0.3814	0.4541	0.5117	0.5582	0.5967
	6	0.1378	0.2484	0.3365	0.4063	0.4629	0.5096	0.5489
	7	0.1195	0.2191	0.3010	0.3676	0.4226	0.4688	0.5082

1ES UNIVERSITY

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	○●○○○	
Probabilit	v Plaver One	Wins		

					m_1			
		1	2	3	4	5	6	7
	1	0.5441	0.7285	0.8030	0.8459	0.8738	08932	0.9075
	2	0.3516	0.5283	0.6340	0.7002	0.7463	0.7801	0.8060
	3	0.2555	0.4135	0.5200	0.5939	06481	0.6895	0.7223
m_2	4	0.1989	0.3387	0.4401	0.5148	0.5719	0.6170	0.6535
	5	0.1629	0.2866	0.3814	0.4541	0.5117	0.5582	0.5967
	6	0.1378	0.2484	0.3365	0.4063	0.4629	0.5096	0.5489
	7	0.1195	0.2191	0.3010	0.3676	0.4226	0.4688	0.5082

Other triples (m_1, m_2, p_1) : (9, 10, 0.4789), (10, 10, 0.5057), (14, 15, 0.4863), (15, 15, 0.5038), (19, 20, 0.4899), (20, 20, 0.5028).

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	○○●○○	
Length of G	ame			

Robinson & Vijay (2006) showed a game of dreidel lasts $O(n^2)$ spins on average, although they rounded \mathcal{H} down, and used rounds when three or more players.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	०००●०	
Length of G	lame			

Robinson & Vijay (2006) showed a game of dreidel lasts $O(n^2)$ spins on average, although they rounded \mathcal{H} down, and used rounds when three or more players.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	○○○○●	00000000
Length of G	lame			

Robinson & Vijay (2006) showed a game of dreidel lasts $O(n^2)$ spins on average, although they rounded \mathcal{H} down, and used rounds when three or more players. Five counters (51%), 44 on average, 170 to 99%.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	yers			

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●●●●●●
Three Play	ers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player *n*, player one has i - 2 counters, player two has j - 2, player three has k - 2.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	ers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player n, player one has i - 2 counters, player two has j - 2, player three has k - 2. If any of i, j, k = 1, a player has lost.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	vers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player n, player one has i - 2 counters, player two has j - 2, player three has k - 2. If any of i, j, k = 1, a player has lost.

One fourth of a(1, i, j, k) added to (new) $\mathcal{N}: a(2, i, j, k)$, $\mathcal{G}: a(2, i + p - 1, j - 1, k - 1)$, $\mathcal{H}: a(2, i + \lceil p/2 \rceil, j, k)$, $\mathcal{S}: a(2, j - 1, j, k)$,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	vers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player n, player one has i - 2 counters, player two has j - 2, player three has k - 2. If any of i, j, k = 1, a player has lost.

One fourth of a(1, i, j, k) added to (new) \mathcal{N} : a(2, i, j, k), \mathcal{G} : a(2, i + p - 1, j - 1, k - 1), \mathcal{H} : $a(2, i + \lceil p/2 \rceil, j, k)$, \mathcal{S} : a(2, j - 1, j, k), with special cases for \mathcal{H} when p = 1,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	ers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player n, player one has i - 2 counters, player two has j - 2, player three has k - 2. If any of i, j, k = 1, a player has lost.

One fourth of a(1, i, j, k) added to (new) \mathcal{N} : a(2, i, j, k), \mathcal{G} : a(2, i + p - 1, j - 1, k - 1), \mathcal{H} : $a(2, i + \lceil p/2 \rceil, j, k)$, \mathcal{S} : a(2, j - 1, j, k), with special cases for \mathcal{H} when p = 1, \mathcal{G} when k = 2, \mathcal{S} when j = 2:

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	●○○○○○○○
Three Play	ers			

A possible Markov chain has a(n, i, j, k) the probability the next turn is player n, player one has i - 2 counters, player two has j - 2, player three has k - 2. If any of i, j, k = 1, a player has lost.

One fourth of a(1, i, j, k) added to (new) \mathcal{N} : a(2, i, j, k), \mathcal{G} : a(2, i + p - 1, j - 1, k - 1), \mathcal{H} : $a(2, i + \lceil p/2 \rceil, j, k)$, \mathcal{S} : a(2, j - 1, j, k), with special cases for \mathcal{H} when p = 1, \mathcal{G} when k = 2, \mathcal{S} when j = 2: A horribly complicated system, with three of the two player cases embedded.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○●○○○○○○
Better Thre	e Player App	proach		

Begin by calculating probabilities of finishing after n turns and who wins for each starting number of counters with two players.

Begin by calculating probabilities of finishing after n turns and who wins for each starting number of counters with two players. Then, as for two player, have a(i, j, k) the probability players have i - 1, j - 1, k - 1 counters respectively.

Begin by calculating probabilities of finishing after n turns and who wins for each starting number of counters with two players. Then, as for two player, have a(i,j,k) the probability players have i-1, j-1, k-1 counters respectively. Take turns as before, and if a player loses, add scaled two player results to the length of game (shifted by the current turn number) and who wins probabilities.

Begin by calculating probabilities of finishing after *n* turns and who wins for each starting number of counters with two players. Then, as for two player, have a(i, j, k) the probability players have i - 1, j - 1, k - 1 counters respectively. Take turns as before, and if a player loses, add scaled two player results to the length of game (shifted by the current turn number) and who wins probabilities. Stop when the sum of the *a* array is small.

 Introduction
 Markov Chains
 ThePot
 Two Player Game
 More Players

 Better Three Player Approach
 More Player Approach
 More Player Approach

Begin by calculating probabilities of finishing after n turns and who wins for each starting number of counters with two players. Then, as for two player, have a(i,j,k) the probability players have i-1, j-1, k-1 counters respectively. Take turns as before, and if a player loses, add scaled two player results to the length of game (shifted by the current turn number) and who wins probabilities. Stop when the sum of the *a* array is small.

As of now, further debugging is required :-(

Introduction
occoMarkov Chains
occoThePot
occoTwo Player Game
occoMore Players
occoBetter Three Player Approach

Begin by calculating probabilities of finishing after n turns and who wins for each starting number of counters with two players. Then, as for two player, have a(i,j,k) the probability players have i-1, j-1, k-1 counters respectively. Take turns as before, and if a player loses, add scaled two player results to the length of game (shifted by the current turn number) and who wins probabilities. Stop when the sum of the *a* array is small.

As of now, further debugging is required :-(so let's look at some simulations.

 Introduction
 Markov Chains
 ThePot
 Two Player Game
 More Players

 Who Wins With Three (Simulation)

Simulating with 100,000 games:

Counters	Player 1	Player 2	Player 3
1	0.479	0.286	0.235
2	0.398	0.326	0.277
3	0.379	0.327	0.295
4	0.367	0.327	0.306
5	0.362	0.327	0.311
6	0.354	0.332	0.314
7	0.352	0.330	0.318
8	0.350	0.333	0.317
9	0.346	0.333	0.321
10	0.347	0.331	0.322
11	0.346	0.331	0.324
12	0.345	0.332	0.324

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○●○○○○
Average Le	ength (Three)			

 Introduction
 Markov Chains
 ThePot
 Two Player Game
 More Players

 000
 000
 000
 0000
 0000

Still appears quadratic, with 5 counters average 112.

 Introduction
 Markov Chains
 ThePot
 Two Player Game
 More Players

 Who Wins With Four (Simulation)

Simulating with 400,000 games:

Counters	Player 1	Player 2	Player 3	Player 4
1	0.432	0.271	0.165	0.133
2	0.315	0.277	0.226	0.182
3	0.293	0.263	0.234	0.210
4	0.282	0.260	0.238	0.220
5	0.275	0.259	0.240	0.227
6	0.272	0.256	0.242	0.230
7	0.268	0.256	0.243	0.233
8	0.265	0.255	0.244	0.236
9	0.265	0.254	0.245	0.236
10	0.262	0.253	0.246	0.239
11	0.260	0.253	0.245	0.241
12	0.261	0.254	0.246	0.240

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○●○○
Average L	_ength (Four)			

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○○○
Average	Length (Four)			

Still appears quadratic, with 5 counters average 208.

Game Length, Four Players, Five Counters Each

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

• Previous analysis of Dreidel was approximate.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on,

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on, although the advantage disappears quickly as the number of counters increases.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on, although the advantage disappears quickly as the number of counters increases. Dreidel is unfair, but not terribly so.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on, although the advantage disappears quickly as the number of counters increases. Dreidel is unfair, but not terribly so.
- Average length of the game grows as the square of the starting number of counters, and gets ridiculously large with modest numbers of counters.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on, although the advantage disappears quickly as the number of counters increases.
 Dreidel is unfair, but not terribly so.
- Average length of the game grows as the square of the starting number of counters, and gets ridiculously large with modest numbers of counters.
- Future work: true Markov chain approach for three and more players, see if the "bumps" are real, what if \mathcal{H} rounds down.

Introduction	Markov Chains	ThePot	Two Player Game	More Players
0000	000	000	00000	○○○○○○●
Conclusion				

- Previous analysis of Dreidel was approximate.
- Using a Markov chain approach, amount in the pot is not a useful indicator.
- Regardless of number of players, first is better than second is better than third and so on, although the advantage disappears quickly as the number of counters increases. Dreidel is unfair, but not terribly so.
- Average length of the game grows as the square of the starting number of counters, and gets ridiculously large with modest numbers of counters.
- Future work: true Markov chain approach for three and more players, see if the "bumps" are real, what if \mathcal{H} rounds down.

Thank You