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Chutes & Ladders

Chutes & Ladders is a classic game where you roll a die to move,
and sometimes go down a chute (or snake) or up a ladder.

Snakes & Ladders originated in
India (2nd century BC, AD,
13th century AD?).

Imported to Victorian Britain.

US version (children scared of
snakes) by Milton Bradley,
1943.
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Variants

Game of the Goose, originally 16th century Europe, played by
Thomas Jefferson at Monticello.

Goose: move again,
shortcuts, chutes, lose
turns, back to beginning.

“Chuteless & Ladderless” is Chutes & Ladders with no chutes
and no ladders, allows for easier mathematical analysis.
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Past Work

Chutes & Ladders was first modeled using Markov chains by
Daykin, Jeacocke & Neal in 1967.

Althoen, King & Schilling showed the average length of a
game is 39.23 moves in 1993, and it has since become a
standard linear algebra example.

Cheteyan, Hengeveld & Jones showed that the shortest
average game length is 25.81 moves with a die of size 15 in
2001.

Glass, Lucas & Needleman showed that without chutes or
ladders, the shortest average game length is 26 with a die of
size 13. A six sided die requires 33.33 moves.
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Is Minimizing Average Length of Game Best?

The probability distribution for number of moves required to finish
turns out to be very long tailed.

What if we actually want to win, not minimize number of moves?

What if we use two six sided dice instead of one? Does moving
faster towards the end negate the lower chance of a move near the
end reaching the last square, and the chance of not being able to
finish at all? This question motivated this project.
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Markov Chains

A Markov chain is a sequence of random variables where the state
of the random variable at some time t only depends on the value
at the previous time t − 1.

Formally, P(Xt+1 = x |X1 = x1,X2 =
x2, . . .Xt = xt) = P(Xt+1 = x |Xt = xt). Often, the probabilities
are independent of time.

Given a finite number of possible states associated with 1, 2, . . . , n,
the probability distribution satisfies

x (t+1) = x (t)P, pij = P(Xt+1 = j |Xt = i).

If P =

(
Q R
0T 1

)
, the first element of (It − Q)−11 is the average

number of steps.
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Markov Chutes & Ladders

Initially, probability 1/6
at (38, 2, 3, 14, 5, 6).

Probability p at 48,
next step probabilities
p/6 added to
(11, 50, 66, 52, 53, 54).
x(t+1)T = x(t)TP with
vectors of length 101.
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Chutes & Ladders Results

Calculate the probability distribution at every time step, look at
proportion.

Six sided die: fastest finish is 7 moves.

50%: 32 (mean 39), 75%: 50, 99%: 128, 99.9%: 184.

Best die: Twelve sided (ish).
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Cumulative Finished Distribution

Updating probabilities, x(t+1)T = x(t)TP with

x(0)T = [1, 0, . . . , 0].

Let F (t) = x
(t)
101, the cumulative probability of

having reached the last square in at most t moves. Continue until
F (k) is sufficiently close to one, say 1− 10−8.

If two players use different sized dice, they will have different
Markov matrices P1 and P2, and different cumulative finished
distributions F1 and F2. Keep playing until both F1(t) and F2(t)
are sufficiently close to one.

If a player uses multiple dice, the same approach with more
complicated Markov matrices works. But finished when at end or
stuck.
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Which Dice Win

Assuming moves are made simultaneously, player one wins on
move k is they reach the last square on that move (probability
F1(k)− F1(k − 1)) and player two doesn’t reach the final square
up to move k (probability 1− F2(k)).

So

P(Player 1 wins) =
∞∑
k=1

(F1(k)− F1(k − 1))(1− F2(k)),

P(Player 2 wins) =
∞∑
k=1

(F2(k)− F2(k − 1))(1− F1(k)), and

P(Tie) =
∞∑
k=1

(F1(k)− F1(k − 1))(F2(k)− F2(k − 1)).
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Chutes & Ladders, One Die

The minimum average number of moves uses a die of size 15. If
player one uses a die of size 15 and player two uses a die of size
two to thirty:
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Chutes & Ladders, Best Single Die

The best die is size 22, second best is size 17. 22 vs 17: 0.48962
vs 0.48897, tie 0.02140.

10 15 20 25 30
Player 2 Die

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56
P

ro
ba

bi
lit

ie
s

Player 1 Wins
Player 2 Wins

Stephen Lucas∗ , Darren Glass Which Dice Win At Chutes & Ladders, or “Chuteless & Ladderless”



Introduction Markov Winning Theory Chutes & Ladders Chuteless & Ladderless Stuck

Chutes & Ladders, One Die Versus Two Dice

Two dice means we move more quickly, but could get stuck and
finishing is less likely on any move near the end.

One die versus
two of the same kind:
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Player 1 Wins
Player 2 Wins
Tie Two dice are better

with sizes 3, 4, 5. Six
sided, one die wins!
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Chutes & Ladders, Best Two Dice

Both using two dice, nine sided is best, probability of both stuck is
about 0.1471.

0 5 10 15 20 25 30
Player 2 Dice

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
ie

s

Player 1 Wins
Player 2 Wins
Tie
Both Stuck

A single 22 sided die
still beats every pair by
substantial margins.
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Chuteless & Ladderless, Board Length 100

Without any chutes or ladders, we can easily vary the length of the
board as well as the die size.

With length 100, minimum average
game length uses die size 13.
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Chuteless & Ladderless, Best Die, Board Length 100

Comparing all the possibilities, best die size is eighteen.
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Chuteless & Ladderless, Best Die, Varying Board Length

For every board length (15 to 500), we can test each die against all
others and find the one that wins most often.
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A simple fit suggests the best die is proportional to the
square root of the board size.
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Chuteless & Ladderless, Best Die, Small Board Length

For small boards,
p d p d

5 5 11 6
6 3 12 6
7 4 13 ?
8 4 14 6
9 5 15 6

10 5 16 6

For board length 13,
seven (0.4638) beats six (0.4631),
six (0.4580) beats five (0.4574),
and five (0.4634) beats seven (0.4617).
Nontransitive!
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Chuteless & Ladderless, one versus two six sided dice

Board length 100, one 0.511864, two 0.480613, tie 0.007523.
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at 116.
One versus three looks
similar, crossover at 1279.
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Chuteless & Ladderless, two versus three six sided dice

Crossover at 508
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Combined Results

Board length 10 to 115, one beats two beats three.

Board length 116 to 507, two beats one beats three.

Board length 1278 and up, three beats two beats one.

Board length 508 to 1277, two beats one beats three beats
two. Non-transitive!

Board length 890, two (0.658) beats one (0.341), one (0.521)
beats three (0.478), and three (0.446) beats two (0.401).
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Other Non-Transitive Examples

A: 234499, B: 116688, C: 335577, A beats B beats C beats A
all probabilities 5/9.

Two sided dice, board size 22 to 48, two beats one beats
three beats two.

Three sided dice, board size 19 to 51, non-transitive.

Ten sided dice, non-transitive about four to seven thousand.

Simulation with three players, length 890, one 0.178, two
0.398, three 0.423.
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Chuteless & Ladderless, Two Dice Stuck

Adjusting the Markov chain approach to multiple absorbing states,
we can find the probability of getting stuck.

Asymptotic as board
size increases for given dice.

Dice Probability Stuck Fraction

2d2 0.361111111111111 13/36
2d3 0.344907407407407 149/432

2d4 0.339423076923077 29506
87563

2d5 0.336968810916180 34573
102600

2d6 0.335688649974364 317543
945945

2d10 0.333990844573179
2d20 0.333436370180405
2d50 0.333341021092870

2d100 0.333334348292267

Darren has proven
that as the die
gets large,
probability stuck
→ 1/3.
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Chuteless & Ladderless, Three Dice Stuck

With three large dice on a very long board (numerically),
probability finishing approaches 6/11, second last square 3/11,
third last square 2/11.

Further numerical evidence suggests that if Wk is the probability of
finishing with k big dice on a very long board, probabilities of
getting stuck on squares n − 1, n − 2, . . . , n − k + 1 approach
Wk/2,Wk/3, . . . ,Wk/k .

So W1 = 1,W2 = 2/3,W3 = 6/11,W4 = 12/25,W5 = 60/137,
. . ., reciprocal of the Harmonic numbers.
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Conclusion

We have seen that the best dice for winning don’t minimize
the average length of a game.

One six sided die is better than two in the classic game.

Choosing the right board length, we discover non-transitive
behavior when playing Chuteless & Ladderless with one, two
and three dice.

We have proven probability of visiting a square only depends
on die side averages, and asymptotic for two dice.

Future work: Need to prove asymptotic result for k dice, what
die sides are best on the standard board (at least one side
one, no sides one hundred).
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