Simple Heteroclinic Orbit Examples in the Plane

Stephen Lucas* & James Sochacki

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

July 4, 2012 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications Special Session 10

Background	First ODE	Second ODE	PSM
000	0000000000	0000	0000
o			

• Planar Systems

Jutline

- Heteroclinic Orbits
- First ode, spirals, every point on a heteroclinic orbit
- Second ode, heteroclinic limit points along a line
- Power Series Method for odes

Background	First ODE	Second ODE	PSM
●○○	0000000000		0000
Planar Systems			

 $\dot{x} = P(x, y), \ \dot{y} = Q(x, y)$ for real polynomials $P(x, y), \ Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Background	First ODE	Second ODE	PSM
●○○	0000000000	0000	0000
Planar Systems			

 $\dot{x} = P(x, y), \ \dot{y} = Q(x, y)$ for real polynomials $P(x, y), \ Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Hilbert's 16th problem: how many limit cycles when bounding the polynomial order.

Background	First ODE	Second ODE	PSM
●○○	0000000000	0000	0000
Planar Systems			

 $\dot{x} = P(x, y), \ \dot{y} = Q(x, y)$ for real polynomials $P(x, y), \ Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Hilbert's 16th problem: how many limit cycles when bounding the polynomial order.

Over a thousand papers on quadratic systems alone, with a bibliography compiled by the Delft University of Technology (1904-1997)

Background	First ODE	Second ODE	PSM
○●○	0000000000	0000	0000
Heteroclinic Orbits	5		

Background	First ODE	Second ODE	PSM
○●○	0000000000	0000	0000
Heteroclinic Orbits	;		

A homoclinic orbit is the special case $x_a = x_b$.

Heteroclinic ()rhite		0000
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

A homoclinic orbit is the special case $x_a = x_b$.

Heteroclinic orbits typically occur when a system can cycle between different states, spending substantial time near each one. They often separate the solution space into regions with qualitatively different behavior.

Background	First ODE	Second ODE	PSM
000			
Heteroclinic Orbit	S		

A homoclinic orbit is the special case $x_a = x_b$.

Heteroclinic orbits typically occur when a system can cycle between different states, spending substantial time near each one. They often separate the solution space into regions with qualitatively different behavior.

Numerically locating heteroclinic orbits (if they exist) is challenging, and often reduces to solving an infinite boundary value problem.

	000000000	0000	0000		
Heteroclinic Examples					

Very simple examples include the simple pendulum with orbits joining the unstable equilibria,

000	000000000	0000	0000
Heteroclinic Exam	oles		

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at 0° , 120° or 240° ,

Hotoro olinia Evam	alaa		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at 0°, 120° or 240°, and from Borelli & Coleman: $\dot{x} = x(1 - x - (15/4)y + 2xy + y^2)$, $\dot{y} = y(-1 + y + (15/4)x - 2x^2 - xy)$. Heteroclinic orbits are straight lines joining (0,0), (1,0), (0,1), orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

Hotoro olinia Evam			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at 0°, 120° or 240°, and from Borelli & Coleman: $\dot{x} = x(1 - x - (15/4)y + 2xy + y^2)$, $\dot{y} = y(-1 + y + (15/4)x - 2x^2 - xy)$. Heteroclinic orbits are straight lines joining (0,0), (1,0), (0,1), orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

Hotoro olinia Evom			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at 0°, 120° or 240°, and from Borelli & Coleman: $\dot{x} = x(1 - x - (15/4)y + 2xy + y^2)$, $\dot{y} = y(-1 + y + (15/4)x - 2x^2 - xy)$. Heteroclinic orbits are straight lines joining (0,0), (1,0), (0,1), orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

Stephen Lucas^{*} & James Sochacki

Simple Heteroclinic Orbit Examples in the Plane

Background	First ODE	Second ODE	PSM
000	••••••	0000	0000
First ODE			

Consider the system

$$\dot{x} = a(x^2 - y^2) - 2bxy + cx - dy + e,$$

 $\dot{y} = b(x^2 - y^2) + 2axy + dx + cy + f,$ with $x(0) = g,$
 $y(0) = h,$

for given constants a to h.

Background	First ODE	Second ODE	PSM
000		0000	0000
First ODE			

Consider the system

$$\dot{x} = a(x^2 - y^2) - 2bxy + cx - dy + e,$$

 $\dot{y} = b(x^2 - y^2) + 2axy + dx + cy + f,$ with $x(0) = g,$
 $y(0) = h,$

for given constants a to h.

With
$$z(t) = x(t) + iy(t)$$
,
 $\dot{z} = (a + ib)z^2 + (c + id)z + (e + if)$ with $z(0) = g + ih$,

with all constants a to h being real.

Background	First ODE	Second ODE	PSM
	000000000		
Eirct ODE			

Consider the system

$$\dot{x} = a(x^2 - y^2) - 2bxy + cx - dy + e,$$

 $\dot{y} = b(x^2 - y^2) + 2axy + dx + cy + f,$ with $x(0) = g,$
 $y(0) = h,$

for given constants a to h.

With
$$z(t) = x(t) + iy(t)$$
,
 $\dot{z} = (a + ib)z^2 + (c + id)z + (e + if)$ with $z(0) = g + ih$,

with all constants a to h being real.

By completing the square and scaling by a + ib, any quadratic complex ode can be reduced to

$$\dot{z} = z^2 + (a + ib)$$
 with $z(0) = c + id$,

where a, b, c and d are real constants.

Background	First ODE	Second ODE	PSM
000	000000000	0000	0000

Analytic Solution

Let
$$e = \frac{\sqrt{a + \sqrt{a^2 + b^2}}}{\sqrt{2}}$$
 and $f = \frac{b}{\sqrt{2(a + \sqrt{a^2 + b^2})}}$ so $\sqrt{a + ib} = \pm (e + if)$ and $\sqrt{-(a + ib)} = \pm (-f + ie)$.

Background	First ODE	Second ODE	PSM
000	000000000	0000	0000

Analytic Solution

Let
$$e = \frac{\sqrt{a + \sqrt{a^2 + b^2}}}{\sqrt{2}}$$
 and $f = \frac{b}{\sqrt{2(a + \sqrt{a^2 + b^2})}}$ so
 $\sqrt{a + ib} = \pm (e + if)$ and $\sqrt{-(a + ib)} = \pm (-f + ie)$. Then
 $(c + id)$

$$z = (e + if) \operatorname{tan}((e + if)t + C), \ C = \operatorname{arctan}\left(\frac{c + ia}{e + if}\right) = g + ih.$$

Background	First ODE	Second ODE	PSM
000	000000000	0000	0000

Analytic Solution

Let
$$e = \frac{\sqrt{a + \sqrt{a^2 + b^2}}}{\sqrt{2}}$$
 and $f = \frac{b}{\sqrt{2(a + \sqrt{a^2 + b^2})}}$ so
 $\sqrt{a + ib} = \pm (e + if)$ and $\sqrt{-(a + ib)} = \pm (-f + ie)$. Then

$$z = (e + if) \operatorname{tan}((e + if)t + C), \ C = \arctan\left(\frac{c + id}{e + if}\right) = g + ih.$$

Using the definitions of complex arctan, log, sin and cos, we get $z(t) = \frac{e \sin(2(et+g)) - f \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))} + i \frac{f \sin(2(et+g)) + e \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))}.$

Background	First ODE	Second ODE	PSM
	000000000		
Zero Constant			

Background	Second ODE	PSM
Zero Constant		

Then
$$z(t) = x(t) + iy(t) = \frac{-\left(t + \frac{c}{c^2 + d^2}\right) - i\frac{d}{c^2 + d^2}}{\left(t + \frac{c}{c^2 + d^2}\right)^2 + \left(\frac{d}{c^2 + d^2}\right)^2}$$

Background	First ODE	Second ODE	PSM
000	○○●○○○○○○○	0000	0000
Zero Constant			

Then
$$z(t) = x(t) + iy(t) = rac{-\left(t + rac{c}{c^2 + d^2}\right) - irac{d}{c^2 + d^2}}{\left(t + rac{c}{c^2 + d^2}\right)^2 + \left(rac{d}{c^2 + d^2}\right)^2}.$$

If we let
$$m = c/(c^2 + d^2)$$
 and $n = d/(c^2 + d^2)$ then
 $x(t) = -\frac{t+m}{(t+m)^2 + n^2}$ and $y(t) = -\frac{n}{(t+m)^2 + n^2}$.

Background	First ODE	Second ODE	PSM
000	००●०००००००		0000
Zero Constant			

Then
$$z(t) = x(t) + iy(t) = \frac{-\left(t + \frac{c}{c^2 + d^2}\right) - i\frac{d}{c^2 + d^2}}{\left(t + \frac{c}{c^2 + d^2}\right)^2 + \left(\frac{d}{c^2 + d^2}\right)^2}$$
.

If we let
$$m = c/(c^2 + d^2)$$
 and $n = d/(c^2 + d^2)$ then
 $x(t) = -\frac{t+m}{(t+m)^2 + n^2}$ and $y(t) = -\frac{n}{(t+m)^2 + n^2}$.

 $(x(t), y(t)) \rightarrow (0, 0)$ as $t \rightarrow \pm \infty$, so the solution starting from any point is on a homoclinic orbit, with the same homoclinic point.

Background	First ODE	Second ODE	PSM
	000000000		

$$x^{2} + y^{2} = \frac{(t+m)^{2} + n^{2}}{((t+m)^{2} + n^{2})^{2}} = \frac{1}{(t+m)^{2} + n^{2}} = -\frac{y}{n},$$

Background	First ODE	Second ODE	PSM
000	000000000	0000	0000

$$x^{2} + y^{2} = \frac{(t+m)^{2} + n^{2}}{((t+m)^{2} + n^{2})^{2}} = \frac{1}{(t+m)^{2} + n^{2}} = -\frac{y}{n},$$

or
$$x^{2} + \left(y - \frac{1}{2n}\right) = \left(\frac{1}{2n}\right)^{2}.$$

Background	First ODE	Second ODE	PSM
000	000000000	0000	0000

$$x^{2} + y^{2} = \frac{(t+m)^{2} + n^{2}}{((t+m)^{2} + n^{2})^{2}} = \frac{1}{(t+m)^{2} + n^{2}} = -\frac{y}{n},$$

or
$$x^{2} + \left(y - \frac{1}{2n}\right) = \left(\frac{1}{2n}\right)^{2}.$$

All homoclinic orbits are circles,
center and radius 1/(2n).

Backgroun	d

First ODE 000€000000 Second ODE

$$x^{2} + y^{2} = \frac{(t+m)^{2} + n^{2}}{((t+m)^{2} + n^{2})^{2}} = \frac{1}{(t+m)^{2} + n^{2}} = -\frac{y}{n},$$

or
$$x^{2} + \left(y - \frac{1}{2n}\right) = \left(\frac{1}{2n}\right)^{2}.$$

All homoclinic orbits are circles,
center and radius 1/(2n).

Background	First ODE	Second ODE	PSM
	000000000	0000	
D 1.1			

Positive Real Constant

If
$$b = 0$$
 and $a > 0$, then $e = \sqrt{a}$, $f = 0$ and

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{at} + g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{at} + g))}$$

Durit's Duri Court	1		
000	000000000	0000	0000
Background	First ODE	Second ODE	PSM

Positive Real Constant

If b = 0 and a > 0, then $e = \sqrt{a}$, f = 0 and

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{a}t+g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{a}t+g))}.$$

Orbits are circles $x^2 + (y - m)^2 = m^2 - a$ where $m = a \coth(2h)$, all of which are periodic, so no heteroclinic orbits.

Desitive Deal Case	L L		
000	000000000	0000	0000
Background	First ODE	Second ODE	PSM

Positive Real Constant

If b = 0 and a > 0, then $e = \sqrt{a}$, f = 0 and

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{a}t+g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{a}t+g))}$$

Orbits are circles $x^2 + (y - m)^2 = m^2 - a$ where $m = a \coth(2h)$, all of which are periodic, so no heteroclinic orbits. $z' = z^2 + 1$:

Positive Real (Constant Period		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{a}t+g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{a}t+g))},$$

so the period is the same on each circular orbit.

Positive Real (Onstant Period		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{a}t+g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{a}t+g))},$$

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away from the origin.

Positive Real (Constant Period		
000	000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$z(t) = x(t) + iy(t) = \sqrt{a} \cdot \frac{\sin(2(\sqrt{a}t+g)) + i\sinh(2h)}{\cosh(2h) + \cos(2(\sqrt{a}t+g))},$$

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away from the origin. $\dot{z} = z^2 + 1$, z(0) = 0.05 + 0.05i:

Background	First ODE	Second ODE	PSM
	0000000000		

Negative Real Constant

If
$$b = 0$$
 and $a < 0$, then $\pm (e + if) = \sqrt{a} = i\sqrt{-a}$, so $e = 0$ and $f = \sqrt{-a}$, and

$$z(t) = x(t) = iy(t) = \sqrt{-a} \cdot \frac{-\sinh(2(\sqrt{-a}t+h)) + i\sin(2g)}{\cosh(2(\sqrt{-a}t+h)) + \cos(2g)}.$$

Background	First ODE	Second ODE	PSM
000	0000000000	0000	0000

Negative Real Constant

If
$$b = 0$$
 and $a < 0$, then $\pm (e + if) = \sqrt{a} = i\sqrt{-a}$, so $e = 0$ and $f = \sqrt{-a}$, and

$$z(t) = x(t) = iy(t) = \sqrt{-a} \cdot \frac{-\sinh(2(\sqrt{-a}t+h)) + i\sin(2g)}{\cosh(2(\sqrt{-a}t+h)) + \cos(2g)}.$$

As $t \to \pm \infty$, $z(t) \to \mp \sqrt{-a}$, every point lies on a heteroclinic orbit with limit points on the real axis.

Background	First ODE	Second	ODE PSM
	000000000	0000 0000	

Negative Real Constant

If
$$b = 0$$
 and $a < 0$, then $\pm (e + if) = \sqrt{a} = i\sqrt{-a}$, so $e = 0$ and $f = \sqrt{-a}$, and

$$z(t) = x(t) = iy(t) = \sqrt{-a} \cdot \frac{-\sinh(2(\sqrt{-a}t+h)) + i\sin(2g)}{\cosh(2(\sqrt{-a}t+h)) + \cos(2g)}.$$

As $t \to \pm \infty$, $z(t) \to \pm \sqrt{-a}$, every point lies on a heteroclinic orbit with limit points on the real axis. Orbits are arcs of circles: $x^2 + (y - g)^2 = g^2 - a$ where $g = a \cot(2e)$.

	00000000000		
Background	First ODE	Second ODE	PSM

Negative Real Constant

If
$$b = 0$$
 and $a < 0$, then $\pm (e + if) = \sqrt{a} = i\sqrt{-a}$, so $e = 0$ and $f = \sqrt{-a}$, and

$$z(t) = x(t) = iy(t) = \sqrt{-a} \cdot \frac{-\sinh(2(\sqrt{-a}t+h)) + i\sin(2g)}{\cosh(2(\sqrt{-a}t+h)) + \cos(2g)}.$$

As $t \to \pm \infty$, $z(t) \to \pm \sqrt{-a}$, every point lies on a heteroclinic orbit with limit points on the real axis. Orbits are arcs of circles: $x^2 + (y - g)^2 = g^2 - a$ where $g = a \cot(2e)$.

000	00000000000	0000	0000
Complex Constant			

If
$$b \neq 0$$
 then $e, f \neq 0$ in

$$z(t) = \frac{e \sin(2(et+g)) - f \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))} + i \frac{f \sin(2(et+g)) + e \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))}.$$

Complex Constant			
	00000000000		
Background	First ODE	Second ODE	PSM

If
$$b \neq 0$$
 then $e, f \neq 0$ in

$$z(t) = \frac{e \sin(2(et+g)) - f \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))}$$
$$+ i \frac{f \sin(2(et+g)) + e \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))}.$$

As $t \to \pm \infty$, $(x, y) \to \pm (-f, e)$, every point on the plane lies on a heteroclinic orbit.

Complex Constant			
			0000
Packground	Eirct ODE	Second ODE	DCM

If
$$b \neq 0$$
 then $e, f \neq 0$ in

$$z(t) = \frac{e \sin(2(et+g)) - f \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))} + i \frac{f \sin(2(et+g)) + e \sinh(2(ft+h))}{\cosh(2(ft+h)) + \cos(2(et+g))}.$$

As $t \to \pm \infty$, $(x, y) \to \pm (-f, e)$, every point on the plane lies on a heteroclinic orbit.

Orbits cannot be represented as algebraic equations in x and y only, and are spirals similar to Carnu or Euler spirals, with exponential convergence for large magnitude t.

Background	First ODE	Second ODE	PSM
000	00000000000	0000	0000
E E			

First Example

$$\dot{z} = z^2 + (1+i), \ z(0) = -1, -0.8, \dots, 1.$$

Einst Einsteile			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

Einst Engenale Ma	Durant's		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

Same exponential convergence after more dramatic intermediate circular curve.

Second Example			
	0000000000		
Background	First ODE	Second ODE	PSM

$$\dot{z} = z^2 + 1 + i/2$$
, with $z(0) = 0, 0.1, 0.2, 0.3$.

Background	First ODE	Second ODE	PSM
	000000000		
Second Example			

$$\dot{z} = z^2 + 1 + i/2$$
, with $z(0) = 0, 0.1, 0.2, 0.3$.

The smaller the ratio a/b, the faster the convergence of the spiral.

Background	First ODE	Second ODE	PSM
000	0000000000	●○○○	0000
Second ODF			

Consider
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c, y(0) = d$.

Background	First ODE	Second ODE	PSM
		0000	
Second ODF			

Consider
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$.

Background 000	First ODE	0000
Second ODE		

Consider
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$.

Eliminating t,
$$\dot{y} = -y/x$$
, or $x^2 + y^2 = r^2$ where $c^2 + d^2 = r^2$.

Background 000	First ODE	0000
Second ODE		

Consider
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$.

Eliminating t,
$$\dot{y} = -y/x$$
, or $x^2 + y^2 = r^2$ where $c^2 + d^2 = r^2$.

If $r < 1/(a^2 + b^2)$, orbits will be periodic. Otherwise, orbits are heteroclinic on arcs of circles, with endpoints on the line 1 - ax - by = 0.

Background 000	First ODE	0000
Second ODE		

Consider
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$.

Eliminating t,
$$\dot{y} = -y/x$$
, or $x^2 + y^2 = r^2$ where $c^2 + d^2 = r^2$.

If $r < 1/(a^2 + b^2)$, orbits will be periodic. Otherwise, orbits are heteroclinic on arcs of circles, with endpoints on the line 1 - ax - by = 0.

The line -ax - by = 0 could be called a heteroclinic line.

Background	First ODE	Second ODE	PSM
000	0000000000	○●○○	0000
Analytic Solution			

Starting with
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$, let $r = \sqrt{c^2 + d^2}$, $x(t) = r\cos(\theta(t))$ and $y(t) = r\sin(\theta(t))$.

Background	First ODE	Second ODE	PSM
000	0000000000	○●○○	0000
Analytic Solution			

Starting with
$$\dot{x} = -y(1 - ax - by)$$
 and $\dot{y} = x(1 - ax - by)$ with $x(0) = c$, $y(0) = d$, let $r = \sqrt{c^2 + d^2}$, $x(t) = r \cos(\theta(t))$ and $y(t) = r \sin(\theta(t))$. Then $\dot{\theta} = 1 - ar \cos \theta - br \sin \theta$, which has solutions

$$\theta(t) = -2 \arctan\left(\frac{-br + \tanh\left(\frac{t+C}{2}\sqrt{r^2(a^2+b^2)-1}\right)\sqrt{r^2(a^2+b^2)-1}}{1+ar}\right)$$

when $r^2 > 1/(a^2 + b^2)$, and
 $\theta(t) = -2 \arctan\left(\frac{-br - \tan\left(\frac{t+C}{2}\sqrt{1-r^2(a^2+b^2)}\right)\sqrt{1-r^2(a^2+b^2)}}{1+ar}\right) + 2k\pi$
when $r^2 < 1/(a^2 + b^2)$, and k is an integer chosen to ensure $\theta(t)$
stays continuous and monotonic.

JAMES MADISON UNIVERSITY

Background	First ODE	Second ODE	PSM
000	0000000000	○○●○	0000
Example			

$$\dot{x} = -y(1 - x - y)$$
 and $\dot{y} = x(1 - x - y)$ with $d = 0$ and $c = 0.05, 0.1, 0.15, \dots, 2$:

000	0000000000	0000
Background	First ODE	PSM

More General Case

 $\dot{x} = -yf(x, y)$, $\dot{y} = xf(x, y)$ for any function f(x, y) has arcs of circles as orbits, with the solutions of f(x, y) = 0 as heteroclinic lines.

Background	First ODE	Second ODE	PSM
		0000	

More General Case

 $\dot{x} = -yf(x, y)$, $\dot{y} = xf(x, y)$ for any function f(x, y) has arcs of circles as orbits, with the solutions of f(x, y) = 0 as heteroclinic lines.

For example, $x' = -y(y - x^2)$ and $y' = x(y - x^2)$ with x(0) = 0and $y(0) = -0.1, -0, 2, -0.3, \dots, -6$.

De las Castas Mathead	
Background First ODE Second ODE 000 0000000000 0000	PSM ●○○○

Taylor methods to solve $\dot{y} = f(t, y)$ writes y(t + h) as a Taylor series around y(t), substituting successive derivatives of f.

Power Series Met	hod		
Background	First ODE	Second ODE	PSM
000	0000000000	0000	●○○○

Power Series N	/lethod	
000	00000000000000000000000000000000000000	●000
		DCM

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients – the Power Series Method.

Power Series N	lethod		
Background	First ODE	Second ODE	PSM
000	0000000000	0000	●000

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients – the Power Series Method. Usually only seen when solving linear second order odes with non constant coefficients (Frobenius around regular singular points).

Power Series N	lethod		
Background	First ODE	Second ODE	PSM
000	0000000000	0000	●000

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients – the Power Series Method. Usually only seen when solving linear second order odes with non constant coefficients (Frobenius around regular singular points). The PSM can be used to approximate a system of first order initial value polynomial odes to arbitrary order.

Applying the PSM			
Background	First ODE	Second ODE	PSM
000	0000000000		○●○○

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form.

Applying the PSM			
ackground	First ODE	Second ODE	PSM
00	0000000000		⊙●○○

Applying the PC	M		
			0000
Background	First ODE	Second ODE	PSM

Advantages:

• Arbitrary order available, at any level at any time.

Applying the PC	M		
			0000
Background	First ODE	Second ODE	PSM

- Arbitrary order available, at any level at any time.
- A priori error estimate available.

Applying the PC	M		
			0000
Background	First ODE	Second ODE	PSM

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible effectively symplectic.

Applying the P	SM		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible effectively symplectic.
- Solution curve available at every value of *t*, leading to a straightforward approach to delay difference equations.

Applying the P	SM		
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible effectively symplectic.
- Solution curve available at every value of *t*, leading to a straightforward approach to delay difference equations.
- No transcendental function evaluation, so is much faster.

Simple Examples			
	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = \sin t$$
, $y(0) = a$.

Simple Examples			
Background	First ODE	Second ODE	PSM
000	0000000000	0000	○○●○

$$\dot{y} = \sin t$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin t$, $u_3 = \cos t$.

Simple Examples			
Background	First ODE	Second ODE	PSM
000	0000000000	0000	○○●○

$$\dot{y} = \sin t$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin t$, $u_3 = \cos t$. Then
 $\dot{u}_1 = u_2$, $u_1(0) = a$; $\dot{u}_2 = u_3$, $u_2(0) = 0$; $\dot{u}_3 = -u_2$, $u_3(0) = 1$.

Simple Examples			
Background	First ODE	Second ODE	PSM
000	0000000000	0000	○○●○

$$\dot{y} = \sin t$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin t$, $u_3 = \cos t$. Then
 $\dot{u}_1 = u_2$, $u_1(0) = a$; $\dot{u}_2 = u_3$, $u_2(0) = 0$; $\dot{u}_3 = -u_2$, $u_3(0) = 1$.

$$\dot{y} = \sin y, \ y(0) = a.$$

Simple Examples			
000	0000000000	0000	0000
Background	First ODF	Second ODE	PSM

$$\dot{y} = \sin t$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin t$, $u_3 = \cos t$. Then
 $\dot{u}_1 = u_2$, $u_1(0) = a$; $\dot{u}_2 = u_3$, $u_2(0) = 0$; $\dot{u}_3 = -u_2$, $u_3(0) = 1$.

$$\dot{y} = \sin y$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin y$, $u_3 = \cos y$.

Simple Examples			
	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = \sin t$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin t$, $u_3 = \cos t$. Then
 $\dot{u}_1 = u_2$, $u_1(0) = a$; $\dot{u}_2 = u_3$, $u_2(0) = 0$; $\dot{u}_3 = -u_2$, $u_3(0) = 1$.

$$\dot{y} = \sin y$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = \sin y$, $u_3 = \cos y$. Then
 $\dot{u}_1 = u_2$, $u_1(0) = a$; $\dot{u}_2 = (\cos y)\dot{y} = u_3u_2$, $u_2(0) = \sin(a)$;
 $\dot{u}_3 = (-\sin y)\dot{y} = -u_2^2$, $u_3(0) = \cos(a)$.

Arbitrary Power			
Background 000	First ODE	Second ODE	PSM 0000

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$.

J

	Arbitrary Doword			0000
Dackground Decision First VILLE PNM	000	0000000000	0000	0000

$$\dot{y} = y^{lpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{lpha}$, $u_3 = 1/y$.

Arbitrary Doword			
Background	First ODE	Second ODE	PSM

J

$$\dot{y} = y^{lpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{lpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$, $u_1(0) = a$;

Arhitrary Powers			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;

Arbitrary Powers			
000	0000000000	0000	0000
Packground	Eirct ODE	Second ODE	DCM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Arhitrary Power	c .		
	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2 u_3 = y^{\alpha - 1}$.

Arhitrary Powers			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2u_3 = y^{\alpha-1}$. Then $\dot{u}_1 = u_2$, $\dot{u}_2 = \alpha u_2 u_4$, $\dot{u}_3 = -u_3 u_4$, only 3 Cauchy products.

Even better, let $u_1 = y$, $u_2 = y^{\alpha - 1}$.

Arhitrary Powers			
	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2 u_3 = y^{\alpha-1}$. Then $\dot{u}_1 = u_2$, $\dot{u}_2 = \alpha u_2 u_4$, $\dot{u}_3 = -u_3 u_4$, only 3 Cauchy products.

Even better, let $u_1 = y$, $u_2 = y^{\alpha - 1}$. Then $\dot{u}_1 = u_1 u_2$, $u_1(0) = a^{\alpha}$;

Arhitrary Powers			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2 u_3 = y^{\alpha-1}$. Then $\dot{u}_1 = u_2$, $\dot{u}_2 = \alpha u_2 u_4$, $\dot{u}_3 = -u_3 u_4$, only 3 Cauchy products.

Even better, let $u_1 = y$, $u_2 = y^{\alpha - 1}$. Then $\dot{u}_1 = u_1 u_2$, $u_1(0) = a^{\alpha}$; $\dot{u}_2 = (\alpha - 1)y^{\alpha - 2}y^{\alpha}$

Arbitrary Powers			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2u_3 = y^{\alpha-1}$. Then $\dot{u}_1 = u_2$, $\dot{u}_2 = \alpha u_2 u_4$, $\dot{u}_3 = -u_3 u_4$, only 3 Cauchy products.

Even better, let $u_1 = y$, $u_2 = y^{\alpha - 1}$. Then $\dot{u}_1 = u_1 u_2$, $u_1(0) = a^{\alpha}$; $\dot{u}_2 = (\alpha - 1)y^{\alpha - 2}y^{\alpha} = (\alpha - 1)y^{2\alpha - 2} = (\alpha - 1)u_2^2$, $u_2(0) = a^{\alpha - 1}$.

Arbitrary Powers			
000	0000000000	0000	0000
Background	First ODE	Second ODE	PSM

$$\dot{y} = y^{\alpha}$$
, $y(0) = a$. Let $u_1 = y$, $u_2 = y^{\alpha}$, $u_3 = 1/y$. Then $\dot{u}_1 = u_2$,
 $u_1(0) = a$; $\dot{u}_2 = \alpha y^{\alpha - 1} \dot{y} = \alpha y^{2\alpha - 1} = \alpha u_2^2 u_3$, $u_2(0) = a^{\alpha}$;
 $\dot{u}_3 = (-1/y^2) \dot{y} = -u_3^2 u_2$, $u_3(0) = 1/a$.

Better, let $u_4 = u_2 u_3 = y^{\alpha-1}$. Then $\dot{u}_1 = u_2$, $\dot{u}_2 = \alpha u_2 u_4$, $\dot{u}_3 = -u_3 u_4$, only 3 Cauchy products.

Even better, let $u_1 = y$, $u_2 = y^{\alpha-1}$. Then $\dot{u}_1 = u_1 u_2$, $u_1(0) = a^{\alpha}$; $\dot{u}_2 = (\alpha - 1)y^{\alpha-2}y^{\alpha} = (\alpha - 1)y^{2\alpha-2} = (\alpha - 1)u_2^2$, $u_2(0) = a^{\alpha-1}$. Only 2 Cauchy products.

