Representing Numbers Using Fibonacci Variants

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

September 9 2013

00000	00000	Generalized OO	Arithmetic 00000000
Outline			

- Fibonacci Numbers
- Zeckendorf Form and Fibonacci Coding
- Continued Fractions
- Generalizing Fibonacci Coding
- Arithmetic

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			
Fibonacci Num	ibers		

Fibonacci numbers satisfy $f_n = f_{n-1} + f_{n-2}$ with $f_0 = 0$, $f_1 = 1$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			
Fibonacci Num	ibers		

Fibonacci numbers satisfy $f_n = f_{n-1} + f_{n-2}$ with $f_0 = 0$, $f_1 = 1$.

In closed form,
$$f_k = rac{\phi^k - (1-\phi)^k}{\sqrt{5}}$$
 where $\phi = rac{1+\sqrt{5}}{2}$ is the golden ratio.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			
Fibonacci Num	ibers		

Fibonacci numbers satisfy $f_n = f_{n-1} + f_{n-2}$ with $f_0 = 0$, $f_1 = 1$.

In closed form,
$$f_k = rac{\phi^k - (1 - \phi)^k}{\sqrt{5}}$$
 where $\phi = rac{1 + \sqrt{5}}{2}$ is the golden ratio.

The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			00000000
Zeckendorf For	n		

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	m		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000	00000		00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825. $f_{15} = 610$, 825 - 610 = 215.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825. $f_{15} = 610$, 825 - 610 = 215. $f_{12} = 144$, 215 - 144 = 71.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825. $f_{15} = 610$, 825 - 610 = 215. $f_{12} = 144$, 215 - 144 = 71. $f_{10} = 55$, 71 - 55 = 16.

Fibonacci	Continued Fractions	Generalized	Arithmetic
0000			00000000
Zeckendorf For	n		

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825. $f_{15} = 610$, 825 - 610 = 215. $f_{12} = 144$, 215 - 144 = 71. $f_{10} = 55$, 71 - 55 = 16. $f_7 = 13$, 16 - 13 = 3.

Discovered by Eduourd Zeckendorf in 1939, published by him in 1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than remaining, subtract, repeat.

For example, 825. $f_{15} = 610$, 825 - 610 = 215. $f_{12} = 144$, 215 - 144 = 71. $f_{10} = 55$, 71 - 55 = 16. $f_7 = 13$, 16 - 13 = 3. $f_4 = 3$, so $825 = f_{15} + f_{12} + f_{10} + f_7 + f_4$, or $(10010100100100)_Z$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
oo●oo	00000	00	00000000
Proofs			

Fibonacci	Continued Fractions	Generalized	Arithmetic
00●00		00	00000000
Proofs			

Assume every integer from 1 to n has a Zeckendorf representation.

Fibonacci	Continued Fractions	Generalized	Arithmetic
००●००		00	00000000
Proofs			

Assume every integer from 1 to n has a Zeckendorf representation. If n + 1 is a Fibonacci number, done.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000		00000000
Proofs			

Assume every integer from 1 to n has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some j such that $f_j < n + 1 < f_{j+1}$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
		00	00000000
Proofs			

Assume every integer from 1 to *n* has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some *j* such that $f_j < n + 1 < f_{j+1}$. Now $n + 1 - f_j < n$, so has a Zeckendorf representation,

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			00000000
Proofs			

Assume every integer from 1 to *n* has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some *j* such that $f_j < n + 1 < f_{j+1}$. Now $n + 1 - f_j < n$, so has a Zeckendorf representation, and $n + 1 - f_j < f_{j+1} - f_j = f_{j-1}$, so $n + 1 - f_j$ doesn't contain f_j , done.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			00000000
Proofs			

Assume every integer from 1 to *n* has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some *j* such that $f_j < n + 1 < f_{j+1}$. Now $n + 1 - f_j < n$, so has a Zeckendorf representation, and $n + 1 - f_j < f_{j+1} - f_j = f_{j-1}$, so $n + 1 - f_j$ doesn't contain f_j , done.

Uniqueness: We need that the sum of distinct non-consecutive Fibonacci numbers up to f_n is less than f_{n+1} (induction).

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			00000000
Proofs			

Assume every integer from 1 to *n* has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some *j* such that $f_j < n + 1 < f_{j+1}$. Now $n + 1 - f_j < n$, so has a Zeckendorf representation, and $n + 1 - f_j < f_{j+1} - f_j = f_{j-1}$, so $n + 1 - f_j$ doesn't contain f_j , done.

Uniqueness: We need that the sum of distinct non-consecutive Fibonacci numbers up to f_n is less than f_{n+1} (induction). Assume two different sets with the same sum, eliminate common numbers.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			00000000
Proofs			

Assume every integer from 1 to *n* has a Zeckendorf representation. If n + 1 is a Fibonacci number, done. Otherwise, there is some *j* such that $f_j < n + 1 < f_{j+1}$. Now $n + 1 - f_j < n$, so has a Zeckendorf representation, and $n + 1 - f_j < f_{j+1} - f_j = f_{j-1}$, so $n + 1 - f_j$ doesn't contain f_j , done.

Uniqueness: We need that the sum of distinct non-consecutive Fibonacci numbers up to f_n is less than f_{n+1} (induction). Assume two different sets with the same sum, eliminate common numbers. The largest (in one set) must be larger than the collection in the other set, so the two sums cannot be the same!

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000			
Efficiency			

Zeckendorf representation of a number is a string of zeros and (non-consecutive) ones.

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○		00	00000000
Efficiency			

Zeckendorf representation of a number is a string of zeros and (non-consecutive) ones. It doesn't formally have a base. But, since f_k is the closest natural number to $\phi^k/\sqrt{5}$, the ratio of Fibonacci numbers approaches ϕ .

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○		00	00000000
Efficiency			

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○	00000	00	00000000
Efficiency			

But Zeckendorf representation can't contain a pair of consecutive ones, so a pair can be used to separate numbers in a list, using a variable number of digits per number.

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○	00000	00	00000000
Efficiency			

But Zeckendorf representation can't contain a pair of consecutive ones, so a pair can be used to separate numbers in a list, using a variable number of digits per number. Fibonacci coding reverses the order of digits, so is always a trailing one, and only one extra one is "wasted" separating numbers.

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○	00000	00	00000000
Efficiency			

But Zeckendorf representation can't contain a pair of consecutive ones, so a pair can be used to separate numbers in a list, using a variable number of digits per number. Fibonacci coding reverses the order of digits, so is always a trailing one, and only one extra one is "wasted" separating numbers.

$E.g. \ 10010101110001011011$

Fibonacci	Continued Fractions	Generalized	Arithmetic
○○○●○		00	00000000
Efficiency			

But Zeckendorf representation can't contain a pair of consecutive ones, so a pair can be used to separate numbers in a list, using a variable number of digits per number. Fibonacci coding reverses the order of digits, so is always a trailing one, and only one extra one is "wasted" separating numbers.

E.g. 10010101110001011011 represents 10010101, 1000101, and 01, or $f_2 + f_5 + f_7 + f_9$, $f_2 + f_6 + f_8$, f_3 , or 53, 30, 2.

Representing N	umbers from	Distributions	
00000			
Fibonacci	Continued Fractions	Generalized	Arithmetic

Representing N	umbers from I	Distributions	
00000	00000		
Fibonacci	Continued Fractions	Generalized	Arithmetic

• Fibonacci coding is particularly useful when there is no prior knowledge of the upper bound on numbers from a list.

Representing N	umbers from Dist	ributions	
00000	00000	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

- Fibonacci coding is particularly useful when there is no prior knowledge of the upper bound on numbers from a list.
- Numbers uniformly distributed from one to a million: Fibonacci coding 27.8 bits per number, binary 20.

Representing Nu	imbers from Distribu	itions	
00000	00000	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

- Fibonacci coding is particularly useful when there is no prior knowledge of the upper bound on numbers from a list.
- Numbers uniformly distributed from one to a million: Fibonacci coding 27.8 bits per number, binary 20.
- One to ten equally likely, 10⁶ one in ten thousand: Fibonacci coding 4.6 bits per number, binary still 20.

Representing N	umbers from Distrib	utions	
00000	00000	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

- Fibonacci coding is particularly useful when there is no prior knowledge of the upper bound on numbers from a list.
- Numbers uniformly distributed from one to a million: Fibonacci coding 27.8 bits per number, binary 20.
- One to ten equally likely, 10⁶ one in ten thousand: Fibonacci coding 4.6 bits per number, binary still 20.
- Numbers Poisson with $\lambda = 4$: $\Pr(X = k) = \lambda^k e^{-\lambda}/k!$. Numerically 0 to 31:

Representing Nu	umbers from Distribu	tions	
00000	00000	00	00000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

- Fibonacci coding is particularly useful when there is no prior knowledge of the upper bound on numbers from a list.
- Numbers uniformly distributed from one to a million: Fibonacci coding 27.8 bits per number, binary 20.
- One to ten equally likely, 10⁶ one in ten thousand: Fibonacci coding 4.6 bits per number, binary still 20.
- Numbers Poisson with λ = 4: Pr(X = k) = λ^ke^{-λ}/k!.
 Numerically 0 to 31: Fibonacci coding 4.6 bits per number, binary 5.

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		0000000
Greatest Com	mon Divisor		

Fibonacci 00000	Continued Fractions	Generalized	Arithmetic 00000000
Greatest Comm	ion Divisor		

For example, consider gcd(236, 24).

Fibonacci	Continued Fractions	Generalized	Arithmetic
	0000		
Greatest Comm	ion Divisor		

For example, consider gcd(236, 24). $236 = 9 \times 24 + 20$,

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		
Greatest Comm	ion Divisor		

For example, consider gcd(236,24). 236 = 9 \times 24 + 20, 24 = 1 \times 20 + 4,

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Greatest Comr	non Divisor		

For example, consider gcd(236,24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$,

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Greatest Comr	non Divisor		

For example, consider gcd(236, 24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$, so gcd(236, 24) = 4.

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		0000000
Greatest	Common Divisor		

For example, consider gcd(236,24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$, so gcd(236,24) = 4.

$$\frac{236}{24} = 9 + \frac{20}{24}$$

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		0000000
Greatest	Common Divisor		

For example, consider gcd(236,24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$, so gcd(236,24) = 4.

$$\frac{236}{24} = 9 + \frac{20}{24} = 9 + \frac{1}{24/20} = 9 + \frac{1}{1 + \frac{4}{20}}$$

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Greatest Co	mmon Divisor		

For example, consider gcd(236,24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$, so gcd(236,24) = 4.

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Greatest Co	mmon Divisor		

For example, consider gcd(236,24). $236 = 9 \times 24 + 20$, $24 = 1 \times 20 + 4$, $20 = 5 \times 4 + 0$, so gcd(236,24) = 4.

Continued	Fractions		
00000	0000	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

A simple continued fraction for a (positive) fraction is

$$\frac{p}{q} = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_1 + \frac{1}{b_2} + \dots + \frac{1}{b_n}}} = b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \dots + \frac{1}{b_n}$$
$$\equiv [b_0; b_1, b_2, \dots, b_n],$$

where b_0 is an integer, and the b_i 's for i > 0 are natural numbers. The b_i 's are traditionally called partial quotients.

Continued	Fractions		
00000	0000	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

A simple continued fraction for a (positive) fraction is

$$\frac{p}{q} = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_1 + \frac{1}{b_2} + \dots + \frac{1}{b_n}}} = b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \dots + \frac{1}{b_n}$$
$$\equiv [b_0; b_1, b_2, \dots, b_n],$$

where b_0 is an integer, and the b_i 's for i > 0 are natural numbers. The b_i 's are traditionally called partial quotients.

Algorithm: given x, set $x_0 = x$ and $b_0 = |x_0|$, then

$$x_i = \frac{1}{x_{i-1} - b_{i-1}}$$
 and $b_i = \lfloor x_i \rfloor$ for $i = 1, 2, \dots$

until some x_i is an integer.

Fibonacci	Continued Fractions	Generalized	Arithmetic
	0000		0000000
Arbitrary Irratic	onals		

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Arbitrary Irrati	onals		

Continued fractions have many elegant features, including the Gauss-Kuzmin theorem: for almost all irrationals between zero and one,

$$\lim_{n\to\infty} P(k_n=k) = -\log_2\left(1-\frac{1}{(k+1)^2}\right).$$

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		00000000
Arbitrary Irrati	onals		

Continued fractions have many elegant features, including the Gauss-Kuzmin theorem: for almost all irrationals between zero and one,

$$\lim_{n\to\infty} P(k_n=k) = -\log_2\left(1-\frac{1}{(k+1)^2}\right).$$

Arbitrarily large partial quotients are possible, but increasingly unlikely.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○●○○	00	00000000
Arbitrary Irratic	onals		

Continued fractions have many elegant features, including the Gauss-Kuzmin theorem: for almost all irrationals between zero and one,

$$\lim_{n\to\infty} P(k_n=k) = -\log_2\left(1-\frac{1}{(k+1)^2}\right).$$

Arbitrarily large partial quotients are possible, but increasingly unlikely. Fibonacci coding is an ideal choice for representing continued fraction partial quotients for arbitrary irrationals.

Fibonacci 00000 Continued Fractions

Generalized

Arithmetic 00000000

Gauss-Kuzmin Distribution

k	Prob.	k	Prob.
1	0.415037	10	0.011973
2	0.169925	100	1.41434×10^{-4}
3	0.093109	1000	1.43981×10^{-6}
4	0.058894	10 000	$1.44241 imes10^{-8}$
5	0.040642		
6	0.029747	> 10	1.25531×10^{-1}
7	0.022720	> 100	$1.42139 imes 10^{-2}$
8	0.017922	> 1000	$1.44053 imes 10^{-3}$
9	0.014500	>10000	$1.44248 imes 10^{-4}$

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○○○●	00	00000000
Examples			

• The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○○○●	00	00000000
Examples			

• The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge).

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○○○●	00	00000000
Examples			

• The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○○○●	00	00000000
Examples			

- The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.
- The first 20000 partial quotients of π has largest partial quotient 74174. In binary, 17 bits per partial quotient (with previous knowledge).

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	○○○○●	00	00000000
Examples			

- The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.
- The first 20000 partial quotients of π has largest partial quotient 74174. In binary, 17 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.71 bits.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	00000000
Examples			

- The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.
- The first 20000 partial quotients of π has largest partial quotient 74174. In binary, 17 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.71 bits.

Loch's theorem:
$$\lim_{n\to\infty} \frac{\# \text{ partial quotients}}{\# \text{ correct binary digits}} = \frac{6(\ln 2)^2}{\pi^2} \approx 0.292.$$

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	00000000
Examples			

- The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.
- The first 20000 partial quotients of π has largest partial quotient 74174. In binary, 17 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.71 bits.

Loch's theorem: $\lim_{n\to\infty} \frac{\# \text{ partial quotients}}{\# \text{ correct binary digits}} = \frac{6(\ln 2)^2}{\pi^2} \approx 0.292.$ Or, about 3.42 times number of partial quotients bits in binary,

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	00000000
Examples			

- The first 20 000 partial quotients of ln(2) has largest partial quotient 963 664. In binary, 20 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.74 bits.
- The first 20000 partial quotients of π has largest partial quotient 74174. In binary, 17 bits per partial quotient (with previous knowledge). Fibonacci coding requires 3.71 bits.

Loch's theorem: $\lim_{n\to\infty} \frac{\# \text{ partial quotients}}{\# \text{ correct binary digits}} = \frac{6(\ln 2)^2}{\pi^2} \approx 0.292.$ Or, about 3.42 times number of partial quotients bits in binary, Slightly more efficient (if you don't want the continued fraction data).

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	●○	00000000
Generalized Fibe	onacci Coding		

Tribonacci numbers satisfy $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ with $t_{-1} = t_0 = 0$, $t_1 = 1$, and grow like 1.8393ⁿ.

Tribonacci numbers satisfy $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ with $t_{-1} = t_0 = 0$, $t_1 = 1$, and grow like 1.8393ⁿ. Tetranacci numbers satisfy $u_n = u_{n-1} + u_{n-2} + u_{n-3} + u_{n-4}$ with $u_{-2} = u_{-1} = u_0 = 0$, $u_1 = 1$, and grow like 1.9276ⁿ.

Tribonacci numbers satisfy $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ with $t_{-1} = t_0 = 0$, $t_1 = 1$, and grow like 1.8393ⁿ. Tetranacci numbers satisfy $u_n = u_{n-1} + u_{n-2} + u_{n-3} + u_{n-4}$ with $u_{-2} = u_{-1} = u_0 = 0$, $u_1 = 1$, and grow like 1.9276ⁿ. *k*-bonacci numbers satisfy $u_n = \sum_{i=1}^n u_{n-i}$, $u_1 = 1$, $u_i = 0$ for i < 0.

Tribonacci numbers satisfy $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ with $t_{-1} = t_0 = 0$, $t_1 = 1$, and grow like 1.8393ⁿ. Tetranacci numbers satisfy $u_n = u_{n-1} + u_{n-2} + u_{n-3} + u_{n-4}$ with $u_{-2} = u_{-1} = u_0 = 0$, $u_1 = 1$, and grow like 1.9276ⁿ. *k*-bonacci numbers satisfy $u_n = \sum_{i=1}^n u_{n-i}$, $u_1 = 1$, $u_i = 0$ for i < 0.

Numbers can be uniquely represented by sums of k-bonacci numbers with no k ones in a row. So, k-bonacci coding uses k - 1 digits to separate numbers in variable length encoding.

Fibonacci	Continued Fractions	Generalized	Arithmetic
		00	
Examples			

k	2	3	4	5
Bits	27.82	23.34	22.86	23.40

Fibonacci	Continued Fractions	Generalized	Arithmetic
		0•	
Examples			

k	2	3	4	5
Bits	27.82	23.34	22.86	23.40

• One to ten equally likely, 10^6 one in ten thousand (binary 20)

k	2	3	4	5
Bits	4.60	5.00	5.90	6.90

Fibonacci	Continued Fractions	Generalized	Arithmetic
		0•	
Examples			

• One to ten equally likely, 10^6 one in ten thousand (binary 20)

k	2	3	4	5
Bits	4.60	5.00	5.90	6.90

• Poisson $\lambda = 4$ (binary 5)

k	2	3	4	5
Bits	4.57	4.96	5.85	6.85

Fibonacci	Continued Fractions	Generalized	Arithmetic
		0•	
Examples			

• One to ten equally likely, 10^6 one in ten thousand (binary 20)

• Poisson
$$\lambda =$$
 4 (binary 5)

• In(2) partial quotients (binary 20 or 3.42)

k	2	3	4	5
Bits	3.74	4.35	5.28	6.26

Examples			
Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	○●	00000000

• One to ten equally likely, 10⁶ one in ten thousand (binary 20)

• Poisson
$$\lambda =$$
 4 (binary 5)

• π partial quotients (binary 17 or 3.42)

00000	00000	0●	00000000
Examples			

• One to ten equally likely, 10^6 one in ten thousand (binary 20)

• Poisson
$$\lambda = 4$$
 (binary 5)

• π partial quotients (binary 17 or 3.42)

k	2	3	4	5	Not really worth
Bits	3.71	4.33	5.27	6.25	it 🙂
Fibonacci	Continued Fractions	Generalized	Arithmetic		
------------	---------------------	-------------	------------		
			00000000		
Arithmetic					

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Arithmetic			
Antimetic			

Pair rule: Since f_n − f_{n-1} − f_{n-2} = 0, subtracting one from successive digits adds one to the one to the left, or (... (+1)(-1)(-1)...)_Z.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Arithmetic			
Antimetic			

- Pair rule: Since $f_n f_{n-1} f_{n-2} = 0$, subtracting one from successive digits adds one to the one to the left, or $(\dots (+1)(-1)(-1)\dots)_Z$.
- Two rule: Subtracting $f_{n+1} = f_n + f_{n-1}$ from $f_n = f_{n-1} + f_{n-2}$, $f_{n+1} + f_{n-2} 2f_n = 0$, or $(\dots (+1)(-2)(0)(+1)\dots)_Z$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Arithmetic			
/ 11/0/11/00/10			

- Pair rule: Since f_n f_{n-1} f_{n-2} = 0, subtracting one from successive digits adds one to the one to the left, or (... (+1)(-1)(-1)...)_Z.
- Two rule: Subtracting $f_{n+1} = f_n + f_{n-1}$ from $f_n = f_{n-1} + f_{n-2}$, $f_{n+1} + f_{n-2} 2f_n = 0$, or $(\dots (+1)(-2)(0)(+1)\dots)_Z$.
- Edge two rule: $(...(+1)(-2))_Z$ and $(...(+1)(-2)(+1))_Z$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Arithmetic			
/ 11/0/11/00/10			

- Pair rule: Since $f_n f_{n-1} f_{n-2} = 0$, subtracting one from successive digits adds one to the one to the left, or $(\dots (+1)(-1)(-1)\dots)_Z$.
- Two rule: Subtracting $f_{n+1} = f_n + f_{n-1}$ from $f_n = f_{n-1} + f_{n-2}$, $f_{n+1} + f_{n-2} 2f_n = 0$, or $(\dots (+1)(-2)(0)(+1)\dots)_Z$.
- Edge two rule: $(...(+1)(-2))_Z$ and $(...(+1)(-2)(+1))_Z$.

For example, $(101001001)_F + (100101001)_F = (201102002)_F$.

Fibonac 00000					Cont 000	inued I 00		ns				Generalized 00		Arithmetic ○●○○○○○○
Adc	liti	on	Exa	am	ple									
	f12	fil	f10	f9	f8	17	f6	f5	f4	ß	12			
					•	•								
L					//							1		
[f12	nı		19 /	18	17	16	15	14	13]		
l		L	7								•			
r	f12	nı,	f10	f9	f8	f7	f6	f5	f4	ſЗ	f2	1		
		•	•								•			
	f12	11	f10	19	f8	17	fő	ſS	f4	ß	12			
	•													
L								\sum_{i}	\leq]		
	•		110	19	18	1/		15	14]		
L	f12	fil	f10	f9	f8	f7	f6	f5	14	Б	12	L		
	•						•		Í		•			iames 1adison

MADISON UNIVERSITY.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	○○●○○○○○
Order of Apply	ing Rules		

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	○○●○○○○○
Order of Applyi	ing Rules		

• Tee (2002): right to left with recursive two rule, $O(n^3)$.

Fibonacci 00000	Continued Fractions	Generalized 00	Arithmetic
Order of A	oplying Rules		

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, $020x \rightarrow 100(x + 1), 030x \rightarrow 110(x + 1), 021x \rightarrow 110x,$ $012x \rightarrow 101x$, eliminates twos.

Fibonacci	Continued Fractions	Generalized	Arithmetic			
	· D	00	0000000			
Order of Applying Rules						

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, 020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x, 012x → 101x, eliminates twos. Second right to left, third left to right, 011 → 100.

Fibonacci	Continued Fractions	Generalized	Arithmetic
	00000		0000000
Order of A	Applying Rules		

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, 020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x, 012x → 101x, eliminates twos. Second right to left, third left to right, 011 → 100. Second pass eliminates 1011 pattern.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Order of Apply	ing Rules		

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, 020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x, 012x → 101x, eliminates twos. Second right to left, third left to right, 011 → 100. Second pass eliminates 1011 pattern.
- Lucas (now): two passes. First as Ahlbach et al..

Fibonacci	Continued Fractions	Generalized	Arithmetic		
00000		OO	0000000		
Order of Applying Rules					

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, 020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x, 012x → 101x, eliminates twos. Second right to left, third left to right, 011 → 100. Second pass eliminates 1011 pattern.
- Lucas (now): two passes. First as Ahlbach *et al.*. Second insert leading 0, then left to right, (01)^k1 → 1(0)^{2k}.

00000	00000	00	0000000			
Order of Applying Rules						

- Tee (2002): right to left with recursive two rule, $O(n^3)$.
- Ahlbach *et al.* (2012 arxiv): three passes. First left to right, 020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x, 012x → 101x, eliminates twos. Second right to left, third left to right, 011 → 100. Second pass eliminates 1011 pattern.
- Lucas (now): two passes. First as Ahlbach *et al.*. Second insert leading 0, then left to right, (01)^k1 → 1(0)^{2k}. A pair of zeros means move pointer to right.

Fibonacci Co	Continued Fractions	Generalized	Arithmetic
			00000000
Subtraction			

Fibonacci Co	Continued Fractions	Generalized	Arithmetic
			00000000
Subtraction			

If 0 - 1, use reallocation as with standard subtraction (at most three passes), then 1 - 1 = 0.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Subtraction			

If 0 - 1, use reallocation as with standard subtraction (at most three passes), then 1 - 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Subtraction			
Subtraction			

If 0 - 1, use reallocation as with standard subtraction (at most three passes), then 1 - 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.

Fenwick (2003) introduces a difficult complement, Ahlbach *et al.* just subtract digits, add another pass to eliminate negative digits. Tee also thought it was $O(n^3)$.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	00000000
Subtraction	Example		

Representing Numbers Using Fibonacci Variants

Multiplication F	our Ways		
			00000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Multiplication F	our Ways		
			00000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Best to accumulate products and convert to Zeckendorf representation after every sum.

Ν	Aultiplication F	our Ways		
				000000000
Fil	bonacci	Continued Fractions	Generalized	Arithmetic

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Best to accumulate products and convert to Zeckendorf representation after every sum.

 Tee (2002): Russian Peasant Multiplication: if y is even, xy = (2x)(y/2), else x + x(y - 1) = x + (2x)((y - 1)/2).

Multiplication F	Four Ways		
Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	○○○○●○○

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Best to accumulate products and convert to Zeckendorf representation after every sum.

 Tee (2002): Russian Peasant Multiplication: if y is even, xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2). Doubling: 1 → 2, return to Zeckendorf form.

Multiplication	on Four Ways		
			00000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Best to accumulate products and convert to Zeckendorf representation after every sum.

• Tee (2002): Russian Peasant Multiplication: if y is even, xy = (2x)(y/2), else x + x(y - 1) = x + (2x)((y - 1)/2). Doubling: $1 \rightarrow 2$, return to Zeckendorf form. Halving: left to right $xyz \rightarrow (x - 1)(y + 1)(z + 1)$ when x is odd, at end digits are 0 or 2 apart from last, that may be 1. MADISO

Multiplication	on Four Ways		
			00000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

$$m \ge 2i: \qquad f_m f_{2i} = \sum_{j=0}^{i-1} f_{m+2i-2-4j},$$

$$m \ge 2i+1: \quad f_m f_{2i+1} = f_{m-2i} + \sum_{j=0}^{i-1} f_{m+2i-1-4j}.$$

Best to accumulate products and convert to Zeckendorf representation after every sum.

• Tee (2002): Russian Peasant Multiplication: if y is even, xy = (2x)(y/2), else x + x(y - 1) = x + (2x)((y - 1)/2). Doubling: $1 \rightarrow 2$, return to Zeckendorf form. Halving: left to right $xyz \rightarrow (x - 1)(y + 1)(z + 1)$ when x is odd, at end digits are 0 or 2 apart from last, that may be 1. Then replace twos by ones.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			00000000
Multiplicat	ion Continued		

• Fenwick (2003): Egyptian multiplication successively doubles one number and by subtraction finds powers of two that make up the other number, adds appropriate powers.

Fibonacci	Continued Fractions	Generalized	Arithmetic
			00000000
Multiplicat	ion Continued		

Fibonacci	Continued Fractions	Generalized	Arithmetic
			00000000
Multiplicati	on Continued		

Fenwick replaced doubling by adding previous two: Fibonacci numbers instead of powers of two,

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	○○○○○○●○
Multiplicati	on Continued		

Fenwick replaced doubling by adding previous two: Fibonacci numbers instead of powers of two, adding instead of two doublings,

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000		00	○○○○○●○
Multiplicat	tion Continued		

Fenwick replaced doubling by adding previous two: Fibonacci numbers instead of powers of two, adding instead of two doublings, but a bigger table.

Multiplicat	tion Continued	00	0000000
Fibonacci	Continued Fractions	Generalized	Arithmetic

Fenwick replaced doubling by adding previous two: Fibonacci numbers instead of powers of two, adding instead of two doublings, but a bigger table.

 Checkerboard: Napier multiplied on a checkerboard essentially using base two, as described in Gardner, "Knotted Doughnuts."

00000	00000	00	000000 0 0
Multiplication	Continued		

Fenwick replaced doubling by adding previous two: Fibonacci numbers instead of powers of two, adding instead of two doublings, but a bigger table.

 Checkerboard: Napier multiplied on a checkerboard essentially using base two, as described in Gardner, "Knotted Doughnuts." We can do the same in Zeckendorf form.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	00000000
Conclusion			
Conclusion			

• Zeckendorf notation is an excellent technique for representing streams of variable length natural numbers, and is particularly good for continued fractions.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	0000000●
Conclusion			

- Zeckendorf notation is an excellent technique for representing streams of variable length natural numbers, and is particularly good for continued fractions.
- Generalizing beyond Fibonacci numbers is possible, but turns out to not usually be useful.

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	0000000●
Conclusion			

- Zeckendorf notation is an excellent technique for representing streams of variable length natural numbers, and is particularly good for continued fractions.
- Generalizing beyond Fibonacci numbers is possible, but turns out to not usually be useful.
- Arithmetic on numbers in Zeckendorf form is straightforward, particularly with a checkerboard (division by Ancient Egyptian, Fibonacci adding or checkerboard).

Fibonacci	Continued Fractions	Generalized	Arithmetic
00000	00000	00	0000000●
Conclusion			

- Zeckendorf notation is an excellent technique for representing streams of variable length natural numbers, and is particularly good for continued fractions.
- Generalizing beyond Fibonacci numbers is possible, but turns out to not usually be useful.
- Arithmetic on numbers in Zeckendorf form is straightforward, particularly with a checkerboard (division by Ancient Egyptian, Fibonacci adding or checkerboard).
- Future work: which multiplication/division algorithms are most efficient? Bunder (1992) Negafibonacci numbers for integers

Fibonacci	Continued Fractions	Generalized	Arithmetic
			0000000
Conclusion			

- Zeckendorf notation is an excellent technique for representing streams of variable length natural numbers, and is particularly good for continued fractions.
- Generalizing beyond Fibonacci numbers is possible, but turns out to not usually be useful.
- Arithmetic on numbers in Zeckendorf form is straightforward, particularly with a checkerboard (division by Ancient Egyptian, Fibonacci adding or checkerboard).
- Future work: which multiplication/division algorithms are most efficient? Bunder (1992) Negafibonacci numbers for integers

