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Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

In closed form, fk =
φk − (1 − φ)k√

5
where φ =

1 +
√

5

2
is the

golden ratio.

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

In closed form, fk =
φk − (1 − φ)k√

5
where φ =

1 +
√

5

2
is the

golden ratio.

The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, . . ..
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Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16. f7 = 13, 16 − 13 = 3.
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Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16. f7 = 13, 16 − 13 = 3.
f4 = 3, so 825 = f15 + f12 + f10 + f7 + f4, or (10010100100100)Z .
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation,
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction).
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction). Assume
two different sets with the same sum, eliminate common numbers.
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Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction). Assume
two different sets with the same sum, eliminate common numbers.
The largest (in one set) must be larger than the collection in the
other set, so the two sums cannot be the same!
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Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones.
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Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ.
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Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.
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Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number.
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Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.
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Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.

E.g. 10010101110001011011
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Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.

E.g. 10010101110001011011 represents 10010101, 1000101, and
01, or f2 + f5 + f7 + f9, f2 + f6 + f8, f3, or 53, 30, 2.
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Representing Numbers from Distributions
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Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.
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Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.
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Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.
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Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.

Numbers Poisson with λ = 4: Pr(X = k) = λke−λ/k!.
Numerically 0 to 31:
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Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.

Numbers Poisson with λ = 4: Pr(X = k) = λke−λ/k!.
Numerically 0 to 31: Fibonacci coding 4.6 bits per number,
binary 5.
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24).
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Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4,
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0,
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

= 9 +
1

1 + 1
20/4

= 9 +
1

1 + 1
5
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Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

= 9 +
1

1 + 1
20/4

= 9 +
1

1 + 1
5

= [9; 1, 5].
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Fibonacci Continued Fractions Generalized Arithmetic

Continued Fractions

A simple continued fraction for a (positive) fraction is

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

≡ b0 +
1

b1 +

1

b2 + · · · +
1

bn

≡ [b0; b1, b2, . . . , bn],

where b0 is an integer, and the bi ’s for i > 0 are natural numbers.
The bi ’s are traditionally called partial quotients.
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Fibonacci Continued Fractions Generalized Arithmetic

Continued Fractions

A simple continued fraction for a (positive) fraction is

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

≡ b0 +
1

b1 +

1

b2 + · · · +
1

bn

≡ [b0; b1, b2, . . . , bn],

where b0 is an integer, and the bi ’s for i > 0 are natural numbers.
The bi ’s are traditionally called partial quotients.

Algorithm: given x , set x0 = x and b0 = &x0', then

xi =
1

xi−1 − bi−1
and bi = &xi' for i = 1, 2, . . . ,

until some xi is an integer.
Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.
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Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.
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Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.

Arbitrarily large partial quotients are possible, but increasingly
unlikely.
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Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.

Arbitrarily large partial quotients are possible, but increasingly
unlikely. Fibonacci coding is an ideal choice for representing
continued fraction partial quotients for arbitrary irrationals.

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Gauss-Kuzmin Distribution

k Prob. k Prob.
1 0.415037 10 0.011973
2 0.169925 100 1.41434 × 10−4

3 0.093109 1000 1.43981 × 10−6

4 0.058894 10 000 1.44241 × 10−8

5 0.040642
6 0.029747 > 10 1.25531 × 10−1

7 0.022720 > 100 1.42139 × 10−2

8 0.017922 > 1000 1.44053 × 10−3

9 0.014500 > 10 000 1.44248 × 10−4
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Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664.
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Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge).
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Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.
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Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge).
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Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.
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Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

# partial quotients

# correct binary digits
=

6(ln 2)2

π2
≈ 0.292.
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Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

# partial quotients

# correct binary digits
=

6(ln 2)2

π2
≈ 0.292.

Or, about 3.42 times number of partial quotients bits in binary,
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Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

# partial quotients

# correct binary digits
=

6(ln 2)2

π2
≈ 0.292.

Or, about 3.42 times number of partial quotients bits in binary,
Slightly more efficient (if you don’t want the continued fraction
data).
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Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.
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Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .
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Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .

k-bonacci numbers satisfy un =
n

∑

i=1

un−i , u1 = 1, ui = 0 for i < 0.
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Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .

k-bonacci numbers satisfy un =
n

∑

i=1

un−i , u1 = 1, ui = 0 for i < 0.

Numbers can be uniquely represented by sums of k-bonacci
numbers with no k ones in a row. So, k-bonacci coding uses k − 1
digits to separate numbers in variable length encoding.
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26

π partial quotients (binary 17 or 3.42)
k 2 3 4 5

Bits 3.71 4.33 5.27 6.25
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Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26

π partial quotients (binary 17 or 3.42)
k 2 3 4 5

Bits 3.71 4.33 5.27 6.25
Not really worth
it !

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.
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Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .
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Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .
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Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .

Edge two rule: (. . . (+1)(−2))Z and (. . . (+1)(−2)(+1))Z .
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Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .

Edge two rule: (. . . (+1)(−2))Z and (. . . (+1)(−2)(+1))Z .

For example, (101001001)F + (100101001)F =
(201102002)F .
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Addition Example

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos.
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100.
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al..
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al.. Second
insert leading 0, then left to right, (01)k1 → 1(0)2k .
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Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al.. Second
insert leading 0, then left to right, (01)k1 → 1(0)2k . A pair of
zeros means move pointer to right.
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Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.
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Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.
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Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.
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Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.

Fenwick (2003) introduces a difficult complement, Ahlbach et al.

just subtract digits, add another pass to eliminate negative digits.
Tee also thought it was O(n3).

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Subtraction Example
f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form.
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form. Halving: left to
right xyz → (x − 1)(y + 1)(z + 1) when x is odd, at
end digits are 0 or 2 apart from last, that may be 1.
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Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form. Halving: left to
right xyz → (x − 1)(y + 1)(z + 1) when x is odd, at
end digits are 0 or 2 apart from last, that may be 1.
Then replace twos by ones.
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Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers.

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
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Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two,

Stephen Lucas Representing Numbers Using Fibonacci Variants



Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings,
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Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.
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Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.

Checkerboard: Napier multiplied on a checkerboard essentially
using base two, as described in Gardner, “Knotted
Doughnuts.”
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Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.

Checkerboard: Napier multiplied on a checkerboard essentially
using base two, as described in Gardner, “Knotted
Doughnuts.” We can do the same in Zeckendorf form.
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Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.
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Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.
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Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).
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Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).

Future work: which multiplication/division algorithms are
most efficient? Bunder (1992) Negafibonacci numbers for
integers
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Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).

Future work: which multiplication/division algorithms are
most efficient? Bunder (1992) Negafibonacci numbers for
integers

Thank You
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