Simple Heteroclinic Orbit Examples in the Plane

Stephen Lucas* \& James Sochacki

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

July 4, 2012
9th AIMS Conference on Dynamical Systems, Differential Equations and Applications Special Session 10

Outline

- Planar Systems
- Heteroclinic Orbits
- First ode, spirals, every point on a heteroclinic orbit
- Second ode, heteroclinic limit points along a line
- Power Series Method for odes

Planar Systems

$\dot{x}=P(x, y), \dot{y}=Q(x, y)$ for real polynomials $P(x, y), Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Planar Systems

$\dot{x}=P(x, y), \dot{y}=Q(x, y)$ for real polynomials $P(x, y), Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Hilbert's 16th problem: how many limit cycles when bounding the polynomial order.

Planar Systems

$\dot{x}=P(x, y), \dot{y}=Q(x, y)$ for real polynomials $P(x, y), Q(x, y)$ in x and y form a polynomial differential system in the plane, and have been extensively studied over the decades.

Hilbert's 16th problem: how many limit cycles when bounding the polynomial order.

Over a thousand papers on quadratic systems alone, with a bibliography compiled by the Delft University of Technology (1904-1997)

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes $\dot{x}=f(t, x)$ where $x \rightarrow x_{a}$ as $t \rightarrow \infty$ and $x \rightarrow x_{b}$ as $t \rightarrow-\infty$ for given points x_{a}, x_{b}.

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes $\dot{x}=f(t, x)$ where $x \rightarrow x_{a}$ as $t \rightarrow \infty$ and $x \rightarrow x_{b}$ as $t \rightarrow-\infty$ for given points x_{a}, x_{b}.

A homoclinic orbit is the special case $x_{a}=x_{b}$.

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes $\dot{x}=f(t, x)$ where $x \rightarrow x_{a}$ as $t \rightarrow \infty$ and $x \rightarrow x_{b}$ as $t \rightarrow-\infty$ for given points x_{a}, x_{b}.

A homoclinic orbit is the special case $x_{a}=x_{b}$.
Heteroclinic orbits typically occur when a system can cycle between different states, spending substantial time near each one. They often separate the solution space into regions with qualitatively different behavior.

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes $\dot{x}=f(t, x)$ where $x \rightarrow x_{a}$ as $t \rightarrow \infty$ and $x \rightarrow x_{b}$ as $t \rightarrow-\infty$ for given points x_{a}, x_{b}.

A homoclinic orbit is the special case $x_{a}=x_{b}$.
Heteroclinic orbits typically occur when a system can cycle between different states, spending substantial time near each one.
They often separate the solution space into regions with qualitatively different behavior.

Numerically locating heteroclinic orbits (if they exist) is challenging, and often reduces to solving an infinite boundary value problem.

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria,

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at $0^{\circ}, 120^{\circ}$ or 240°,

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at $0^{\circ}, 120^{\circ}$ or 240°, and from Borelli \& Coleman: $\dot{x}=x\left(1-x-(15 / 4) y+2 x y+y^{2}\right)$, $\dot{y}=y\left(-1+y+(15 / 4) x-2 x^{2}-x y\right)$. Heteroclinic orbits are straight lines joining $(0,0),(1,0),(0,1)$, orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at $0^{\circ}, 120^{\circ}$ or 240°, and from Borelli \& Coleman: $\dot{x}=x\left(1-x-(15 / 4) y+2 x y+y^{2}\right)$, $\dot{y}=y\left(-1+y+(15 / 4) x-2 x^{2}-x y\right)$. Heteroclinic orbits are straight lines joining $(0,0),(1,0),(0,1)$, orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

Heteroclinic Examples

Very simple examples include the simple pendulum with orbits joining the unstable equilibria, Rayleigh-Bèrnard convection with roll patterns orienting themselves at $0^{\circ}, 120^{\circ}$ or 240°, and from Borelli \& Coleman: $\dot{x}=x\left(1-x-(15 / 4) y+2 x y+y^{2}\right)$, $\dot{y}=y\left(-1+y+(15 / 4) x-2 x^{2}-x y\right)$. Heteroclinic orbits are straight lines joining $(0,0),(1,0),(0,1)$, orbits from within spiral out to the triangle, spending increasing amounts of time near the corners.

First ODE

Consider the system

$$
\begin{aligned}
& \dot{x}=a\left(x^{2}-y^{2}\right)-2 b x y+c x-d y+e, \\
& \dot{y}=b\left(x^{2}-y^{2}\right)+2 a x y+d x+c y+f, \\
& \text { with } \\
& x(0)=g, \\
& y(0)=h \text {, }
\end{aligned}
$$

for given constants a to h.

First ODE

Consider the system

$$
\begin{aligned}
& \dot{x}=a\left(x^{2}-y^{2}\right)-2 b x y+c x-d y+e, \\
& \dot{y}=b\left(x^{2}-y^{2}\right)+2 a x y+d x+c y+f, \quad \text { with } \quad
\end{aligned} \quad \begin{aligned}
& x(0)=g, \\
& y(0)=h,
\end{aligned}
$$

for given constants a to h.
With $z(t)=x(t)+i y(t)$,

$$
\dot{z}=(a+i b) z^{2}+(c+i d) z+(e+i f) \quad \text { with } \quad z(0)=g+i h,
$$

with all constants a to h being real.

First ODE

Consider the system

$$
\begin{aligned}
& \dot{x}=a\left(x^{2}-y^{2}\right)-2 b x y+c x-d y+e, \\
& \dot{y}=b\left(x^{2}-y^{2}\right)+2 a x y+d x+c y+f,
\end{aligned} \quad \text { with } \quad \begin{aligned}
& x(0)=g, \\
& y(0)=h,
\end{aligned}
$$

for given constants a to h.
With $z(t)=x(t)+i y(t)$,

$$
\dot{z}=(a+i b) z^{2}+(c+i d) z+(e+i f) \quad \text { with } \quad z(0)=g+i h,
$$

with all constants a to h being real.
By completing the square and scaling by $a+i b$, any quadratic complex ode can be reduced to

$$
\dot{z}=z^{2}+(a+i b) \quad \text { with } \quad z(0)=c+i d
$$

where a, b, c and d are real constants.

Analytic Solution

$$
\begin{aligned}
& \text { Let } e=\frac{\sqrt{a+\sqrt{a^{2}+b^{2}}}}{\sqrt{2}} \text { and } f=\frac{b}{\sqrt{2\left(a+\sqrt{a^{2}+b^{2}}\right)}} \text { so } \\
& \sqrt{a+i b}= \pm(e+i f) \text { and } \sqrt{-(a+i b)}= \pm(-f+i e) .
\end{aligned}
$$

Analytic Solution

$$
\begin{aligned}
& \text { Let } e=\frac{\sqrt{a+\sqrt{a^{2}+b^{2}}}}{\sqrt{2}} \text { and } f=\frac{b}{\sqrt{2\left(a+\sqrt{a^{2}+b^{2}}\right)}} \text { so } \\
& \sqrt{a+i b}= \pm(e+i f) \text { and } \sqrt{-(a+i b)}= \pm(-f+i e) . \text { Then } \\
& z=(e+i f) \tan ((e+i f) t+C), C=\arctan \left(\frac{c+i d}{e+i f}\right)=g+i h .
\end{aligned}
$$

Analytic Solution

$$
\begin{aligned}
& \text { Let } e=\frac{\sqrt{a+\sqrt{a^{2}+b^{2}}}}{\sqrt{2}} \text { and } f=\frac{b}{\sqrt{2\left(a+\sqrt{a^{2}+b^{2}}\right)}} \text { so } \\
& \sqrt{a+i b}= \pm(e+i f) \text { and } \sqrt{-(a+i b)}= \pm(-f+i e) . \text { Then } \\
& z=(e+i f) \tan ((e+i f) t+C), C=\arctan \left(\frac{c+i d}{e+i f}\right)=g+i h .
\end{aligned}
$$

Using the definitions of complex arctan, log, sin and cos, we get

$$
\begin{array}{r}
z(t)=\quad \frac{e \sin (2(e t+g))-f \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))} \\
+i \frac{f \sin (2(e t+g))+e \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))}
\end{array}
$$

Zero Constant

If $a+i b=0$, previous working invalid, solve $\dot{z}=z^{2}, z(0)=c+i d$.

Zero Constant

If $a+i b=0$, previous working invalid, solve $\dot{z}=z^{2}, z(0)=c+i d$.
Then $z(t)=x(t)+i y(t)=\frac{-\left(t+\frac{c}{c^{2}+d^{2}}\right)-i \frac{d}{c^{2}+d^{2}}}{\left(t+\frac{c}{c^{2}+d^{2}}\right)^{2}+\left(\frac{d}{c^{2}+d^{2}}\right)^{2}}$.

Zero Constant

If $a+i b=0$, previous working invalid, solve $\dot{z}=z^{2}, z(0)=c+i d$.
Then $z(t)=x(t)+i y(t)=\frac{-\left(t+\frac{c}{c^{2}+d^{2}}\right)-i \frac{d}{c^{2}+d^{2}}}{\left(t+\frac{c}{c^{2}+d^{2}}\right)^{2}+\left(\frac{d}{c^{2}+d^{2}}\right)^{2}}$.
If we let $m=c /\left(c^{2}+d^{2}\right)$ and $n=d /\left(c^{2}+d^{2}\right)$ then
$x(t)=-\frac{t+m}{(t+m)^{2}+n^{2}}$ and $y(t)=-\frac{n}{(t+m)^{2}+n^{2}}$.

Zero Constant

If $a+i b=0$, previous working invalid, solve $\dot{z}=z^{2}, z(0)=c+i d$.
Then $z(t)=x(t)+i y(t)=\frac{-\left(t+\frac{c}{c^{2}+d^{2}}\right)-i \frac{d}{c^{2}+d^{2}}}{\left(t+\frac{c}{c^{2}+d^{2}}\right)^{2}+\left(\frac{d}{c^{2}+d^{2}}\right)^{2}}$.
If we let $m=c /\left(c^{2}+d^{2}\right)$ and $n=d /\left(c^{2}+d^{2}\right)$ then
$x(t)=-\frac{t+m}{(t+m)^{2}+n^{2}}$ and $y(t)=-\frac{n}{(t+m)^{2}+n^{2}}$.
$(x(t), y(t)) \rightarrow(0,0)$ as $t \rightarrow \pm \infty$, so the solution starting from any point is on a homoclinic orbit, with the same homoclinic point.

Zero Constant Orbits

$$
\begin{aligned}
& x^{2}+y^{2}=\frac{(t+m)^{2}+n^{2}}{\left((t+m)^{2}+n^{2}\right)^{2}}= \\
& \frac{1}{(t+m)^{2}+n^{2}}=-\frac{y}{n}
\end{aligned}
$$

Zero Constant Orbits

$$
\begin{aligned}
& x^{2}+y^{2}=\frac{(t+m)^{2}+n^{2}}{\left((t+m)^{2}+n^{2}\right)^{2}}= \\
& \frac{1}{(t+m)^{2}+n^{2}}=-\frac{y}{n} \\
& \text { or } \\
& x^{2}+\left(y-\frac{1}{2 n}\right)=\left(\frac{1}{2 n}\right)^{2} .
\end{aligned}
$$

Zero Constant Orbits

$$
\begin{aligned}
& x^{2}+y^{2}=\frac{(t+m)^{2}+n^{2}}{\left((t+m)^{2}+n^{2}\right)^{2}}= \\
& \frac{1}{(t+m)^{2}+n^{2}}=-\frac{y}{n}
\end{aligned}
$$

$x^{2}+\left(y-\frac{1}{2 n}\right)=\left(\frac{1}{2 n}\right)^{2}$.
All homoclinic orbits are circles, center and radius $1 /(2 n)$.

Zero Constant Orbits

$x^{2}+y^{2}=\frac{(t+m)^{2}+n^{2}}{\left((t+m)^{2}+n^{2}\right)^{2}}=$
$\frac{1}{(t+m)^{2}+n^{2}}=-\frac{y}{n}$,
$x^{2}+\left(y-\frac{1}{2 n}\right)=\left(\frac{1}{2 n}\right)^{2}$.
All homoclinic orbits are circles, center and radius $1 /(2 n)$.

Positive Real Constant

If $b=0$ and $a>0$, then $e=\sqrt{a}, f=0$ and

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))} .
$$

Positive Real Constant

If $b=0$ and $a>0$, then $e=\sqrt{a}, f=0$ and

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))}
$$

Orbits are circles $x^{2}+(y-m)^{2}=m^{2}-a$ where $m=a \operatorname{coth}(2 h)$, all of which are periodic, so no heteroclinic orbits.

Positive Real Constant

If $b=0$ and $a>0$, then $e=\sqrt{a}, f=0$ and

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))}
$$

Orbits are circles $x^{2}+(y-m)^{2}=m^{2}-a$ where $m=\operatorname{acoth}(2 h)$, all of which are periodic, so no heteroclinic orbits. $z^{\prime}=z^{2}+1$:

Positive Real Constant Period

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))}
$$

so the period is the same on each circular orbit.

Positive Real Constant Period

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))}
$$

so the period is the same on each circular orbit.
Velocity small near the origin, can become very large away from the origin.

Positive Real Constant Period

$$
z(t)=x(t)+i y(t)=\sqrt{a} \cdot \frac{\sin (2(\sqrt{a} t+g))+i \sinh (2 h)}{\cosh (2 h)+\cos (2(\sqrt{a} t+g))},
$$

so the period is the same on each circular orbit.
Velocity small near the origin, can become very large away from the origin. $\dot{z}=z^{2}+1, z(0)=0.05+0.05 i$:

Negative Real Constant

If $b=0$ and $a<0$, then $\pm(e+i f)=\sqrt{a}=i \sqrt{-a}$, so $e=0$ and $f=\sqrt{-a}$, and

$$
z(t)=x(t)=i y(t)=\sqrt{-a} \cdot \frac{-\sinh (2(\sqrt{-a} t+h))+i \sin (2 g)}{\cosh (2(\sqrt{-a} t+h))+\cos (2 g)} .
$$

Negative Real Constant

If $b=0$ and $a<0$, then $\pm(e+i f)=\sqrt{a}=i \sqrt{-a}$, so $e=0$ and $f=\sqrt{-a}$, and

$$
z(t)=x(t)=i y(t)=\sqrt{-a} \cdot \frac{-\sinh (2(\sqrt{-a} t+h))+i \sin (2 g)}{\cosh (2(\sqrt{-a} t+h))+\cos (2 g)} .
$$

As $t \rightarrow \pm \infty, z(t) \rightarrow \mp \sqrt{-a}$, every point lies on a heteroclinic orbit with limit points on the real axis.

Negative Real Constant

If $b=0$ and $a<0$, then $\pm(e+i f)=\sqrt{a}=i \sqrt{-a}$, so $e=0$ and $f=\sqrt{-a}$, and

$$
z(t)=x(t)=i y(t)=\sqrt{-a} \cdot \frac{-\sinh (2(\sqrt{-a} t+h))+i \sin (2 g)}{\cosh (2(\sqrt{-a} t+h))+\cos (2 g)}
$$

As $t \rightarrow \pm \infty, z(t) \rightarrow \mp \sqrt{-a}$, every point lies on a heteroclinic orbit with limit points on the real axis. Orbits are arcs of circles: $x^{2}+(y-g)^{2}=g^{2}-a$ where $g=a \cot (2 e)$.

Negative Real Constant

If $b=0$ and $a<0$, then $\pm(e+i f)=\sqrt{a}=i \sqrt{-a}$, so $e=0$ and $f=\sqrt{-a}$, and

$$
\begin{array}{cl}
z(t)=x(t)=i y(t)=\sqrt{-a} \cdot \frac{-\sinh (2(\sqrt{-a} t+h))+i \sin (2 g)}{\cosh (2(\sqrt{-a} t+h))+\cos (2 g)} . \\
\dot{z}=z^{2}-1: & \begin{array}{l}
\text { As } t \rightarrow \pm \infty, z(t) \rightarrow \mp \sqrt{-a}, \\
\text { every point lies on a heteroclinic } \\
\text { orbit with limit points on the }
\end{array} \\
\text { real axis. Orbits are arcs of cir- } \\
\text { cles: } x^{2}+(y-g)^{2}=g^{2}-a \\
\text { where } g=a \cot (2 e) .
\end{array}
$$

Complex Constant

If $b \neq 0$ then $e, f \neq 0$ in

$$
\begin{array}{r}
z(t)=\frac{e \sin (2(e t+g))-f \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))} \\
+i \frac{f \sin (2(e t+g))+e \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))}
\end{array}
$$

Complex Constant

If $b \neq 0$ then $e, f \neq 0$ in

$$
\begin{array}{r}
z(t)=\frac{e \sin (2(e t+g))-f \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))} \\
+i \frac{f \sin (2(e t+g))+e \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))}
\end{array}
$$

As $t \rightarrow \pm \infty,(x, y) \rightarrow \pm(-f, e)$, every point on the plane lies on a heteroclinic orbit.

Complex Constant

If $b \neq 0$ then $e, f \neq 0$ in

$$
\begin{array}{r}
z(t)=\frac{e \sin (2(e t+g))-f \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))} \\
+i \frac{f \sin (2(e t+g))+e \sinh (2(f t+h))}{\cosh (2(f t+h))+\cos (2(e t+g))} .
\end{array}
$$

As $t \rightarrow \pm \infty,(x, y) \rightarrow \pm(-f, e)$, every point on the plane lies on a heteroclinic orbit.

Orbits cannot be represented as algebraic equations in x and y only, and are spirals similar to Carnu or Euler spirals, with exponential convergence for large magnitude t.

First Example

$$
\dot{z}=z^{2}+(1+i), z(0)=-1,-0.8, \ldots, 1
$$

First Example, More Dramatic

$\dot{z}=z^{2}+(1+i), z(0)=-2$.

First Example, More Dramatic

$\dot{z}=z^{2}+(1+i), z(0)=-2$.

Same exponential convergence after more dramatic intermediate circular curve.

Second Example

$$
\dot{z}=z^{2}+1+i / 2, \text { with } z(0)=0,0.1,0.2,0.3 .
$$

Second Example

$$
\dot{z}=z^{2}+1+i / 2, \text { with } z(0)=0,0.1,0.2,0.3 .
$$

The smaller the ratio a / b, the faster the convergence of the spiral.

Second ODE

Consider $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$.

Second ODE

Consider $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$.

Every point on the line $1-a x-b y=0$ is an equilibrium point, as well as $(0,0)$.

Second ODE

Consider $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$.

Every point on the line $1-a x-b y=0$ is an equilibrium point, as well as $(0,0)$.

Eliminating $t, \dot{y}=-y / x$, or $x^{2}+y^{2}=r^{2}$ where $c^{2}+d^{2}=r^{2}$.

Second ODE

Consider $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$.

Every point on the line $1-a x-b y=0$ is an equilibrium point, as well as $(0,0)$.

Eliminating $t, \dot{y}=-y / x$, or $x^{2}+y^{2}=r^{2}$ where $c^{2}+d^{2}=r^{2}$.
If $r<1 /\left(a^{2}+b^{2}\right)$, orbits will be periodic. Otherwise, orbits are heteroclinic on arcs of circles, with endpoints on the line $1-a x-b y=0$.

Second ODE

Consider $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$.

Every point on the line $1-a x-b y=0$ is an equilibrium point, as well as $(0,0)$.

Eliminating $t, \dot{y}=-y / x$, or $x^{2}+y^{2}=r^{2}$ where $c^{2}+d^{2}=r^{2}$.
If $r<1 /\left(a^{2}+b^{2}\right)$, orbits will be periodic. Otherwise, orbits are heteroclinic on arcs of circles, with endpoints on the line $1-a x-b y=0$.

The line $-a x-b y=0$ could be called a heteroclinic line.

Analytic Solution

Starting with $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$, let $r=\sqrt{c^{2}+d^{2}}, x(t)=r \cos (\theta(t))$ and $y(t)=r \sin (\theta(t))$.

Analytic Solution

Starting with $\dot{x}=-y(1-a x-b y)$ and $\dot{y}=x(1-a x-b y)$ with $x(0)=c, y(0)=d$, let $r=\sqrt{c^{2}+d^{2}}, x(t)=r \cos (\theta(t))$ and $y(t)=r \sin (\theta(t))$. Then $\dot{\theta}=1-\operatorname{arcos} \theta-b r \sin \theta$, which has solutions

$$
\theta(t)=-2 \arctan \left(\frac{-b r+\tanh \left(\frac{t+C}{2} \sqrt{r^{2}\left(a^{2}+b^{2}\right)-1}\right) \sqrt{r^{2}\left(a^{2}+b^{2}\right)-1}}{1+a r}\right)
$$

when $r^{2}>1 /\left(a^{2}+b^{2}\right)$, and
$\theta(t)=-2 \arctan \left(\frac{-b r-\tan \left(\frac{t+C}{2} \sqrt{1-r^{2}\left(a^{2}+b^{2}\right)}\right) \sqrt{1-r^{2}\left(a^{2}+b^{2}\right)}}{1+a r}\right)+2 k \pi$
when $r^{2}<1 /\left(a^{2}+b^{2}\right)$, and k is an integer chosen to ensure $\theta(t)$ stays continuous and monotonic.

Example

$\dot{x}=-y(1-x-y)$ and $\dot{y}=x(1-x-y)$ with $d=0$ and $c=0.05,0.1,0.15, \ldots, 2$:

More General Case

$\dot{x}=-y f(x, y), \dot{y}=x f(x, y)$ for any function $f(x, y)$ has arcs of circles as orbits, with the solutions of $f(x, y)=0$ as heteroclinic lines.

More General Case

$\dot{x}=-y f(x, y), \dot{y}=x f(x, y)$ for any function $f(x, y)$ has arcs of circles as orbits, with the solutions of $f(x, y)=0$ as heteroclinic lines.

For example, $x^{\prime}=-y\left(y-x^{2}\right)$ and $y^{\prime}=x\left(y-x^{2}\right)$ with $x(0)=0$ and $y(0)=-0.1,-0,2,-0.3, \ldots,-6$.

Power Series Method

Taylor methods to solve $\dot{y}=f(t, y)$ writes $y(t+h)$ as a Taylor series around $y(t)$, substituting successive derivatives of f.

Power Series Method

Taylor methods to solve $\dot{y}=f(t, y)$ writes $y(t+h)$ as a Taylor series around $y(t)$, substituting successive derivatives of f. Runge-Kutta and related methods replace derivatives by additional function evaluations and have the same accuracy.

Power Series Method

Taylor methods to solve $\dot{y}=f(t, y)$ writes $y(t+h)$ as a Taylor series around $y(t)$, substituting successive derivatives of f. Runge-Kutta and related methods replace derivatives by additional function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients - the Power Series Method.

Power Series Method

Taylor methods to solve $\dot{y}=f(t, y)$ writes $y(t+h)$ as a Taylor series around $y(t)$, substituting successive derivatives of f. Runge-Kutta and related methods replace derivatives by additional function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients - the Power Series Method. Usually only seen when solving linear second order odes with non constant coefficients (Frobenius around regular singular points).

Power Series Method

Taylor methods to solve $\dot{y}=f(t, y)$ writes $y(t+h)$ as a Taylor series around $y(t)$, substituting successive derivatives of f. Runge-Kutta and related methods replace derivatives by additional function evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependent variables, we can write out y as a power series in t, substitute, and explicitly find the coefficients - the Power Series Method. Usually only seen when solving linear second order odes with non constant coefficients (Frobenius around regular singular points). The PSM can be used to approximate a system of first order initial value polynomial odes to arbitrary order.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Advantages:

- Arbitrary order available, at any level at any time.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Advantages:

- Arbitrary order available, at any level at any time.
- A priori error estimate available.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Advantages:

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible - effectively symplectic.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Advantages:

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible - effectively symplectic.
- Solution curve available at every value of t, leading to a straightforward approach to delay difference equations.

Applying the PSM

Virtually every system of first order initial value odes can be systematically transformed into an equivalent polynomial form. Even better, with a bit more care all terms can be made quadratic, and only Cauchy products involving power series are required.

Advantages:

- Arbitrary order available, at any level at any time.
- A priori error estimate available.
- Machine precision possible - effectively symplectic.
- Solution curve available at every value of t, leading to a straightforward approach to delay difference equations.
- No transcendental function evaluation, so is much faster.

Simple Examples

$$
\dot{y}=\sin t, y(0)=a .
$$

Simple Examples

$$
\dot{y}=\sin t, y(0)=a \text {. Let } u_{1}=y, u_{2}=\sin t, u_{3}=\cos t .
$$

Simple Examples

$$
\begin{aligned}
& \dot{y}=\sin t, y(0)=a . \text { Let } u_{1}=y, u_{2}=\sin t, u_{3}=\cos t \text {. Then } \\
& \dot{u}_{1}=u_{2}, u_{1}(0)=a ; \dot{u}_{2}=u_{3}, u_{2}(0)=0 ; \dot{u}_{3}=-u_{2}, u_{3}(0)=1 .
\end{aligned}
$$

Simple Examples

$\dot{y}=\sin t, y(0)=a$. Let $u_{1}=y, u_{2}=\sin t, u_{3}=\cos t$. Then
$\dot{u}_{1}=u_{2}, u_{1}(0)=a ; \dot{u}_{2}=u_{3}, u_{2}(0)=0 ; \dot{u}_{3}=-u_{2}, u_{3}(0)=1$.
$\dot{y}=\sin y, y(0)=a$.

Simple Examples

$\dot{y}=\sin t, y(0)=a$. Let $u_{1}=y, u_{2}=\sin t, u_{3}=\cos t$. Then
$\dot{u}_{1}=u_{2}, u_{1}(0)=a ; \dot{u}_{2}=u_{3}, u_{2}(0)=0 ; \dot{u}_{3}=-u_{2}, u_{3}(0)=1$.
$\dot{y}=\sin y, y(0)=a$. Let $u_{1}=y, u_{2}=\sin y, u_{3}=\cos y$.

Simple Examples

$\dot{y}=\sin t, y(0)=a$. Let $u_{1}=y, u_{2}=\sin t, u_{3}=\cos t$. Then
$\dot{u}_{1}=u_{2}, u_{1}(0)=a ; \dot{u}_{2}=u_{3}, u_{2}(0)=0 ; \dot{u}_{3}=-u_{2}, u_{3}(0)=1$.
$\dot{y}=\sin y, y(0)=a$. Let $u_{1}=y, u_{2}=\sin y, u_{3}=\cos y$. Then
$\dot{u}_{1}=u_{2}, u_{1}(0)=a ; \dot{u}_{2}=(\cos y) \dot{y}=u_{3} u_{2}, u_{2}(0)=\sin (a)$;
$\dot{u}_{3}=(-\sin y) \dot{y}=-u_{2}^{2}, u_{3}(0)=\cos (a)$.

Arbitrary Powers

$$
\dot{y}=y^{\alpha}, y(0)=a .
$$

Arbitrary Powers

$$
\dot{y}=y^{\alpha}, y(0)=a \text {. Let } u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y .
$$

Arbitrary Powers

$$
\begin{aligned}
& \dot{y}=y^{\alpha}, y(0)=a . \text { Let } u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y . \text { Then } \dot{u}_{1}=u_{2}, \\
& u_{1}(0)=a ;
\end{aligned}
$$

Arbitrary Powers

$$
\begin{aligned}
& \dot{y}=y^{\alpha}, y(0)=a . \text { Let } u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y . \text { Then } \dot{u}_{1}=u_{2}, \\
& u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha} ;
\end{aligned}
$$

Arbitrary Powers

$$
\begin{aligned}
& \dot{y}=y^{\alpha}, y(0)=a . \text { Let } u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y . \text { Then } \dot{u}_{1}=u_{2}, \\
& u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha} ; \\
& \dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a .
\end{aligned}
$$

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$.

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{2}, \dot{u}_{2}=\alpha u_{2} u_{4}$, $\dot{u}_{3}=-u_{3} u_{4}$, only 3 Cauchy products.

Even better, let $u_{1}=y, u_{2}=y^{\alpha-1}$.

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{2}, \dot{u}_{2}=\alpha u_{2} u_{4}$, $\dot{u}_{3}=-u_{3} u_{4}$, only 3 Cauchy products.

Even better, let $u_{1}=y, u_{2}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{1} u_{2}, u_{1}(0)=a^{\alpha}$;

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{2}, \dot{u}_{2}=\alpha u_{2} u_{4}$, $\dot{u}_{3}=-u_{3} u_{4}$, only 3 Cauchy products.

Even better, let $u_{1}=y, u_{2}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{1} u_{2}, u_{1}(0)=a^{\alpha}$; $\dot{u}_{2}=(\alpha-1) y^{\alpha-2} y^{\alpha}$

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{2}, \dot{u}_{2}=\alpha u_{2} u_{4}$, $\dot{u}_{3}=-u_{3} u_{4}$, only 3 Cauchy products.

Even better, let $u_{1}=y, u_{2}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{1} u_{2}, u_{1}(0)=a^{\alpha}$; $\dot{u}_{2}=(\alpha-1) y^{\alpha-2} y^{\alpha}=(\alpha-1) y^{2 \alpha-2}=(\alpha-1) u_{2}^{2}, u_{2}(0)=a^{\alpha-1}$.

Arbitrary Powers

$\dot{y}=y^{\alpha}, y(0)=a$. Let $u_{1}=y, u_{2}=y^{\alpha}, u_{3}=1 / y$. Then $\dot{u}_{1}=u_{2}$, $u_{1}(0)=a ; \dot{u}_{2}=\alpha y^{\alpha-1} \dot{y}=\alpha y^{2 \alpha-1}=\alpha u_{2}^{2} u_{3}, u_{2}(0)=a^{\alpha}$; $\dot{u}_{3}=\left(-1 / y^{2}\right) \dot{y}=-u_{3}^{2} u_{2}, u_{3}(0)=1 / a$.

Better, let $u_{4}=u_{2} u_{3}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{2}, \dot{u}_{2}=\alpha u_{2} u_{4}$, $\dot{u}_{3}=-u_{3} u_{4}$, only 3 Cauchy products.

Even better, let $u_{1}=y, u_{2}=y^{\alpha-1}$. Then $\dot{u}_{1}=u_{1} u_{2}, u_{1}(0)=a^{\alpha}$; $\dot{u}_{2}=(\alpha-1) y^{\alpha-2} y^{\alpha}=(\alpha-1) y^{2 \alpha-2}=(\alpha-1) u_{2}^{2}, u_{2}(0)=a^{\alpha-1}$.
Only 2 Cauchy products.

