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Ancient Techniques Positional Notation Multiplication as Addition High Precision

Definitions

(a) If a and b are natural numbers, a × b equals a added to itself b

times, or b added to itself a times, = b × a.
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Definitions

(a) If a and b are natural numbers, a × b equals a added to itself b

times, or b added to itself a times, = b × a.

(b) If a, b and c are natural numbers, a(b + c) = ab + ac .
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Definitions

(a) If a and b are natural numbers, a × b equals a added to itself b

times, or b added to itself a times, = b × a.

(b) If a, b and c are natural numbers, a(b + c) = ab + ac .
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Using Squares & Triangular Numbers

Ancient Babylon:

(a + b)2 = a2 + 2ab + b2 and (a − b)2 = a2 − 2ab + b2. Subtract:

ab =
(a + b)2 − (a − b)2

4
.
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Using Squares & Triangular Numbers

Ancient Babylon:

(a + b)2 = a2 + 2ab + b2 and (a − b)2 = a2 − 2ab + b2. Subtract:

ab =
(a + b)2 − (a − b)2

4
.

Needs a table of squares, which can be built by adding successive
odd integers: (n + 1)2 = n2 + (2n + 1).
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Using Squares & Triangular Numbers

Ancient Babylon:

(a + b)2 = a2 + 2ab + b2 and (a − b)2 = a2 − 2ab + b2. Subtract:

ab =
(a + b)2 − (a − b)2

4
.

Needs a table of squares, which can be built by adding successive
odd integers: (n + 1)2 = n2 + (2n + 1).

Also: ab =
(

(a + b)2 − a2 − b2
)/

2 or (A + d)(A − d) = A2 − d2.
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Using Squares & Triangular Numbers

Ancient Babylon:

(a + b)2 = a2 + 2ab + b2 and (a − b)2 = a2 − 2ab + b2. Subtract:

ab =
(a + b)2 − (a − b)2

4
.

Needs a table of squares, which can be built by adding successive
odd integers: (n + 1)2 = n2 + (2n + 1).

Also: ab =
(

(a + b)2 − a2 − b2
)/

2 or (A + d)(A − d) = A2 − d2.

Teacher Resources on Line: If Tn = 1 + 2 + · · · + n = n(n + 1)/2,
then ab = Ta + Tb−1 − Ta−b.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59
.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59
.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59
.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59
.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 .
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 .
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Ancient Techniques Positional Notation Multiplication as Addition High Precision

Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 = 2×944+531 .
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 = 2×944+531 = 1×1888+531 .
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 = 2×944+531 = 1×1888+531 = 2419.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 = 2×944+531 = 1×1888+531 = 2419.

Traditional way: list halvings of first number (round down) and
doublings of second, add second numbers with odd first number.
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Russian(?) Peasant

Doubling and Halving: If a is even, a × b = (a/2) × (2b), and if a

is odd, a × b = (a − 1 + 1) × b = (a − 1) × b + b.

41×59 = 40×59+59 = 20×118+59 = 10×236+59 = 5×472+
59 = 4×472+472+59 = 2×944+531 = 1×1888+531 = 2419.

Traditional way: list halvings of first number (round down) and
doublings of second, add second numbers with odd first number.
For example

√
41 59
20 118
10 236√
5 472
2 944√
1 1888

59 + 472 + 1888 = 2419.
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two:

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59.
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
8 472

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
8 472
16 944
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
8 472
16 944
32 1888
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
8 472
16 944
32 41 − 32 = 9 1888

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 59
2 118
4 236
8 9 − 8 = 1 472
16 944
32 41 − 32 = 9 1888
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Egyptian Doubling

Doubling and halving is equivalent to converting from base ten to
base two: 4110 = 1010012, so 41 × 59 = (25 + 23 + 20) × 59. But
you can convert to base two by subtracting powers of two.

41 59

1 1 − 1 = 0 59
2 118
4 236
8 9 − 8 = 1 472
16 944
32 41 − 32 = 9 1888

Stephen Lucas So You Think You Can Multiply?
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Geometry
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Positional Definition Example

By the definition,

243 × 596
=

(

2 × 102 + 4 × 101 + 3 × 100
)

×
(

5 × 102 + 9 × 101 + 6 × 100
)
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Positional Definition Example

By the definition,

243 × 596
=

(

2 × 102 + 4 × 101 + 3 × 100
)

×
(

5 × 102 + 9 × 101 + 6 × 100
)

= (2 × 5) × 104 + (2 × 9) × 103 + (2 × 6) × 102 + (4 × 5) × 103

+(4 × 9) × 102 + (4 × 6) × 101 + (3 × 5) × 102 + (3 × 9) × 101

+(3 × 6) × 100
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Positional Definition Example

By the definition,

243 × 596
=

(

2 × 102 + 4 × 101 + 3 × 100
)

×
(

5 × 102 + 9 × 101 + 6 × 100
)

= (2 × 5) × 104 + (2 × 9) × 103 + (2 × 6) × 102 + (4 × 5) × 103

+(4 × 9) × 102 + (4 × 6) × 101 + (3 × 5) × 102 + (3 × 9) × 101

+(3 × 6) × 100

= 10 × 104 + (18 + 20) × 103 + (12 + 36 + 15) × 102

+(24 + 27) × 101 + 18 × 100
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Positional Definition Example

By the definition,

243 × 596
=

(

2 × 102 + 4 × 101 + 3 × 100
)

×
(

5 × 102 + 9 × 101 + 6 × 100
)

= (2 × 5) × 104 + (2 × 9) × 103 + (2 × 6) × 102 + (4 × 5) × 103

+(4 × 9) × 102 + (4 × 6) × 101 + (3 × 5) × 102 + (3 × 9) × 101

+(3 × 6) × 100

= 10 × 104 + (18 + 20) × 103 + (12 + 36 + 15) × 102

+(24 + 27) × 101 + 18 × 100

= 10 × 104 + 38 × 103 + 63 × 102 + 51 × 101 + 18 × 100
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Positional Definition Example

By the definition,

243 × 596
=

(

2 × 102 + 4 × 101 + 3 × 100
)

×
(

5 × 102 + 9 × 101 + 6 × 100
)

= (2 × 5) × 104 + (2 × 9) × 103 + (2 × 6) × 102 + (4 × 5) × 103

+(4 × 9) × 102 + (4 × 6) × 101 + (3 × 5) × 102 + (3 × 9) × 101

+(3 × 6) × 100

= 10 × 104 + (18 + 20) × 103 + (12 + 36 + 15) × 102

+(24 + 27) × 101 + 18 × 100

= 10 × 104 + 38 × 103 + 63 × 102 + 51 × 101 + 18 × 100

= 1 × 105 + 4 × 104 + 4 × 103 + 8 × 102 + 2 × 101 + 8 × 100

= 144 228.

Stephen Lucas So You Think You Can Multiply?
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Positional Example Continued

Laying out the digit products:

2 4 3
× 5 9 6

1 0
1 8

1 2
2 0

3 6
2 4

1 5
2 7

1 1 1 1 8

1 4 4 8 2 8
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

2 4 3
5 9 6
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 0

2 4 3
6 5 9 6
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1
1 0 8

2 4 3
6 5 6 9 6
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 1
1 0 8 2

6 2 4 3
6 5 6 9 6 6
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 1
1 0 8 2

6 2 4 3
6 5 6 9 6 6 6

5 9
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

2 0
1 1

1 0 8 2

6 2 4 3
6 5 6 9 6 6 6

6 5 9
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

3
2 0
1 1 6

1 0 8 2

6 2 4 3
6 5 6 9 6 6 6

6 5 6 9
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

3
2 0 2
1 1 6

1 0 8 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6

6 5 6 9
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

3
2 0 2
1 1 6

1 0 8 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6 6

6 5 6 9 9
5
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1
3 5

2 0 2
1 1 6

1 0 8 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6 6

6 5 6 9 9
6 5
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 2
3 5

2 0 2
1 1 6 7

1 0 8 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6 6

6 5 6 9 6 9
6 5
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 2
3 5

2 0 2 1
1 1 6 7

1 0 8 2 4 8

6 2 6 4 6 3
6 5 6 9 6 6 6 6 6 6

6 5 6 9 6 9
6 5
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Hinge Multiplication

Lay out the digit multiples, the entire second number times the
digits of the first, then add. (Early Hindu texts, Medieval English)

1 41 41 81 2 8

1 2
3 5

2 0 2 1
1 1 6 7

1 0 8 2 4 8

6 2 6 4 6 3
6 5 6 9 6 6 6 6 6 6

6 5 6 9 6 9
6 5
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

2 4 3
5 9 6
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

1 0

2 4 3
6 5 9 6
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

1
1 6 0 8

2 4 3
6 5 6 9 6
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

1 9
1 6 0 6 8 2

6 2 4 3
6 5 6 9 6 6

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

1 9
1 6 0 6 8 2

6 2 4 3
6 5 6 9 6 6 6

5 9

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

3
6 1 9

1 6 0 6 8 2

6 2 4 3
6 5 6 9 6 6 6

6 5 9

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4
6 3 2
6 1 6 9 8

1 6 0 6 8 6 2
6 2 4 3

6 5 6 9 6 6 6
6 5 6 9

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4 3
6 3 6 2 0
6 1 6 9 6 8

1 6 0 6 8 6 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6

6 5 6 9

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4 3
6 3 6 2 0
6 1 6 9 6 8

1 6 0 6 8 6 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6 6

6 5 6 9 9
5

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4
4 6 3 5
6 3 6 2 6 0
6 1 6 9 6 8

1 6 0 6 8 6 2 4

6 2 6 4 3
6 5 6 9 6 6 6 6 6

6 5 6 9 9
6 5

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4 8
4 6 3 6 5
6 3 6 2 6 0
6 1 6 9 6 8 1

1 6 0 6 8 6 2 6 4
6 2 6 4 3

6 5 6 9 6 6 6 6 6
6 5 6 9 6 9

6 5

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4 8
4 6 3 6 5
6 3 6 2 6 0 2
6 1 6 9 6 8 6 1

1 6 0 6 8 6 2 6 4 8

6 2 6 4 6 3
6 5 6 9 6 6 6 6 6 6

6 5 6 9 6 9
6 5

Stephen Lucas So You Think You Can Multiply?
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Scratch Multiplication

As for hinge, but add new products above the line. Very popular in
Medieval Europe.

4 8
4 6 3 6 5
6 3 6 2 6 0 2
6 1 6 9 6 8 6 1

1 6 0 6 8 6 2 6 4 8

6 2 6 4 6 3
6 5 6 9 6 6 6 6 6 6

6 5 6 9 6 9
6 5

243 × 596 = 144 828
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Cross Multiplication

In terms of digits, abc × def = ad × 104 + (ae + bd) × 103+
(af + be + cd) × 102 + (bf + ce) × 101 + cf × 100.
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Cross Multiplication

In terms of digits, abc × def = ad × 104 + (ae + bd) × 103+
(af + be + cd) × 102 + (bf + ce) × 101 + cf × 100.
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Cross Multiplication

In terms of digits, abc × def = ad × 104 + (ae + bd) × 103+
(af + be + cd) × 102 + (bf + ce) × 101 + cf × 100.

Same effort as hinge, different order of digits. Recommended for
mental arithmetic.
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Lattice

Hinge separates digit multiples from carries, scratch and cross
don’t. Lattice is like hinge, but easier.
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Lattice

Hinge separates digit multiples from carries, scratch and cross
don’t. Lattice is like hinge, but easier.

For example, 24 × 89 = 2136 and 876 × 56 = 49 056.
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Napier’s Rods

To make digit products easier, in 1617 John Napier built rods
engraved with the digit multiplication table.
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Napier’s Rods Example

Consider 878 × 944.
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Napier’s Rods Example

Consider 878 × 944.
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Napier’s Rods Example

Consider 878 × 944.
8 7 8

× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

81 2 8 8 3 2

or

8 7 8
× 9 4 4

7 9 0 2
3 5 1 2

3 5 1 2

81 2 8 8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself.
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

8 7 8
× 9 4 4
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3

8 7 8
× 9 4 4

2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3 3

8 7 8
× 9 4 4

1 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3 3

8 7 8
× 9 4 4

3 5 1 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3
63 3

8 7 8
× 9 4 4

3 5 1 2
2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3
3 63 3

8 7 8
× 9 4 4

3 5 1 2
1 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

3
3 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

0 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

8 8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
1 7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

2 8 8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
1 7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

8 2 8 8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
1 7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

8 2 8 8 3 2

8 7 8
× 9 4 4

3 53 13 2
3 53 13 2

7 97 07 2

81 2 8 8 3 2
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The Modern Method

Just like Napier’s Rods, but you have to do digit multiplications
and intermediate carries yourself. For example

7 3
1 7 63 63 3

8 7 8
× 9 4 4

3 5 1 2
3 5 1 2

7 9 0 2

8 2 8 8 3 2

8 7 8
× 9 4 4

3 53 13 2
3 53 13 2

7 97 07 2

81 2 8 8 3 2

I prefer the second: product and sum carries are with the
associated numbers.
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Genaille’s Rods Example
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Genaille’s Rods Example

4 0 9 6 2 2
× 3 8 8

3 2 7 6 9 7 6
3 2 7 6 9 7 6

1 2 2 8 8 6 6

1 5 81 92 32 32 31 3 6
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y .
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).
Particularly promoted by Tycho Brahe (1580 on).
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).
Particularly promoted by Tycho Brahe (1580 on).
For example: 43.287 × 1.1033 = 0.43287 × 102 × 0.11033 × 101.
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).
Particularly promoted by Tycho Brahe (1580 on).
For example: 43.287 × 1.1033 = 0.43287 × 102 × 0.11033 × 101.
From tables, the best we have is cos(64◦21′1′′) ≈ 0.43287 and
cos(83◦39′56′′) ≈ 0.11033.
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).
Particularly promoted by Tycho Brahe (1580 on).
For example: 43.287 × 1.1033 = 0.43287 × 102 × 0.11033 × 101.
From tables, the best we have is cos(64◦21′1′′) ≈ 0.43287 and
cos(83◦39′56′′) ≈ 0.11033. So
xy = 1

2(cos(148◦0′57′′) + cos(−19◦18′55′′)) × 103 =
1
2(−0.848194503 + 0.943712787) × 103 = 0.047759142 × 103 =
47.759142.
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Prosthaphaeresis

cos a cos b = 1
2(cos(a + b) + cos(a − b)).

Scale numbers to between zero and one, so x = cos a, y = cos b,
or a = cos−1 x , b = cos−1 y . Then
xy = 1

2(cos(cos−1 x + cos−1 y) + cos(cos−1 x − cos−1 y)).
Particularly promoted by Tycho Brahe (1580 on).
For example: 43.287 × 1.1033 = 0.43287 × 102 × 0.11033 × 101.
From tables, the best we have is cos(64◦21′1′′) ≈ 0.43287 and
cos(83◦39′56′′) ≈ 0.11033. So
xy = 1

2(cos(148◦0′57′′) + cos(−19◦18′55′′)) × 103 =
1
2(−0.848194503 + 0.943712787) × 103 = 0.047759142 × 103 =
47.759142. The true value is 47.7585471, five digits of accuracy.
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Logarithms

Napier (1614): if y = log x then x/107 = (1 − 107)y . Then
log 107 = 0, logs increase as the number decreases, and
log xy = log x + log y .
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Logarithms

Napier (1614): if y = log x then x/107 = (1 − 107)y . Then
log 107 = 0, logs increase as the number decreases, and
log xy = log x + log y .

Briggs (1617): Common logarithms: log 1 = 0 and log 10 = 1, so if
y = log x then x = 10y .
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Logarithms

Napier (1614): if y = log x then x/107 = (1 − 107)y . Then
log 107 = 0, logs increase as the number decreases, and
log xy = log x + log y .

Briggs (1617): Common logarithms: log 1 = 0 and log 10 = 1, so if
y = log x then x = 10y .

Mercator (1666): Area under the hyperbola y = 1/x from x = 1
to x = a is called ln a. Geometrically satisfies ln ab = ln a + ln b

and the base is e.
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Logarithms

Napier (1614): if y = log x then x/107 = (1 − 107)y . Then
log 107 = 0, logs increase as the number decreases, and
log xy = log x + log y .

Briggs (1617): Common logarithms: log 1 = 0 and log 10 = 1, so if
y = log x then x = 10y .

Mercator (1666): Area under the hyperbola y = 1/x from x = 1
to x = a is called ln a. Geometrically satisfies ln ab = ln a + ln b

and the base is e.

Slide Rule (Oughtred 1622): Rulers with logarithmic scales add
lengths to multiply numbers.
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Pascal’s Triangle and Powers of Eleven

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
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Pascal’s Triangle and Powers of Eleven

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

110 = 1
111 = 11

112 = 121
113 = 1331

114 = 14641
115 = 161 051

116 = 1771 561
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Pascal’s Triangle and Powers of Eleven

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

110 = 1
111 = 11

112 = 121
113 = 1331

114 = 14641
115 = 161 051

116 = 1771 561

Using carries, Pascal’s triangle rows give powers of eleven.
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Explanation

a b c d ×
1 1

a b c d

a b c d

a a + b b + c c + d d

so

a b c d

a a + b b + c c + d d
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Explanation

a b c d ×
1 1

a b c d

a b c d

a a + b b + c c + d d

so

a b c d

a a + b b + c c + d d

each number is the sum of
the pair diagonally above.
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Generalization

Start with one, then if each digit is b times upper left plus a times
upper right, each row is a power of a × 10 + b.
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Generalization

Start with one, then if each digit is b times upper left plus a times
upper right, each row is a power of a × 10 + b. For example 27:

1
2 7

4 28 49
8 84 294 343

16 224 1176 2744 2401
32 560 3920 13 720 24 010 16 807
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Generalization

Start with one, then if each digit is b times upper left plus a times
upper right, each row is a power of a × 10 + b. For example 27:

1
2 7

4 28 49
8 84 294 343

16 224 1176 2744 2401
32 560 3920 13 720 24 010 16 807

270 = 1, 271 = 27, 272 = 729, 273 = 19 683, 274 = 531 441,
275 = 14 348 907.
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Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.
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Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.

Karatsuba (1962): Given base B and m ≈ n/2, let x = x1B
m + x0

and y = y1B
m + y0.
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Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.

Karatsuba (1962): Given base B and m ≈ n/2, let x = x1B
m + x0

and y = y1B
m + y0. Then

xy = (x1B
m +x0)(y1B

m +y0) = x1y1B
2m +(x1y0 +x0y1)B

m +x0y0.

Four (n/2) digit multiplications means n2 digit multiples.
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Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.

Karatsuba (1962): Given base B and m ≈ n/2, let x = x1B
m + x0

and y = y1B
m + y0. Then

xy = (x1B
m +x0)(y1B

m +y0) = x1y1B
2m +(x1y0 +x0y1)B

m +x0y0.

Four (n/2) digit multiplications means n2 digit multiples. But

x1y0 + x0y1 = (x1y1 + x1y0 + x0y1 + x0y0) − (x1y1 + x0y0)
= (x1 + x0)(y1 + y0) − x1y1 − x0y0,

reduces us to three multiplications: 3n2/4 digit multiples.
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Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.

Karatsuba (1962): Given base B and m ≈ n/2, let x = x1B
m + x0

and y = y1B
m + y0. Then

xy = (x1B
m +x0)(y1B

m +y0) = x1y1B
2m +(x1y0 +x0y1)B

m +x0y0.

Four (n/2) digit multiplications means n2 digit multiples. But

x1y0 + x0y1 = (x1y1 + x1y0 + x0y1 + x0y0) − (x1y1 + x0y0)
= (x1 + x0)(y1 + y0) − x1y1 − x0y0,

reduces us to three multiplications: 3n2/4 digit multiples.

Applied recursively, reduces to O(3nlog2 3) ≈ O(3n1.585).

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Karatsuba

Multiplying a pair of n digit number requires n2 digit multiplies.
Large numbers lead to life-of-universe timings.

Karatsuba (1962): Given base B and m ≈ n/2, let x = x1B
m + x0

and y = y1B
m + y0. Then

xy = (x1B
m +x0)(y1B

m +y0) = x1y1B
2m +(x1y0 +x0y1)B

m +x0y0.

Four (n/2) digit multiplications means n2 digit multiples. But

x1y0 + x0y1 = (x1y1 + x1y0 + x0y1 + x0y0) − (x1y1 + x0y0)
= (x1 + x0)(y1 + y0) − x1y1 − x0y0,

reduces us to three multiplications: 3n2/4 digit multiples.

Applied recursively, reduces to O(3nlog2 3) ≈ O(3n1.585).

Practically better than traditional method with more
than ∼ 400 (decimal) digits.
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .

Let W (t) = X (t)Y (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0, so

xy = W (b).

Stephen Lucas So You Think You Can Multiply?



Ancient Techniques Positional Notation Multiplication as Addition High Precision

Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .

Let W (t) = X (t)Y (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0, so

xy = W (b). To find the wi ’s, evaluate X (t) and Y (t) at five
points, giving W (t) at those points.
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .

Let W (t) = X (t)Y (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0, so

xy = W (b). To find the wi ’s, evaluate X (t) and Y (t) at five
points, giving W (t) at those points. Then interpolate! Choosing
the t’s carefully leads to easy Gaussian elimination.
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .

Let W (t) = X (t)Y (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0, so

xy = W (b). To find the wi ’s, evaluate X (t) and Y (t) at five
points, giving W (t) at those points. Then interpolate! Choosing
the t’s carefully leads to easy Gaussian elimination. Finally,
recombine.
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Toom-Cook

Andrei Toom (1963) and Stephen Cook (1966), splits large
integers into k smaller parts.

For example (GNU MP), with k = 3, let X (t) = x2t
2 + x1t + x0

and Y (t) = y2t
2 + y1t + y0 with X (b) = x , Y (b) = y .

Let W (t) = X (t)Y (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0, so

xy = W (b). To find the wi ’s, evaluate X (t) and Y (t) at five
points, giving W (t) at those points. Then interpolate! Choosing
the t’s carefully leads to easy Gaussian elimination. Finally,
recombine.

This version is O(nlog3 5) ≈ O(n1.465), but has a larger constant
than Karatsuba. Better with more than 700 digits.
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Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough

to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .
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to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .

Then xy =

m
∑

i=0

m
∑

j=0

2w(i+j)aibj
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to fit in a computer variable: x =
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m
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m
∑

i=0
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∑

j=0

2w(i+j)aibj =

2m
∑

k=0

2wk

k
∑

i=0

aibk−i
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Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough

to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .

Then xy =

m
∑

i=0

m
∑

j=0

2w(i+j)aibj =

2m
∑

k=0

2wk

k
∑

i=0

aibk−i =

2m
∑

k=0

2wkck

where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.
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where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.

The convolution can be found by (i) computing the Fast Fourier
Transform of {ai} and {bj},
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where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.

The convolution can be found by (i) computing the Fast Fourier
Transform of {ai} and {bj}, (ii) multiplying the elements term by
term,
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to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .

Then xy =

m
∑

i=0

m
∑

j=0

2w(i+j)aibj =

2m
∑

k=0

2wk

k
∑

i=0

aibk−i =

2m
∑

k=0

2wkck

where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.

The convolution can be found by (i) computing the Fast Fourier
Transform of {ai} and {bj}, (ii) multiplying the elements term by
term, (iii) computing the inverse Fourier transform,
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Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough

to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .

Then xy =

m
∑

i=0

m
∑

j=0

2w(i+j)aibj =

2m
∑

k=0

2wk

k
∑

i=0

aibk−i =

2m
∑

k=0

2wkck

where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.

The convolution can be found by (i) computing the Fast Fourier
Transform of {ai} and {bj}, (ii) multiplying the elements term by
term, (iii) computing the inverse Fourier transform, and (iv) add
the part of ck > 2w to ck+1: dealing with carries.
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Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough

to fit in a computer variable: x =

m
∑

i=0

2wi xi and y =

m
∑

j=0

2wj yj .

Then xy =

m
∑

i=0

m
∑

j=0

2w(i+j)aibj =

2m
∑

k=0

2wk

k
∑

i=0

aibk−i =

2m
∑

k=0

2wkck

where ai , bj = 0 for i , j > m and {ck} is the convolution of {ai}
and {bj}.

The convolution can be found by (i) computing the Fast Fourier
Transform of {ai} and {bj}, (ii) multiplying the elements term by
term, (iii) computing the inverse Fourier transform, and (iv) add
the part of ck > 2w to ck+1: dealing with carries.

Best with more than about ten to forty thousand digits.
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Conclusion

So, just how would you like to multiply now?
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