So You Think You Can Multiply?

A History of Multiplication

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

February 28 2010

Ancient	Techniques

Positional Notation

 $\begin{array}{c} \text{Multiplication as Addition} \\ \text{00000} \end{array}$

High Precision

Outline

- Ancient Techniques
 - Definitions
 - Squares and Triangular Numbers
 - Doubling and Halving
 - Geometry
- Positional Notation
 - Positional Definition
 - Hinge and Scratch
 - Cross
 - Lattice
 - Napier's Rods and the "Modern" method
 - Genaille's Rods

- Multiplication as Addition
 - Prosthaphaeresis
 - Logarithms
 - Powers and Pascal's Triangle
- High Precision
 - Karatsuba
 - Toom-Cook
 - Schönhage-Strassen

Ancient Techniques ●००००	Positional Notation	Multiplication as Addition	High Precision
Definitions			

(a) If a and b are natural numbers, $a \times b$ equals a added to itself b times, or b added to itself a times, $= b \times a$.

Ancient Techniques ●○○○○	Positional Notation	Multiplication as Addition	High Precision
Definitions			

(a) If a and b are natural numbers, $a \times b$ equals a added to itself b times, or b added to itself a times, $= b \times a$.

(b) If a, b and c are natural numbers, a(b+c) = ab + ac.

Ancient Techniques ●००००	Positional Notation	Multiplication as Addition	High Precision
Definitions			

(a) If a and b are natural numbers, $a \times b$ equals a added to itself b times, or b added to itself a times, $= b \times a$.

(b) If a, b and c are natural numbers, a(b + c) = ab + ac.

Ancient Techniques ○●○○○	Positional Notation	Multiplication as Addition	High Precision
Using Squares &	z Triangular Nun	nbers	

. . _ . .

Ancient Babylon:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 and $(a-b)^2 = a^2 - 2ab + b^2$. Subtract:
 $ab = \frac{(a+b)^2 - (a-b)^2}{4}.$

Ancient Techniques ○●○○○	Positional Notation	Multiplication as Addition	High Precision
Using Squares &	2 Triangular Num	ibers	

Ancient Babylon:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 and $(a-b)^2 = a^2 - 2ab + b^2$. Subtract:
 $ab = \frac{(a+b)^2 - (a-b)^2}{4}.$

Needs a table of squares, which can be built by adding successive odd integers: $(n + 1)^2 = n^2 + (2n + 1)$.

Ancient Techniques ○●○○○	Positional Notation	Multiplication as Addition	High Precision
Using Squares &	2 Triangular Num	ibers	

Ancient Babylon:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 and $(a-b)^2 = a^2 - 2ab + b^2$. Subtract:
 $ab = \frac{(a+b)^2 - (a-b)^2}{4}.$

Needs a table of squares, which can be built by adding successive odd integers: $(n + 1)^2 = n^2 + (2n + 1)$.

Also:
$$ab = ((a+b)^2 - a^2 - b^2)/2$$
 or $(A+d)(A-d) = A^2 - d^2$.

	Triter I NI	1	
0000	0000000000	00000	0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Using Squares & Triangular Numbers

Ancient Babylon:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 and $(a-b)^2 = a^2 - 2ab + b^2$. Subtract:
 $ab = \frac{(a+b)^2 - (a-b)^2}{4}.$

Needs a table of squares, which can be built by adding successive odd integers: $(n + 1)^2 = n^2 + (2n + 1)$.

Also:
$$ab = \left((a+b)^2 - a^2 - b^2\right)/2$$
 or $(A+d)(A-d) = A^2 - d^2$.

Teacher Resources on Line: If $T_n = 1 + 2 + \dots + n = n(n+1)/2$, then $ab = T_a + T_{b-1} - T_{a-b}$.

00000	0000000000	00000	0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

D (2)	Deserve		
00000	0000000000	00000	0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 41×59

Ancient Techniques		Positional Notation	Multiplication as Addition	High Precision
0000		0000000000	00000	0000
D · ·	(2) D			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41\!\times\!59=40\!\times\!59\!+\!59$

Ancient Techniques		Positional Notation	Multiplication as Addition	High Precision		
00000				0000000000		0000
_	-	$\langle \alpha \rangle$	_			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41\!\times\!59=40\!\times\!59\!+\!59=20\!\times\!118\!+\!59$

Ancient Techniques		Positional Notation Multiplication as Addition	Multiplication as Addition	n High Precision
0000		0000000000	00000	0000
D · ·	(2) D			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59$

Ancient Techniques Positional Notation Multiplication as Addition	High Precision

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + 59$.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000			
<i></i>			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + 59 = 4 \times 472 + 472 + 59$.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $\begin{array}{l} 41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + \\ 59 = 4 \times 472 + 472 + 59 = 2 \times 944 + 531 \end{array}$

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $\begin{array}{l} 41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + \\ 59 = 4 \times 472 + 472 + 59 = 2 \times 944 + 531 = 1 \times 1888 + 531 \end{array}.$

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + 59 = 4 \times 472 + 472 + 59 = 2 \times 944 + 531 = 1 \times 1888 + 531 = 2419.$

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $\begin{array}{l} 41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + \\ 59 = 4 \times 472 + 472 + 59 = 2 \times 944 + 531 = 1 \times 1888 + 531 = 2419. \end{array}$

Traditional way: list halvings of first number (round down) and doublings of second, add second numbers with odd first number.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precisi
00000			

Doubling and Halving: If a is even, $a \times b = (a/2) \times (2b)$, and if a is odd, $a \times b = (a - 1 + 1) \times b = (a - 1) \times b + b$.

 $\begin{array}{l} 41 \times 59 = 40 \times 59 + 59 = 20 \times 118 + 59 = 10 \times 236 + 59 = 5 \times 472 + \\ 59 = 4 \times 472 + 472 + 59 = 2 \times 944 + 531 = 1 \times 1888 + 531 = 2419. \end{array}$

Traditional way: list halvings of first number (round down) and doublings of second, add second numbers with odd first number. For example

 41	59		
20	118		
10	236	FO + 472 + 1000 - 2410	
 5	472	59 + 472 + 1888 = 2419.	
2	944		
 1	1888		C

Ancient Techniques ○○○●○	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

Doubling and halving is equivalent to converting from base ten to base two:

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

Doubling and halving is equivalent to converting from base ten to base two: $41_{10} = 101001_2$, so $41 \times 59 = (2^5 + 2^3 + 2^0) \times 59$.

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

41 59

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

	41	59
1		59
2		118

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

	41	59
1		59
2		118
4		236

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

	41	59
1		59
2		118
4		236
8		472

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

	41	59
1		59
2		118
4		236
8		472
16		944

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision
Egyptian Doubl	ing		

	41	59
1		59
2		118
4		236
8		472
16		944
32		1888

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision		
Egyptian Doubl	Egyptian Doubling				

	41	59
1		59
2		118
4		236
8		472
16		944
32	41 - 32 = 9	1888

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision		
Egyptian Doubl	Egyptian Doubling				

	41	59
1		59
2		118
4		236
8	9 - 8 = 1	472
16		944
32	41 - 32 = 9	1888

Ancient Techniques ०००●०	Positional Notation	Multiplication as Addition	High Precision		
Egyptian Doubl	Egyptian Doubling				

	41	59
1	1 - 1 = 0	59
2		118
4		236
8	9 - 8 = 1	472
16		944
32	41 - 32 = 9	1888

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
Geometry			

Ancient Techniques

Positional Notation

Multiplication as Addition

High Precision

Positional Definition Example

By the definition,

 $\begin{array}{l} 243 \times 596 \\ = \left(2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0\right) \times \left(5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0\right) \end{array}$

Positional Notation

Multiplication as Addition

High Precision

Positional Definition Example

$$\begin{array}{l} 243 \times 596 \\ = \left(2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0\right) \times \left(5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0\right) \\ = \left(2 \times 5\right) \times 10^4 + \left(2 \times 9\right) \times 10^3 + \left(2 \times 6\right) \times 10^2 + \left(4 \times 5\right) \times 10^3 \\ + \left(4 \times 9\right) \times 10^2 + \left(4 \times 6\right) \times 10^1 + \left(3 \times 5\right) \times 10^2 + \left(3 \times 9\right) \times 10^1 \\ + \left(3 \times 6\right) \times 10^0 \end{array}$$

Positional Notation

Multiplication as Addition

High Precision

Positional Definition Example

$$\begin{array}{l} 243 \times 596 \\ = \left(2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0\right) \times \left(5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0\right) \\ = \left(2 \times 5\right) \times 10^4 + \left(2 \times 9\right) \times 10^3 + \left(2 \times 6\right) \times 10^2 + \left(4 \times 5\right) \times 10^3 \\ + \left(4 \times 9\right) \times 10^2 + \left(4 \times 6\right) \times 10^1 + \left(3 \times 5\right) \times 10^2 + \left(3 \times 9\right) \times 10^1 \\ + \left(3 \times 6\right) \times 10^0 \\ = 10 \times 10^4 + \left(18 + 20\right) \times 10^3 + \left(12 + 36 + 15\right) \times 10^2 \\ + \left(24 + 27\right) \times 10^1 + 18 \times 10^0 \end{array}$$

Positional Notation

Multiplication as Addition

High Precision

Positional Definition Example

$$\begin{array}{l} 243 \times 596 \\ = \left(2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0\right) \times \left(5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0\right) \\ = \left(2 \times 5\right) \times 10^4 + \left(2 \times 9\right) \times 10^3 + \left(2 \times 6\right) \times 10^2 + \left(4 \times 5\right) \times 10^3 \\ + \left(4 \times 9\right) \times 10^2 + \left(4 \times 6\right) \times 10^1 + \left(3 \times 5\right) \times 10^2 + \left(3 \times 9\right) \times 10^1 \\ + \left(3 \times 6\right) \times 10^0 \\ = 10 \times 10^4 + \left(18 + 20\right) \times 10^3 + \left(12 + 36 + 15\right) \times 10^2 \\ + \left(24 + 27\right) \times 10^1 + 18 \times 10^0 \\ = 10 \times 10^4 + 38 \times 10^3 + 63 \times 10^2 + 51 \times 10^1 + 18 \times 10^0 \end{array}$$

Positional Notation

Multiplication as Addition

High Precision

Positional Definition Example

$$\begin{aligned} &243 \times 596 \\ &= \left(2 \times 10^2 + 4 \times 10^1 + 3 \times 10^0\right) \times \left(5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0\right) \\ &= \left(2 \times 5\right) \times 10^4 + \left(2 \times 9\right) \times 10^3 + \left(2 \times 6\right) \times 10^2 + \left(4 \times 5\right) \times 10^3 \\ &+ \left(4 \times 9\right) \times 10^2 + \left(4 \times 6\right) \times 10^1 + \left(3 \times 5\right) \times 10^2 + \left(3 \times 9\right) \times 10^1 \\ &+ \left(3 \times 6\right) \times 10^0 \\ &= 10 \times 10^4 + \left(18 + 20\right) \times 10^3 + \left(12 + 36 + 15\right) \times 10^2 \\ &+ \left(24 + 27\right) \times 10^1 + 18 \times 10^0 \\ &= 10 \times 10^4 + 38 \times 10^3 + 63 \times 10^2 + 51 \times 10^1 + 18 \times 10^0 \\ &= 1 \times 10^5 + 4 \times 10^4 + 4 \times 10^3 + 8 \times 10^2 + 2 \times 10^1 + 8 \times 10^0 \\ &= 144 228. \end{aligned}$$

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000	0000000000	00000	0000

Positional Example Continued

Laying out the digit products:

			2	4	3
		×	5	9	6
1	0				
	1	8			
		1	2		
	2	0			
		3	6		
			2	4	
		1	5		
			2	7	
	1	1	1	1	8
1	4	4	8	2	8

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hingo Multiplica	tion		

Finge Multiplication

00000	000000000	00000	0000		
Hingo Multiplication					

Hinge Multiplication

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision			
00000	000000000	00000	0000			
Hingo Multiplication						
Tinge multip	ICation					

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hingo Multiplica	tion		

Hinge Multiplication

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hinge Multiplica	ition		

		00000	0000			
Hinge Multiplication						

		00000	0000			
Hinge Multiplication						

00000	000000000	00000	0000			
Hinge Multiplication						

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hinge Multiplica	ition		

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hinge Multiplica	ition		

8

Hinge Multiplica	ation		
00000			0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		0000
Hinge Multiplica	ition		

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		0000
Hinge Multiplica	ition		

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		
Hingo Multin	lication		

Hinge Multiplication

1	41	41	81	2	8
		1	2		
		3	5		
	2	0	2	1	
	1	1	6	7	
1	0	8	2	4	8
			2	A	ß
	<u>ج</u>	ß	6	<i>j</i> 6	<i>j</i> 6
		,5	<i>/</i> 9	ø	
			<u>ج</u>		

Scratch Multipli	cation		
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Scratch Mul	tiplication		
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

-

Scratch Multipl	cation		
	000000000		
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

<u> </u>	Scratch Mul	tiplication		
Ancient Techniques Positional Notation Multiplication as Addition High Preci	Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

<u> </u>	Scratch Mul	tiplication		
Ancient Techniques Positional Notation Multiplication as Addition High Preci	Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

<u> </u>	Scratch Mul	tiplication		
Ancient Techniques Positional Notation Multiplication as Addition High Preci	Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Scratch Mul	tiplication		
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

2

л

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

2

л

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

Ancient Techniques 00000	Positional Notation ○○○●○○○○○○	Multiplication as Addition	High Precision
Scratch Multipli	cation		

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Scratch Multipli	cation		

 $243 \times 596 = 144828$

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Cross Multiplica	tion		

In terms of digits,
$$abc \times def = ad \times 10^4 + (ae + bd) \times 10^3 + (af + be + cd) \times 10^2 + (bf + ce) \times 10^1 + cf \times 10^0$$
.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Cross Multiplica	tion		

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Cross Multiplica	tion		

Same effort as hinge, different order of digits. Recommended for mental arithmetic.
Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Lattice			

Hinge separates digit multiples from carries, scratch and cross don't. Lattice is like hinge, but easier.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Lattice			

Hinge separates digit multiples from carries, scratch and cross don't. Lattice is like hinge, but easier.

For example, $24 \times 89 = 2136$ and $876 \times 56 = 49056$.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Nanier's Rods			

To make digit products easier, in 1617 John Napier built rods engraved with the digit multiplication table.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000	00000000000	00000	0000
	· · · · · · · · · · · · · · · · · · ·		

Napier's Rods Example

Consider 878×944 .

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
00000	00000000000	00000	0000

Napier's Rods Example

Consider 878 \times 944.

Ancient Techniques

Positional Notation

Multiplication as Addition

High Precision

Napier's Rods Example

				8	7	8	
			×	9	4	4	
•			3	5	1	2	-
		3	5	1	2		
	7	9	0	2			
-	81	2	8	8	3	2	-
	or						
				8	7	8	
			×	9	4	4	
	7	9	0	2			
		3	5	1	2		
			3	5	1	2	JAMES
-	81	2	8	8	3	2	TAT MADISON

Ancient Techniques 00000	Positional Notation ○○○○○○○●○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
The Modern Me	ethod		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	3	3	
	8	7	8
×	9	4	4
3	5	1	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

$$\begin{array}{r}
 3 \\
 3' \\
 8 \\
 7 \\
 8 \\
 7 \\
 4 \\
 3 \\
 5 \\
 2
 \end{array}$$

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

3	3	3 3⁄	3	
		8	7	8
2	×	9	4	4
3	3	5	1	2
		1	2	

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	3	3 3⁄	3	
		8	7	8
	×	9	4	4
	3	5	1	2
3	5	1	2	

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7 3⁄	3 3⁄ 8	3 7	8
	×	9	4	4
	3	5	1	2
3	5	1	2	
		2		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

7	7 3⁄	3 3⁄	3	
		8	7	8
	Х	9	4	4
	3	5	1	2
3	5	1	2	
	0	2		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
					2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
				3	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
			8	3	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

	7	7 3⁄	3 3⁄	3	
			8	7	8
		Х	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
		8	8	3	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

1	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
	2	8	8	3	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

1	7	7 3⁄	3 3⁄	3	
			8	7	8
		×	9	4	4
		3	5	1	2
	3	5	1	2	
7	9	0	2		
8	2	8	8	3	2

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

		7	3								
1	7	3⁄	3⁄	3					8	7	8
			8	7	8			×	9	4	4
		\times	9	4	4			3	53	1_{3}	2
		3	5	1	2		3	53	13	2	
	3	5	1	2		7	97	07	2		
7	9	0	2			81	2	8	8	3	2
8	2	8	8	3	2	-					

Ancient Techniques 00000	Positional Notation ○○○○○○○○○○	Multiplication as Addition	High Precision
The Modern Me	ethod		

1	7	7 3⁄	3 3⁄	3					8	7	8
			8	7	8			×	9	4	4
		×	9	4	4			3	53	1_{3}	2
		3	5	1	2		3	5 ₃	1_{3}	2	
	3	5	1	2		7	97	07	2		
7	9	0	2			81	2	8	8	3	2
8	2	8	8	3	2	-1	-	2	2	2	

I prefer the second: product and sum carries are with the associated numbers.

Genaille's Rods 1891, Napier's rods without carries

Multiplication as Addition

High Precision

Genaille's Rods Example

ncient Techniques 0000	Positional Notation	Mu oo	ltiplicati 000	on as A	ddition			High 000	Precision 0
Genaille's Rods	Example								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 7 8 7 4 8 8 8 9 5 6 9 9 0 7 1 1 1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 1 2 3 3 4 4 4 4			4	0	9	6	2	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2 2 3 8 4 4 4 9 5 5 5 0 6 6 7		× 3	2	7	6	3 9	8	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	3 2	2 2	7 8	6 8	9 6	7 6	6	
5 3 5 8 6 4 6 9	$\frac{7}{8}$ $\frac{9}{0}$ $\frac{9}{0}$ $\frac{1}{1}$	5	81	9 ₂	32	32	31	3	6
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 6 6 8 7 8 8 9 9 3 1 2 1 1 2 2 3 4 2 3 3							JĄĮ	MES
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 4\\5\\6\\7\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1$						-1₹[

Ancient Techniques	Positional Notation	Multiplication as Addition ●○○○○	High Precision
Prosthaphaeresi	S		

$$\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$$

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Prosthaphaeresis	S		

 $\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$ Scale numbers to between zero and one, so $x = \cos a$, $y = \cos b$, or $a = \cos^{-1} x$, $b = \cos^{-1} y$.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Prosthaphaeresi	s		

$$\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$$

Scale numbers to between zero and one, so $x = \cos a$, $y = \cos b$, or $a = \cos^{-1} x$, $b = \cos^{-1} y$. Then
 $xy = \frac{1}{2}(\cos(\cos^{-1} x + \cos^{-1} y) + \cos(\cos^{-1} x - \cos^{-1} y)).$

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ●○○○○	High Precision
Prosthaphaeresi	S		

 $\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$ Scale numbers to between zero and one, so $x = \cos a$, $y = \cos b$, or $a = \cos^{-1} x$, $b = \cos^{-1} y$. Then $xy = \frac{1}{2}(\cos(\cos^{-1} x + \cos^{-1} y) + \cos(\cos^{-1} x - \cos^{-1} y)).$ Particularly promoted by Tycho Brahe (1580 on).

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Prosthaphaeresi	S		

 $\begin{aligned} \cos a \cos b &= \frac{1}{2} (\cos(a+b) + \cos(a-b)). \\ \text{Scale numbers to between zero and one, so } x &= \cos a, \ y &= \cos b, \\ \text{or } a &= \cos^{-1} x, \ b &= \cos^{-1} y. \\ \text{Then} \\ xy &= \frac{1}{2} (\cos(\cos^{-1} x + \cos^{-1} y) + \cos(\cos^{-1} x - \cos^{-1} y)). \\ \text{Particularly promoted by Tycho Brahe (1580 on).} \\ \text{For example: } 43.287 \times 1.1033 = 0.43287 \times 10^2 \times 0.11033 \times 10^1. \end{aligned}$

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ●○○○○	High Precision
Prosthaphaeresi	S		

 $\begin{aligned} \cos a \cos b &= \frac{1}{2} (\cos(a+b) + \cos(a-b)). \\ \text{Scale numbers to between zero and one, so } x &= \cos a, \ y &= \cos b, \\ \text{or } a &= \cos^{-1} x, \ b &= \cos^{-1} y. \end{aligned}$ Then $xy &= \frac{1}{2} (\cos(\cos^{-1} x + \cos^{-1} y) + \cos(\cos^{-1} x - \cos^{-1} y)). \\ \text{Particularly promoted by Tycho Brahe (1580 on).} \\ \text{For example: } 43.287 \times 1.1033 &= 0.43287 \times 10^2 \times 0.11033 \times 10^1. \\ \text{From tables, the best we have is } \cos(64^{\circ}21'1'') \approx 0.43287 \text{ and} \\ \cos(83^{\circ}39'56'') &\approx 0.11033. \end{aligned}$

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Prosthanhaeresi	s		

 $\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$ Scale numbers to between zero and one, so $x = \cos a$, $y = \cos b$, or $a = \cos^{-1} x$, $b = \cos^{-1} y$. Then $xy = \frac{1}{2}(\cos(\cos^{-1}x + \cos^{-1}y) + \cos(\cos^{-1}x - \cos^{-1}y)).$ Particularly promoted by Tycho Brahe (1580 on). For example: $43.287 \times 1.1033 = 0.43287 \times 10^2 \times 0.11033 \times 10^1$. From tables, the best we have is $\cos(64^{\circ}21'1'') \approx 0.43287$ and $\cos(83^{\circ}39'56'') \approx 0.11033$. So $xy = \frac{1}{2}(\cos(148^{\circ}0'57'') + \cos(-19^{\circ}18'55'')) \times 10^3 =$ $\frac{1}{2}(-0.848194503 + 0.943712787) \times 10^3 = 0.047759142 \times 10^3 =$ 47.759142.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Prosthaphaeresi	s		

 $\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b)).$ Scale numbers to between zero and one, so $x = \cos a$, $y = \cos b$, or $a = \cos^{-1} x$, $b = \cos^{-1} v$. Then $xy = \frac{1}{2}(\cos(\cos^{-1}x + \cos^{-1}y) + \cos(\cos^{-1}x - \cos^{-1}y)).$ Particularly promoted by Tycho Brahe (1580 on). For example: $43.287 \times 1.1033 = 0.43287 \times 10^2 \times 0.11033 \times 10^1$. From tables, the best we have is $\cos(64^{\circ}21'1'') \approx 0.43287$ and $\cos(83^{\circ}39'56'') \approx 0.11033$. So $xy = \frac{1}{2}(\cos(148^{\circ}0'57'') + \cos(-19^{\circ}18'55'')) \times 10^3 =$ $\frac{1}{2}(-0.848194503 + 0.943712787) \times 10^3 = 0.047759142 \times 10^3 =$ 47.759142. The true value is 47.7585471, five digits of accuracy.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○●○○○	High Precision
Logarithms			

Napier (1614): if $y = \log x$ then $x/10^7 = (1 - 10^7)^y$. Then $\log 10^7 = 0$, logs increase as the number decreases, and $\log xy = \log x + \log y$.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
	000000000		0000
Logarithms			

Napier (1614): if
$$y = \log x$$
 then $x/10^7 = (1 - 10^7)^y$. Then $\log 10^7 = 0$, logs increase as the number decreases, and $\log xy = \log x + \log y$.

Briggs (1617): Common logarithms: $\log 1 = 0$ and $\log 10 = 1$, so if $y = \log x$ then $x = 10^{y}$.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○●○○○	High Precision
Logarithms			

Napier (1614): if
$$y = \log x$$
 then $x/10^7 = (1 - 10^7)^y$. Then $\log 10^7 = 0$, logs increase as the number decreases, and $\log xy = \log x + \log y$.

Briggs (1617): Common logarithms: $\log 1 = 0$ and $\log 10 = 1$, so if $y = \log x$ then $x = 10^{y}$.

Mercator (1666): Area under the hyperbola y = 1/x from x = 1 to x = a is called ln *a*. Geometrically satisfies $\ln ab = \ln a + \ln b$ and the base is *e*.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○●○○○	High Precision
Logarithms			

Napier (1614): if
$$y = \log x$$
 then $x/10^7 = (1 - 10^7)^y$. Then $\log 10^7 = 0$, logs increase as the number decreases, and $\log xy = \log x + \log y$.

Briggs (1617): Common logarithms: $\log 1 = 0$ and $\log 10 = 1$, so if $y = \log x$ then $x = 10^{y}$.

Mercator (1666): Area under the hyperbola y = 1/x from x = 1 to x = a is called ln *a*. Geometrically satisfies $\ln ab = \ln a + \ln b$ and the base is *e*.

Slide Rule (Oughtred 1622): Rulers with logarithmic scales add lengths to multiply numbers.

Positional Notation

Multiplication as Addition

High Precision

Pascal's Triangle and Powers of Eleven

Positional Notation

Multiplication as Addition

High Precision

Pascal's Triangle and Powers of Eleven

Positional Notation

Multiplication as Addition

High Precision

Pascal's Triangle and Powers of Eleven

						1							$11^{0} = 1$
					1		1						$11^1 = 11$
				1		2		1					$11^2 = 121$
			1		3		3		1				$11^3 = 1331$
		1		4		6		4		1			$11^4 = 14641$
	1		5		10		10		5		1		$11^5 = 161051$
1		6		15		20		15		6		1	$11^6 = 1771561$

Using carries, Pascal's triangle rows give powers of eleven.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Explanation			

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision
Explanation			

а

each number is the sum of the pair diagonally above.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○○○○●	High Precision
Generalization			

Start with one, then if each digit is *b* times upper left plus *a* times upper right, each row is a power of $a \times 10 + b$.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○○○○●	High Precision
Generalization			

Start with one, then if each digit is *b* times upper left plus *a* times upper right, each row is a power of $a \times 10 + b$. For example 27:

Ancient Techniques 00000	Positional Notation	Multiplication as Addition ○○○○●	High Precision
Generalization			

Start with one, then if each digit is *b* times upper left plus *a* times upper right, each row is a power of $a \times 10 + b$. For example 27:

 $27^0 = 1, 27^1 = 27, 27^2 = 729, 27^3 = 19\,683, 27^4 = 531\,441, 27^5 = 14\,348\,907.$

	12 . 1			
Ancient Lechniques Positional Notation Multiplication as Addition High Precis	Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Karatsuha			
			0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Karatsuba (1962): Given base B and $m \approx n/2$, let $x = x_1 B^m + x_0$ and $y = y_1 B^m + y_0$.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision ●○○○
Karatsuba			

Karatsuba (1962): Given base B and $m \approx n/2$, let $x = x_1 B^m + x_0$ and $y = y_1 B^m + y_0$. Then $xy = (x_1 B^m + x_0)(y_1 B^m + y_0) = x_1 y_1 B^{2m} + (x_1 y_0 + x_0 y_1) B^m + x_0 y_0$. Four (n/2) digit multiplications means n^2 digit multiples.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision ●○○○
Karatsuba			

Karatsuba (1962): Given base *B* and $m \approx n/2$, let $x = x_1 B^m + x_0$ and $y = y_1 B^m + y_0$. Then $xy = (x_1 B^m + x_0)(y_1 B^m + y_0) = x_1 y_1 B^{2m} + (x_1 y_0 + x_0 y_1) B^m + x_0 y_0$. Four (n/2) digit multiplications means n^2 digit multiples. But $x_1 y_0 + x_0 y_1 = (x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0) - (x_1 y_1 + x_0 y_0)$ $= (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$,

reduces us to three multiplications: $3n^2/4$ digit multiples.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision ●○○○
Karatsuba			

Karatsuba (1962): Given base *B* and $m \approx n/2$, let $x = x_1 B^m + x_0$ and $y = y_1 B^m + y_0$. Then $xy = (x_1 B^m + x_0)(y_1 B^m + y_0) = x_1 y_1 B^{2m} + (x_1 y_0 + x_0 y_1) B^m + x_0 y_0$. Four (n/2) digit multiplications means n^2 digit multiples. But $x_1 y_0 + x_0 y_1 = (x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0) - (x_1 y_1 + x_0 y_0)$ $= (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$,

reduces us to three multiplications: $3n^2/4$ digit multiples.

Applied recursively, reduces to $O(3n^{\log_2 3}) \approx O(3n^{1.585})$.

Karatauba			
			0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Karatsuba (1962): Given base *B* and $m \approx n/2$, let $x = x_1 B^m + x_0$ and $y = y_1 B^m + y_0$. Then $xy = (x_1 B^m + x_0)(y_1 B^m + y_0) = x_1 y_1 B^{2m} + (x_1 y_0 + x_0 y_1) B^m + x_0 y_0$. Four (n/2) digit multiplications means n^2 digit multiples. But $x_1 y_0 + x_0 y_1 = (x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0) - (x_1 y_1 + x_0 y_0)$ $= (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$,

reduces us to three multiplications: $3n^2/4$ digit multiples.

Applied recursively, reduces to $O(3n^{\log_2 3}) \approx O(3n^{1.585})$.

Practically better than traditional method with more than \sim 400 (decimal) digits.

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision
			0000
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Let $W(t) = X(t)Y(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0$, so xy = W(b).

Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Let $W(t) = X(t)Y(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0$, so xy = W(b). To find the w_i 's, evaluate X(t) and Y(t) at five points, giving W(t) at those points.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Let $W(t) = X(t)Y(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0$, so xy = W(b). To find the w_i 's, evaluate X(t) and Y(t) at five points, giving W(t) at those points. Then interpolate! Choosing the *t*'s carefully leads to easy Gaussian elimination.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Let $W(t) = X(t)Y(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0$, so xy = W(b). To find the w_i 's, evaluate X(t) and Y(t) at five points, giving W(t) at those points. Then interpolate! Choosing the *t*'s carefully leads to easy Gaussian elimination. Finally, recombine.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision ○●○○
Toom-Cook			

For example (GNU MP), with k = 3, let $X(t) = x_2t^2 + x_1t + x_0$ and $Y(t) = y_2t^2 + y_1t + y_0$ with X(b) = x, Y(b) = y.

Let $W(t) = X(t)Y(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0$, so xy = W(b). To find the w_i 's, evaluate X(t) and Y(t) at five points, giving W(t) at those points. Then interpolate! Choosing the *t*'s carefully leads to easy Gaussian elimination. Finally, recombine.

This version is $O(n^{\log_3 5}) \approx O(n^{1.465})$, but has a larger constant than Karatsuba. Better with more than 700 digits.

Cale Viela and C	(1071)		
00000	0000000000	00000	0000
Ancient Techniques	Positional Notation	Multiplication as Addition	High Precision

Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough to fit in a computer variable: $x = \sum_{i=0}^{m} 2^{w_i} x_i$ and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

 Ancient Techniques
 Positional Notation
 Multiplication as Addition
 High Precision

 00000
 000000000
 00000
 00000

Schönhage-Strassen (1971)

Split the numbers into m + 1 groups, each of which is small enough to fit in a computer variable: $x = \sum_{i=0}^{m} 2^{w_i} x_i$ and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j$$

 Ancient Techniques
 Positional Notation
 Multiplication as Addition
 High Precision

 00000
 000000000
 00000
 00000

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable:
$$x = \sum_{i=0}^{m} 2^{w_i} x_i$$
 and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i}$$

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable:
$$x = \sum_{i=0}^{m} 2^{w_i} x_i$$
 and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable: $x = \sum_{i=0}^{m} 2^{w_i} x_i$ and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

The convolution can be found by (i) computing the Fast Fourier Transform of $\{a_i\}$ and $\{b_j\}$,

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable:
$$x = \sum_{i=0}^{m} 2^{w_i} x_i$$
 and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

The convolution can be found by (i) computing the Fast Fourier Transform of $\{a_i\}$ and $\{b_j\}$, (ii) multiplying the elements term by term,

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable:
$$x = \sum_{i=0}^{m} 2^{w_i} x_i$$
 and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

The convolution can be found by (i) computing the Fast Fourier Transform of $\{a_i\}$ and $\{b_j\}$, (ii) multiplying the elements term by term, (iii) computing the inverse Fourier transform,

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable:
$$x = \sum_{i=0}^{m} 2^{w_i} x_i$$
 and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

The convolution can be found by (i) computing the Fast Fourier Transform of $\{a_i\}$ and $\{b_j\}$, (ii) multiplying the elements term by term, (iii) computing the inverse Fourier transform, and (iv) add the part of $c_k > 2^w$ to c_{k+1} : dealing with carries.

Positional Notation

Multiplication as Addition

High Precision ○○●○

Schönhage-Strassen (1971)

Split the numbers into m+1 groups, each of which is small enough

to fit in a computer variable: $x = \sum_{i=0}^{m} 2^{w_i} x_i$ and $y = \sum_{j=0}^{m} 2^{w_j} y_j$.

Then
$$xy = \sum_{i=0}^{m} \sum_{j=0}^{m} 2^{w(i+j)} a_i b_j = \sum_{k=0}^{2m} 2^{wk} \sum_{i=0}^{k} a_i b_{k-i} = \sum_{k=0}^{2m} 2^{wk} c_k$$

where $a_i, b_j = 0$ for $i, j > m$ and $\{c_k\}$ is the convolution of $\{a_i\}$
and $\{b_j\}$.

The convolution can be found by (i) computing the Fast Fourier Transform of $\{a_i\}$ and $\{b_j\}$, (ii) multiplying the elements term by term, (iii) computing the inverse Fourier transform, and (iv) add the part of $c_k > 2^w$ to c_{k+1} : dealing with carries.

Best with more than about ten to forty thousand digits.

Ancient Techniques 00000	Positional Notation	Multiplication as Addition	High Precision ○○○●
Conclusion			

So, just how would you like to multiply now?

