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Background First ODE Second ODE PSM

Outline

Planar Systems

Heteroclinic Orbits

First ode, spirals, every point on a heteroclinic orbit

Second ode, heteroclinic limit points along a line

Power Series Method for odes
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Background First ODE Second ODE PSM

Planar Systems

ẋ = P(x , y), ẏ = Q(x , y) for real polynomials P(x , y), Q(x , y) in
x and y form a polynomial differential system in the plane, and
have been extensively studied over the decades.
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Planar Systems

ẋ = P(x , y), ẏ = Q(x , y) for real polynomials P(x , y), Q(x , y) in
x and y form a polynomial differential system in the plane, and
have been extensively studied over the decades.

Hilbert’s 16th problem: how many limit cycles when bounding the
polynomial order.
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Background First ODE Second ODE PSM

Planar Systems

ẋ = P(x , y), ẏ = Q(x , y) for real polynomials P(x , y), Q(x , y) in
x and y form a polynomial differential system in the plane, and
have been extensively studied over the decades.

Hilbert’s 16th problem: how many limit cycles when bounding the
polynomial order.

Over a thousand papers on quadratic systems alone, with a
bibliography compiled by the Delft University of Technology
(1904-1997)
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Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes ẋ = f (t, x)
where x → xa as t → ∞ and x → xb as t → −∞ for given points
xa, xb.
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Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes ẋ = f (t, x)
where x → xa as t → ∞ and x → xb as t → −∞ for given points
xa, xb.

A homoclinic orbit is the special case xa = xb.
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Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes ẋ = f (t, x)
where x → xa as t → ∞ and x → xb as t → −∞ for given points
xa, xb.

A homoclinic orbit is the special case xa = xb.

Heteroclinic orbits typically occur when a system can cycle
between different states, spending substantial time near each one.
They often separate the solution space into regions with
qualitatively different behavior.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes ẋ = f (t, x)
where x → xa as t → ∞ and x → xb as t → −∞ for given points
xa, xb.

A homoclinic orbit is the special case xa = xb.

Heteroclinic orbits typically occur when a system can cycle
between different states, spending substantial time near each one.
They often separate the solution space into regions with
qualitatively different behavior.

Numerically locating heteroclinic orbits (if they exist) is
challenging, and often reduces to solving an infinite
boundary value problem.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits
joining the unstable equilibria,
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Heteroclinic Examples

Very simple examples include the simple pendulum with orbits
joining the unstable equilibria, Rayleigh-Bèrnard convection with
roll patterns orienting themselves at 0◦, 120◦ or 240◦,
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Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits
joining the unstable equilibria, Rayleigh-Bèrnard convection with
roll patterns orienting themselves at 0◦, 120◦ or 240◦, and from
Borelli & Coleman: ẋ = x(1 − x − (15/4)y + 2xy + y2),
ẏ = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits are
straight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiral
out to the triangle, spending increasing amounts of time near the
corners.
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Heteroclinic Examples

Very simple examples include the simple pendulum with orbits
joining the unstable equilibria, Rayleigh-Bèrnard convection with
roll patterns orienting themselves at 0◦, 120◦ or 240◦, and from
Borelli & Coleman: ẋ = x(1 − x − (15/4)y + 2xy + y2),
ẏ = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits are
straight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiral
out to the triangle, spending increasing amounts of time near the
corners.
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Heteroclinic Examples

Very simple examples include the simple pendulum with orbits
joining the unstable equilibria, Rayleigh-Bèrnard convection with
roll patterns orienting themselves at 0◦, 120◦ or 240◦, and from
Borelli & Coleman: ẋ = x(1 − x − (15/4)y + 2xy + y2),
ẏ = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits are
straight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiral
out to the triangle, spending increasing amounts of time near the
corners.
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Background First ODE Second ODE PSM

First ODE

Consider the system

ẋ = a(x2 − y2) − 2bxy + cx − dy + e,

ẏ = b(x2 − y2) + 2axy + dx + cy + f ,
with

x(0) = g ,
y(0) = h,

for given constants a to h.
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Background First ODE Second ODE PSM

First ODE

Consider the system

ẋ = a(x2 − y2) − 2bxy + cx − dy + e,

ẏ = b(x2 − y2) + 2axy + dx + cy + f ,
with

x(0) = g ,
y(0) = h,

for given constants a to h.

With z(t) = x(t) + iy(t),

ż = (a + ib)z2 + (c + id)z + (e + if ) with z(0) = g + ih,

with all constants a to h being real.
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Background First ODE Second ODE PSM

First ODE

Consider the system

ẋ = a(x2 − y2) − 2bxy + cx − dy + e,

ẏ = b(x2 − y2) + 2axy + dx + cy + f ,
with

x(0) = g ,
y(0) = h,

for given constants a to h.

With z(t) = x(t) + iy(t),

ż = (a + ib)z2 + (c + id)z + (e + if ) with z(0) = g + ih,

with all constants a to h being real.

By completing the square and scaling by a + ib, any quadratic
complex ode can be reduced to

ż = z2 + (a + ib) with z(0) = c + id ,

where a, b, c and d are real constants.
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Background First ODE Second ODE PSM

Analytic Solution

Let e =

√

a +
√

a2 + b2

√
2

and f =
b

√

2
(

a +
√

a2 + b2
)

so

√
a + ib = ±(e + if ) and

√

−(a + ib) = ±(−f + ie).
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Background First ODE Second ODE PSM

Analytic Solution

Let e =

√

a +
√

a2 + b2

√
2

and f =
b

√

2
(

a +
√

a2 + b2
)

so

√
a + ib = ±(e + if ) and

√

−(a + ib) = ±(−f + ie). Then

z = (e + if ) tan((e + if )t + C ), C = arctan

(

c + id

e + if

)

= g + ih.
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Background First ODE Second ODE PSM

Analytic Solution

Let e =

√

a +
√

a2 + b2

√
2

and f =
b

√

2
(

a +
√

a2 + b2
)

so

√
a + ib = ±(e + if ) and

√

−(a + ib) = ±(−f + ie). Then

z = (e + if ) tan((e + if )t + C ), C = arctan

(

c + id

e + if

)

= g + ih.

Using the definitions of complex arctan, log, sin and cos, we get

z(t) =
e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+i
f sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))
.
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Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve ż = z2, z(0) = c + id .
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Zero Constant

If a + ib = 0, previous working invalid, solve ż = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =
−

“

t+ c

c2+d2

”

−i
d

c2+d2
“

t+ c

c2+d2

”2
+

“

d

c2+d2

”2 .
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Zero Constant

If a + ib = 0, previous working invalid, solve ż = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =
−

“

t+ c

c2+d2

”

−i
d

c2+d2
“

t+ c

c2+d2

”2
+

“

d

c2+d2

”2 .

If we let m = c/(c2 + d2) and n = d/(c2 + d2) then

x(t) = − t + m

(t + m)2 + n2
and y(t) = − n

(t + m)2 + n2
.
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Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve ż = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =
−

“

t+ c

c2+d2

”

−i
d

c2+d2
“

t+ c

c2+d2

”2
+

“

d

c2+d2

”2 .

If we let m = c/(c2 + d2) and n = d/(c2 + d2) then

x(t) = − t + m

(t + m)2 + n2
and y(t) = − n

(t + m)2 + n2
.

(x(t), y(t)) → (0, 0) as t → ±∞, so the solution starting from any
point is on a homoclinic orbit, with the same homoclinic point.
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Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =
(t + m)2 + n2

((t + m)2 + n2)2
=

1

(t + m)2 + n2
= −y

n
,
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Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =
(t + m)2 + n2

((t + m)2 + n2)2
=

1

(t + m)2 + n2
= −y

n
,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.
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Zero Constant Orbits

x2 + y2 =
(t + m)2 + n2

((t + m)2 + n2)2
=

1

(t + m)2 + n2
= −y

n
,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.

All homoclinic orbits are circles,
center and radius 1/(2n).
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Zero Constant Orbits

x2 + y2 =
(t + m)2 + n2

((t + m)2 + n2)2
=

1

(t + m)2 + n2
= −y

n
,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.

All homoclinic orbits are circles,
center and radius 1/(2n).

−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Positive Real Constant

If b = 0 and a > 0, then e =
√

a, f = 0 and

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
.
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Positive Real Constant

If b = 0 and a > 0, then e =
√

a, f = 0 and

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
.

Orbits are circles x2 + (y − m)2 = m2 − a where m = a coth(2h),
all of which are periodic, so no heteroclinic orbits.
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Positive Real Constant

If b = 0 and a > 0, then e =
√

a, f = 0 and

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
.

Orbits are circles x2 + (y − m)2 = m2 − a where m = a coth(2h),
all of which are periodic, so no heteroclinic orbits. z ′ = z2 + 1:
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Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
,

so the period is the same on each circular orbit.
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Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
,

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away from
the origin.
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Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =
√

a · sin(2(
√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(
√

at + g))
,

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away from
the origin. ż = z2 + 1, z(0) = 0.05 + 0.05i :
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Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =
√

a = i
√
−a, so e = 0 and

f =
√
−a, and

z(t) = x(t) = iy(t) =
√
−a · − sinh(2(

√
−at + h)) + i sin(2g)

cosh(2(
√
−at + h)) + cos(2g)

.
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Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =
√

a = i
√
−a, so e = 0 and

f =
√
−a, and

z(t) = x(t) = iy(t) =
√
−a · − sinh(2(

√
−at + h)) + i sin(2g)

cosh(2(
√
−at + h)) + cos(2g)

.

As t → ±∞, z(t) → ∓
√
−a,

every point lies on a heteroclinic
orbit with limit points on the
real axis.
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Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =
√

a = i
√
−a, so e = 0 and

f =
√
−a, and

z(t) = x(t) = iy(t) =
√
−a · − sinh(2(

√
−at + h)) + i sin(2g)

cosh(2(
√
−at + h)) + cos(2g)

.

As t → ±∞, z(t) → ∓
√
−a,

every point lies on a heteroclinic
orbit with limit points on the
real axis. Orbits are arcs of cir-
cles: x2 + (y − g)2 = g2 − a

where g = a cot(2e).
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Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =
√

a = i
√
−a, so e = 0 and

f =
√
−a, and

z(t) = x(t) = iy(t) =
√
−a · − sinh(2(

√
−at + h)) + i sin(2g)

cosh(2(
√
−at + h)) + cos(2g)

.

ż = z2 − 1:
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As t → ±∞, z(t) → ∓
√
−a,

every point lies on a heteroclinic
orbit with limit points on the
real axis. Orbits are arcs of cir-
cles: x2 + (y − g)2 = g2 − a

where g = a cot(2e).
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Background First ODE Second ODE PSM

Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =
e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+i
f sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))
.
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Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =
e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+i
f sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))
.

As t → ±∞, (x , y) → ±(−f , e), every point on the plane lies on a
heteroclinic orbit.
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Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =
e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+i
f sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))
.

As t → ±∞, (x , y) → ±(−f , e), every point on the plane lies on a
heteroclinic orbit.

Orbits cannot be represented as algebraic equations in x and y

only, and are spirals similar to Carnu or Euler spirals, with
exponential convergence for large magnitude t.
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Background First ODE Second ODE PSM

First Example

ż = z2 + (1 + i), z(0) = −1,−0.8, . . . , 1.
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Background First ODE Second ODE PSM

First Example, More Dramatic

ż = z2 + (1 + i), z(0) = −2.
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Background First ODE Second ODE PSM

First Example, More Dramatic

ż = z2 + (1 + i), z(0) = −2.
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Same exponential convergence after more dramatic intermediate
circular curve.
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Background First ODE Second ODE PSM

Second Example

ż = z2 + 1 + i/2, with z(0) = 0, 0.1, 0.2, 0.3.
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Background First ODE Second ODE PSM

Second Example

ż = z2 + 1 + i/2, with z(0) = 0, 0.1, 0.2, 0.3.
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The smaller the ratio a/b, the faster the convergence of
the spiral.
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Background First ODE Second ODE PSM

Second ODE

Consider ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d .
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Second ODE

Consider ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, as
well as (0, 0).
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Second ODE

Consider ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, as
well as (0, 0).

Eliminating t, ẏ = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.
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Second ODE

Consider ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, as
well as (0, 0).

Eliminating t, ẏ = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.

If r < 1/(a2 + b2), orbits will be periodic. Otherwise, orbits are
heteroclinic on arcs of circles, with endpoints on the line
1 − ax − by = 0.
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Second ODE

Consider ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, as
well as (0, 0).

Eliminating t, ẏ = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.

If r < 1/(a2 + b2), orbits will be periodic. Otherwise, orbits are
heteroclinic on arcs of circles, with endpoints on the line
1 − ax − by = 0.

The line −ax − by = 0 could be called a heteroclinic line.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Analytic Solution

Starting with ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d , let r =

√
c2 + d2, x(t) = r cos(θ(t)) and

y(t) = r sin(θ(t)).
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Analytic Solution

Starting with ẋ = −y(1 − ax − by) and ẏ = x(1 − ax − by) with
x(0) = c , y(0) = d , let r =

√
c2 + d2, x(t) = r cos(θ(t)) and

y(t) = r sin(θ(t)). Then θ̇ = 1 − ar cos θ − br sin θ, which has
solutions

θ(t) = −2 arctan

(

−br+tanh
“

t+C

2

√
r2(a2+b2)−1

”√
r2(a2+b2)−1

1+ar

)

when r2 > 1/(a2 + b2), and

θ(t) = −2 arctan

(

−br−tan
“

t+C

2

√
1−r2(a2+b2)

”√
1−r2(a2+b2)

1+ar

)

+ 2kπ

when r2 < 1/(a2 + b2), and k is an integer chosen to ensure θ(t)
stays continuous and monotonic.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Example

ẋ = −y(1 − x − y) and ẏ = x(1 − x − y) with d = 0 and
c = 0.05, 0.1, 0.15, . . . , 2:

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5
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More General Case

ẋ = −yf (x , y), ẏ = xf (x , y) for any function f (x , y) has arcs of
circles as orbits, with the solutions of f (x , y) = 0 as heteroclinic
lines.
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More General Case

ẋ = −yf (x , y), ẏ = xf (x , y) for any function f (x , y) has arcs of
circles as orbits, with the solutions of f (x , y) = 0 as heteroclinic
lines.

For example, x ′ = −y(y − x2) and y ′ = x(y − x2) with x(0) = 0
and y(0) = −0.1,−0, 2,−0.3, . . . ,−6.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
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Power Series Method

Taylor methods to solve ẏ = f (t, y) writes y(t + h) as a Taylor
series around y(t), substituting successive derivatives of f .
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Power Series Method

Taylor methods to solve ẏ = f (t, y) writes y(t + h) as a Taylor
series around y(t), substituting successive derivatives of f .
Runge-Kutta and related methods replace derivatives by additional
function evaluations and have the same accuracy.
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Power Series Method

Taylor methods to solve ẏ = f (t, y) writes y(t + h) as a Taylor
series around y(t), substituting successive derivatives of f .
Runge-Kutta and related methods replace derivatives by additional
function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent
variables, we can write out y as a power series in t, substitute, and
explicitly find the coefficients – the Power Series Method.
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Power Series Method

Taylor methods to solve ẏ = f (t, y) writes y(t + h) as a Taylor
series around y(t), substituting successive derivatives of f .
Runge-Kutta and related methods replace derivatives by additional
function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent
variables, we can write out y as a power series in t, substitute, and
explicitly find the coefficients – the Power Series Method. Usually
only seen when solving linear second order odes with non constant
coefficients (Frobenius around regular singular points).
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Power Series Method

Taylor methods to solve ẏ = f (t, y) writes y(t + h) as a Taylor
series around y(t), substituting successive derivatives of f .
Runge-Kutta and related methods replace derivatives by additional
function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent
variables, we can write out y as a power series in t, substitute, and
explicitly find the coefficients – the Power Series Method. Usually
only seen when solving linear second order odes with non constant
coefficients (Frobenius around regular singular points). The PSM
can be used to approximate a system of first order initial value
polynomial odes to arbitrary order.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane



Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.

Solution curve available at every value of t, leading to a
straightforward approach to delay difference equations.
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Applying the PSM

Virtually every system of first order initial value odes can be
systematically transformed into an equivalent polynomial form.
Even better, with a bit more care all terms can be made quadratic,
and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.

Solution curve available at every value of t, leading to a
straightforward approach to delay difference equations.

No transcendental function evaluation, so
is much faster.
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Simple Examples

ẏ = sin t, y(0) = a.
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Simple Examples

ẏ = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t.
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Simple Examples

ẏ = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Then
u̇1 = u2, u1(0) = a; u̇2 = u3, u2(0) = 0; u̇3 = −u2, u3(0) = 1.
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Simple Examples

ẏ = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Then
u̇1 = u2, u1(0) = a; u̇2 = u3, u2(0) = 0; u̇3 = −u2, u3(0) = 1.

ẏ = sin y , y(0) = a.
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Simple Examples

ẏ = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Then
u̇1 = u2, u1(0) = a; u̇2 = u3, u2(0) = 0; u̇3 = −u2, u3(0) = 1.

ẏ = sin y , y(0) = a. Let u1 = y , u2 = sin y , u3 = cos y .
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Simple Examples

ẏ = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Then
u̇1 = u2, u1(0) = a; u̇2 = u3, u2(0) = 0; u̇3 = −u2, u3(0) = 1.

ẏ = sin y , y(0) = a. Let u1 = y , u2 = sin y , u3 = cos y . Then
u̇1 = u2, u1(0) = a; u̇2 = (cos y)ẏ = u3u2, u2(0) = sin(a);
u̇3 = (− sin y)ẏ = −u2

2 , u3(0) = cos(a).
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Arbitrary Powers

ẏ = yα, y(0) = a.
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y .
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Background First ODE Second ODE PSM

Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a;
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1.
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u̇1 = u2, u̇2 = αu2u4,
u̇3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1.
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u̇1 = u2, u̇2 = αu2u4,
u̇3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u̇1 = u1u2, u1(0) = aα;
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u̇1 = u2, u̇2 = αu2u4,
u̇3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u̇1 = u1u2, u1(0) = aα;
u̇2 = (α − 1)yα−2yα
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u̇1 = u2, u̇2 = αu2u4,
u̇3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u̇1 = u1u2, u1(0) = aα;
u̇2 = (α − 1)yα−2yα = (α − 1)y2α−2 = (α − 1)u2

2 , u2(0) = aα−1.
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Arbitrary Powers

ẏ = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u̇1 = u2,
u1(0) = a; u̇2 = αyα−1ẏ = αy2α−1 = αu2

2u3, u2(0) = aα;
u̇3 = (−1/y2)ẏ = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u̇1 = u2, u̇2 = αu2u4,
u̇3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u̇1 = u1u2, u1(0) = aα;
u̇2 = (α − 1)yα−2yα = (α − 1)y2α−2 = (α − 1)u2

2 , u2(0) = aα−1.
Only 2 Cauchy products.
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