
Representing Numbers Using Fibonacci Variants

Stephen Lucas

Department of Mathematics and Statistics
James Madison University, Harrisonburg VA

September 9 2013

Fibonacci Continued Fractions Generalized Arithmetic

Outline

Fibonacci Numbers

Zeckendorf Form and Fibonacci Coding

Continued Fractions

Generalizing Fibonacci Coding

Arithmetic

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

In closed form, fk =
φk − (1 − φ)k√

5
where φ =

1 +
√

5

2
is the

golden ratio.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Fibonacci Numbers

Fibonacci numbers satisfy fn = fn−1 + fn−2 with f0 = 0, f1 = 1.

In closed form, fk =
φk − (1 − φ)k√

5
where φ =

1 +
√

5

2
is the

golden ratio.

The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16. f7 = 13, 16 − 13 = 3.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Zeckendorf Form

Every natural number can be uniquely represented by a sum of
distinct non-consecutive Fibonacci numbers, starting from f2 = 1.

Discovered by Eduourd Zeckendorf in 1939, published by him in
1972, first published (in German) in 1952.

Greedy algorithm: choose largest Fibonacci number less than
remaining, subtract, repeat.

For example, 825. f15 = 610, 825 − 610 = 215. f12 = 144,
215 − 144 = 71. f10 = 55, 71 − 55 = 16. f7 = 13, 16 − 13 = 3.
f4 = 3, so 825 = f15 + f12 + f10 + f7 + f4, or (10010100100100)Z .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction). Assume
two different sets with the same sum, eliminate common numbers.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Proofs

Existence by induction: 1 = f2, 2 = f3, 3 = f4.
Assume every integer from 1 to n has a Zeckendorf representation.
If n + 1 is a Fibonacci number, done. Otherwise, there is some j

such that fj < n + 1 < fj+1. Now n + 1 − fj < n, so has a
Zeckendorf representation, and n + 1 − fj < fj+1 − fj = fj−1, so
n + 1 − fj doesn’t contain fj , done.

Uniqueness: We need that the sum of distinct non-consecutive
Fibonacci numbers up to fn is less than fn+1 (induction). Assume
two different sets with the same sum, eliminate common numbers.
The largest (in one set) must be larger than the collection in the
other set, so the two sums cannot be the same!

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.

E.g. 10010101110001011011

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Efficiency

Zeckendorf representation of a number is a string of zeros and
(non-consecutive) ones. It doesn’t formally have a base. But, since
fk is the closest natural number to φk/

√
5, the ratio of Fibonacci

numbers approaches φ. Thus Zeckendorf representation has
roughly base φ ≈ 1.618 < 2, less efficient than binary.

But Zeckendorf representation can’t contain a pair of consecutive
ones, so a pair can be used to separate numbers in a list, using a
variable number of digits per number. Fibonacci coding reverses
the order of digits, so is always a trailing one, and only one extra
one is “wasted” separating numbers.

E.g. 10010101110001011011 represents 10010101, 1000101, and
01, or f2 + f5 + f7 + f9, f2 + f6 + f8, f3, or 53, 30, 2.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.

Numbers Poisson with λ = 4: Pr(X = k) = λke−λ/k!.
Numerically 0 to 31:

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Representing Numbers from Distributions

Fibonacci coding is particularly useful when there is no prior
knowledge of the upper bound on numbers from a list.

Numbers uniformly distributed from one to a million:
Fibonacci coding 27.8 bits per number, binary 20.

One to ten equally likely, 106 one in ten thousand: Fibonacci
coding 4.6 bits per number, binary still 20.

Numbers Poisson with λ = 4: Pr(X = k) = λke−λ/k!.
Numerically 0 to 31: Fibonacci coding 4.6 bits per number,
binary 5.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

= 9 +
1

1 + 1
20/4

= 9 +
1

1 + 1
5

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Greatest Common Divisor

Continued Fractions are closely related to the greatest common
divisor algorithm.

For example, consider gcd(236, 24). 236 = 9 × 24 + 20,
24 = 1 × 20 + 4, 20 = 5 × 4 + 0, so gcd(236, 24) = 4.

Or
236

24
= 9 +

20

24
= 9 +

1

24/20
= 9 +

1

1 + 4
20

= 9 +
1

1 + 1
20/4

= 9 +
1

1 + 1
5

= [9; 1, 5].

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Continued Fractions

A simple continued fraction for a (positive) fraction is

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

≡ b0 +
1

b1 +

1

b2 + · · · +
1

bn

≡ [b0; b1, b2, . . . , bn],

where b0 is an integer, and the bi ’s for i > 0 are natural numbers.
The bi ’s are traditionally called partial quotients.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Continued Fractions

A simple continued fraction for a (positive) fraction is

p

q
= b0 +

1

b1 +
1

b2 +

...

bn−1 +
1

bn

≡ b0 +
1

b1 +

1

b2 + · · · +
1

bn

≡ [b0; b1, b2, . . . , bn],

where b0 is an integer, and the bi ’s for i > 0 are natural numbers.
The bi ’s are traditionally called partial quotients.

Algorithm: given x , set x0 = x and b0 = &x0', then

xi =
1

xi−1 − bi−1
and bi = &xi' for i = 1, 2, . . . ,

until some xi is an integer.
Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.

Arbitrarily large partial quotients are possible, but increasingly
unlikely.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arbitrary Irrationals

The continued fraction of a rational is finite, but the algorithm can
also be applied to irrationals, and forms an infinite sequence.

Continued fractions have many elegant features, including the
Gauss-Kuzmin theorem: for almost all irrationals between zero and
one,

lim
n→∞

P(kn = k) = − log2

(

1 −
1

(k + 1)2

)

.

Arbitrarily large partial quotients are possible, but increasingly
unlikely. Fibonacci coding is an ideal choice for representing
continued fraction partial quotients for arbitrary irrationals.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Gauss-Kuzmin Distribution

k Prob. k Prob.
1 0.415037 10 0.011973
2 0.169925 100 1.41434 × 10−4

3 0.093109 1000 1.43981 × 10−6

4 0.058894 10 000 1.44241 × 10−8

5 0.040642
6 0.029747 > 10 1.25531 × 10−1

7 0.022720 > 100 1.42139 × 10−2

8 0.017922 > 1000 1.44053 × 10−3

9 0.014500 > 10 000 1.44248 × 10−4

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

partial quotients

correct binary digits
=

6(ln 2)2

π2
≈ 0.292.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

partial quotients

correct binary digits
=

6(ln 2)2

π2
≈ 0.292.

Or, about 3.42 times number of partial quotients bits in binary,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

The first 20 000 partial quotients of ln(2) has largest partial
quotient 963 664. In binary, 20 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.74 bits.

The first 20 000 partial quotients of π has largest partial
quotient 74 174. In binary, 17 bits per partial quotient (with
previous knowledge). Fibonacci coding requires 3.71 bits.

Loch’s theorem: lim
n→∞

partial quotients

correct binary digits
=

6(ln 2)2

π2
≈ 0.292.

Or, about 3.42 times number of partial quotients bits in binary,
Slightly more efficient (if you don’t want the continued fraction
data).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .

k-bonacci numbers satisfy un =
n

∑

i=1

un−i , u1 = 1, ui = 0 for i < 0.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Generalized Fibonacci Coding

The effective base of Zeckendorf form is φ ≈ 1.618.

Tribonacci numbers satisfy tn = tn−1 + tn−2 + tn−3 with
t−1 = t0 = 0, t1 = 1, and grow like 1.8393n .
Tetranacci numbers satisfy un = un−1 + un−2 + un−3 + un−4 with
u−2 = u−1 = u0 = 0, u1 = 1, and grow like 1.9276n .

k-bonacci numbers satisfy un =
n

∑

i=1

un−i , u1 = 1, ui = 0 for i < 0.

Numbers can be uniquely represented by sums of k-bonacci
numbers with no k ones in a row. So, k-bonacci coding uses k − 1
digits to separate numbers in variable length encoding.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26

π partial quotients (binary 17 or 3.42)
k 2 3 4 5

Bits 3.71 4.33 5.27 6.25

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Examples

Uniformly distributed one to a million (binary 20)
k 2 3 4 5

Bits 27.82 23.34 22.86 23.40

One to ten equally likely, 106 one in ten thousand (binary 20)
k 2 3 4 5

Bits 4.60 5.00 5.90 6.90

Poisson λ = 4 (binary 5)
k 2 3 4 5

Bits 4.57 4.96 5.85 6.85

ln(2) partial quotients (binary 20 or 3.42)
k 2 3 4 5

Bits 3.74 4.35 5.28 6.26

π partial quotients (binary 17 or 3.42)
k 2 3 4 5

Bits 3.71 4.33 5.27 6.25
Not really worth
it !

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .

Edge two rule: (. . . (+1)(−2))Z and (. . . (+1)(−2)(+1))Z .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Arithmetic

Arithmetic is possible on numbers in Zeckendorf form, and is most
easily done on a checkerboard. Manipulating digits is easy, but
numbers need to be returned to Zeckendorf form.

Pair rule: Since fn − fn−1 − fn−2 = 0, subtracting one from
successive digits adds one to the one to the left, or
(. . . (+1)(−1)(−1) . . .)Z .

Two rule: Subtracting fn+1 = fn + fn−1 from fn = fn−1 + fn−2,
fn+1 + fn−2 − 2fn = 0, or (. . . (+1)(−2)(0)(+1) . . .)Z .

Edge two rule: (. . . (+1)(−2))Z and (. . . (+1)(−2)(+1))Z .

For example, (101001001)F + (100101001)F =
(201102002)F .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Addition Example

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al..

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al.. Second
insert leading 0, then left to right, (01)k1 → 1(0)2k .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Order of Applying Rules

We didn’t use a systematic approach to simplifying addition.

Tee (2002): right to left with recursive two rule, O(n3).

Ahlbach et al. (2012 arxiv): three passes. First left to right,
020x → 100(x + 1), 030x → 110(x + 1), 021x → 110x ,
012x → 101x , eliminates twos. Second right to left, third left
to right, 011 → 100. Second pass eliminates 1011 pattern.

Lucas (now): two passes. First as Ahlbach et al.. Second
insert leading 0, then left to right, (01)k1 → 1(0)2k . A pair of
zeros means move pointer to right.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Subtraction

In columns, 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0.

If 0 − 1, use reallocation as with standard subtraction (at most
three passes), then 1 − 1 = 0.

All ones, finally one Lucas pass, back to Zeckendorf form.

Fenwick (2003) introduces a difficult complement, Ahlbach et al.

just subtract digits, add another pass to eliminate negative digits.
Tee also thought it was O(n3).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Subtraction Example
f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

f2f3f4f5f6f7f8f9f10f11f12

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form. Halving: left to
right xyz → (x − 1)(y + 1)(z + 1) when x is odd, at
end digits are 0 or 2 apart from last, that may be 1.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Four Ways

Freitag and Phillips (1998): Multiplication digit by digit, using

m ≥ 2i : fmf2i =
i−1
∑

j=0

fm+2i−2−4j ,

m ≥ 2i + 1 : fmf2i+1 = fm−2i +
i−1
∑

j=0

fm+2i−1−4j .

Best to accumulate products and convert to Zeckendorf
representation after every sum.
Tee (2002): Russian Peasant Multiplication: if y is even,
xy = (2x)(y/2), else x + x(y − 1) = x + (2x)((y − 1)/2).
Doubling: 1 → 2, return to Zeckendorf form. Halving: left to
right xyz → (x − 1)(y + 1)(z + 1) when x is odd, at
end digits are 0 or 2 apart from last, that may be 1.
Then replace twos by ones.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings,

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.

Checkerboard: Napier multiplied on a checkerboard essentially
using base two, as described in Gardner, “Knotted
Doughnuts.”

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Multiplication Continued

Fenwick (2003): Egyptian multiplication successively doubles
one number and by subtraction finds powers of two that make
up the other number, adds appropriate powers. Requires
remembering a list of numbers.
Fenwick replaced doubling by adding previous two: Fibonacci
numbers instead of powers of two, adding instead of two
doublings, but a bigger table.

Checkerboard: Napier multiplied on a checkerboard essentially
using base two, as described in Gardner, “Knotted
Doughnuts.” We can do the same in Zeckendorf form.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).

Future work: which multiplication/division algorithms are
most efficient? Bunder (1992) Negafibonacci numbers for
integers

Stephen Lucas Representing Numbers Using Fibonacci Variants

Fibonacci Continued Fractions Generalized Arithmetic

Conclusion

Zeckendorf notation is an excellent technique for representing
streams of variable length natural numbers, and is particularly
good for continued fractions.

Generalizing beyond Fibonacci numbers is possible, but turns
out to not usually be useful.

Arithmetic on numbers in Zeckendorf form is straightforward,
particularly with a checkerboard (division by Ancient
Egyptian, Fibonacci adding or checkerboard).

Future work: which multiplication/division algorithms are
most efficient? Bunder (1992) Negafibonacci numbers for
integers

Thank You

Stephen Lucas Representing Numbers Using Fibonacci Variants

	Fibonacci
	Fibonacci Numbers
	Zeckendorf Form
	Proofs
	Efficiency
	Representing Numbers from Distributions

	Continued Fractions
	Greatest Common Divisor
	Continued Fractions
	Arbitrary Irrationals
	Gauss-Kuzmin Distribution
	Examples

	Generalized
	Generalized Fibonacci Coding
	Examples

	Arithmetic
	Arithmetic
	Addition Example
	Order of Applying Rules
	Subtraction
	Subtraction Example
	Multiplication Four Ways
	Multiplication Continued
	Conclusion

	4BA5FDD5-3E20-4C59-A37A-EA434D055994: On

