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Outline

Why infinite oscillatory integrals?

Techniques for oscillatory integrals.

Techniques for multiple period oscillations.

What is the Riemann hypothesis.

X-ray plots and a conjecture.

The (non)-applicability of oscillatory integration theory.

Thanks to Howard Stone (Princeton), Jim Hill (Wollongong)
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The Electrified Disk

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂θ2
+
∂2V

∂z2
= 0,


V = V0, 0 ≤ r < 1, z = 0
∂V

∂z
= 0, r > 1, z = 0

V → 0 as
√

r2 + z2 →∞

A Hankel transform order zero reduces this to
∂2V̄

∂z2
− k2V̄ = 0

which has solution V̄ = Ae−kz , or

V (r , z) =

∫ ∞
0

A(k)e−kzkJ0(rk) dk.

Boundary conditions
at z = 0:


∫ ∞

0
kA(k)J0(rk) dk = V0 0 ≤ r < 1∫ ∞

0
k2A(k)J0(rk) dk = 0 r > 1

Dual Integral Equations
for unknown A(k)
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Tranter’s Method

[ C.J. Tranter, Integral Equations in Mathematical Physics, 1966. ]

To solve


∫ ∞

0
G (k)f (k)Jν(rk) dk = g(r) 0 ≤ r < 1 (1)∫ ∞

0
f (k)Jν(rk) dk = 0 r > 1 (2)

use the Weber-Schafheitlin discontinuous integral

∫ ∞
0

k1−βJ2m+ν+β(k)Jν(rk) dk =


Γ(ν + m + 1)rν(1− r2)β−1

2β−1Γ(ν + 1)Γ(m + β)
×F(β + ν, ν + 1; r2) 0 ≤ r < 1

0 r > 1

where m is an integer ≥ 0, real β > 0, ν > −2−m.
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Tranter’s Method (2)

Seek a solution f (k) = k1−β
∞∑

m=0

amJ2m+ν+β(k), which

automatically satisfies (2).

Substitute in (1), assume g(r) = Arν , and use orthogonality of
Jacobi polynomials to give:

∞∑
m=0

am

∫ ∞
0

G (k)k1−2βJ2m+ν+β(k)J2n+ν+β(k) dk =
AΓ(ν + 1)

2βΓ(ν + β + 1)
δ0n

for n = 0, 1, 2, . . .. Truncate and solve linear system of equations
for am.

Choose β such that k2−2βG (k)− 1 is as small as possible.
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Applications of Dual Integral Equations

Tranter’s method is useful for mixed boundary problems with disc
or channel geometries. For example

Motion of a circular disc in Stokes flow, broadside translation,
edgewise translation, with and without boundaries, in a
rotating viscous flow, oscillatory motion of a disc in unsteady
Stokes flow.

Capillary wave scattering.

Fluid motion of monomolecular films in a channel flow.

Flow of inviscid fluid around a disc in a pipe.

Diffraction by elliptic and circular apertures in uniaxially
anisotropic crystals.

Various soil transportation models.
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Green’s Function Applications
The Green’s functions for various problems are of the form∫ ∞

0
f (x)Jn(rx) dx or

∫ ∞
0

f (x)Ja(ρx)Jb(τx) dx for n ∈ N, and

a, b ∈ {0, 1}.

For example

Particle motion in rotating viscous flows, and the Oseen
equation.

Magnetohydrodynamics.

Antennas or scatterers embedded in planar multilayered media.

Transversely isotropic piezoelectric multilayered half spaces.

Isotropic elastic solid with a cylindrical borehole and a rigid
plug.

Scattering by cracks beneath fluid-solid interfaces.

Response of a layered elastic half-space to
surface loading.
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Extrapolation for Summing Series

Consider I =

∫ ∞
0

f (x)Jn(x) dx .

Form the sequence {Ij}∞j=0 where

Ij =

j∑
i=0

ui =

j∑
i=0

∫ xi+1

xi

f (x)Jn(x) dx ,

and accelerate convergence to I using extrapolation.

Euler Transform:
∞∑
i=0

ui =
1

2
(u0 + Mu0 + M2u0 + · · · ) where

Mui = 1
2 (ui + ui+1).

ε-Algorithm: (Implemented in QUADPACK/IMSL)

ε
(−1)
n = 0, ε

(0)
n = In and ε

(p)
n = ε

(p−2)
n+1 +

[
ε

(p−1)
n+1 − ε

(p−1)
n−1

]−1

ε
(2k)
n is the kth order Shanks’ transform of {In}
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More Extrapolation

mW Transform: (Sidi, 1988)

To evaluate

∫ ∞
a

g(x) dx , form

F (xs) =

∫ xs

a
g(x) dx , ψ(xs) =

∫ xs+1

xs

g(x) dx ,

M
(s)
−1 = F (xs)/ψ(xs), N

(s)
−1 = 1/ψ(xs),

M
(s)
p =

(
M

(s)
p−1 −M

(s+1)
p−1

)/(
x−1
s − x−1

s+p+1

)
N

(s)
p =

(
N

(s)
p−1 − N

(s+1)
p−1

)/(
x−1
s − x−1

s+p+1

) ⇒ W
(s)
p =

M
(s)
p

N
(s)
p

s = 0, 1, . . . ,
p = 0, 1, . . .

W
(0)
p gives the best approximation to the integral.
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Further Numerical Details

Evaluate Bessel functions using IMSL routines or polynomial
approximations from J.F. Hart, Computer Approximations,
(1968).

Integrate between the xi using dqdag( ) from IMSL –
automatic adaptive routine, or recent improvement by
Shampine (2008).

Choosing interval endpoints as Bessel zeros (or midway
between zeros, or approximate zeros, or offset zeros. . . ).
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Finding Bessel Zeros
Bessel function zeros aren’t evenly spaced

x
0 10 20 30 40 50 60 70 80-0.5

0

0.5

1

J0(x)

J10(x)

J50(x)

Assume asymptotic zeros, place zeros π apart.

Find zeros using Newton, xi+1 = xi −
Jn(xi )

n
xi

Jn(xi )− Jn+1(xi )
.

For initial approximation to ith zero of Jn(x) (jn,i ),
use asymptotics for jn,1, jn,2 or simply
jn,i ' jn,i−1 + (jn,i−1 − jn,i−2), i ≥ 3.
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0

x

1 + x2
J0(x) dx

5 10 15 20

Intervals

R
el

at
iv

e 
Er

ro
r

mW
mW zeros
mW extrema
eps zeros
eps extrema

10-1

10-3

10-5

10-7

10-9

10-11

10-13

10-15

10-17
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Summary of Extrapolation Methods

Euler Transform convergence consistently poorest.

mW transform best when zeros are known, else fails to
accelerate convergence.

ε-algorithm works well when zeros are known, but still
converges when zeros are approximated.

So,

If zeros are known
Then use mW transform
Else (zeros approximated) use ε-algorithm.
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Ia,b,ρ,τ =

∫ ∞
0

f (x)Ja(ρx)Jb(τx) dx

With f (x) = 1, a = 0, b = 5, ρ = 1, τ = 3/2:

x
0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1
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The Transformation

Write

Ja(ρx)Jb(τx) = h1(x ; a, b, ρ, τ) + h2(x ; a, b, ρ, τ),

h1 =
1

2
{Ja(ρx)Jb(τx)− Ya(ρx)Yb(τx)}

h2 =
1

2
{Ja(ρx)Jb(τx) + Ya(ρx)Yb(τx)}

(
Wong, 1988
{Jν(x)}2

)

For large x ,

h1 ∼
1

π
√
ρτx

cos

{
(ρ+ τ)x − 1

2
(a + b + 1)π

}
h2 ∼

1

π
√
ρτx

cos

{
(ρ− τ)x − 1

2
(a− b)π

}
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Difficulties

Yn(x)→ −∞ as x → 0, so split

∫ ∞
0

into

∫ ymax

0
+

∫ ∞
ymax

where ymax = max{1st zero of Ya(ρx), 1st zero of Yb(τx)}.

Poor initial behavior of h2:

Use ε-algorithm extrapolation for h2.
Use mW transform for h1.
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Transformation of J0(x)J5(3x/2)

x
0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1

I1
I2
I3
I4
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h2 When ρ ∼ τ and a, b Are Far Apart

x
0 100 200 300

-0.01

-0.005

0

0.005

h2(0,20,1,1.1)
h2(0,20,1.1,1)
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Even Worse

x
0 100 200 300 400 500-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

h2(0,100,1,1.1)
h2(0,100,1.1,1)
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Results

Excellent convergence rates. For example,∫ ∞
0

J0(x)J1(3x/2) dx = 2/3
∼ 200 evals, error ∼ 10−5

∼ 600 evals, error ∼ 10−14

IMSL – best was 14 985 function evaluation, error 2.6× 10−2, error
code indicating slow convergence.
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The Riemann Hypothesis

The Riemann zeta function is ζ(s) =
∞∑

n=1

1

ns
(R(s) > 1) or

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(R(s) > 0).

The Riemann zeta function satisfies the functional equation
ζ(1− s) = 2(2π)−s cos(sπ/2)Γ(s)ζ(s), which can be used to
find ζ(s) for R(s) < 0. It also shows ζ(s) has (trivial) zeros
at the negative even integers.

The Riemann hypothesis states that all the non-trivial zeros of
ζ(s) lie on the line R(s) = 1/2.

There are a variety of methods to more efficiently evaluate
ζ(s), starting from the Euler-Maclaurin summation formula.
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X-Ray Plots

An X-Ray plot is a device for investigating complex functions.

Plot
using two colors (black/grey, blue/red) the curves of the real and
imaginary parts of the complex function equalling zero. A zero of
the function will thus be at intersections of different colored lines,
which will cross at right angles.

Most functions have reasonably nice x-ray plots.

Consider the x-ray plot of the Riemann zeta function – J.
Arias-de-Reyna, X-ray of Riemann’s zeta-function, unpublished
preprint, 2003, http://arxiv.org/abs/math.NT/0309433

Clearly “difficult”, not useful for analysis. But...
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Riemann’s ξ Function

Define ξ(s) = Γ(s/2 + 1)(s − 1)π−s/2ζ(s).

ξ(s) satisfies the functional equation ξ(1− s) = ξ(s), is an
entire function, and its zeros are the non-trivial zeros of ζ(s).

After some manipulation, (s = σ + it) we have

ξ(s) = 8π

∫ ∞
0

ψ2(y) cosh((σ − 1/2)y) cos(ty)e5y/2 dy

+i8π

∫ ∞
0

ψ2(y) sinh((σ − 1/2)y) sin(ty)e5y/2 dy ,

where ψ2(y) =
∞∑

n=1

an with an = n2
(
n2e2yπ − 3/2

)
e−n2πe2y

.
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X-Ray for ξ(s)
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X-Ray for ξ(s), Far Field
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X-Ray for ξ(s), Higher Up
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X-Ray for ξ(s), Even Higher Up
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Riemann’s Hypothesis Rewritten

ξ(s) = 8π

∫ ∞
0

ψ2(y) cosh((σ − 1/2)y) cos(ty)e5y/2 dy

+i8π

∫ ∞
0

ψ2(y) sinh((σ − 1/2)y) sin(ty)e5y/2 dy ,

Prove the real and imaginary integrals are not both zero
simultaneously apart from when σ = 1/2. Form implicit functions
for blue and red curves. Can we bound the slopes for σ = 1/2 + ε?
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Filon Quadrature

Real part is

8π
∞∑

n=1

n2

∫ ∞
0

(
n2e2yπ − 3

2

)
e−n2πe2y

cosh

((
σ − 1

2

)
y

)
× cos(ty)e5y/2 dy

Integrand decays very quickly, so can truncate without losing
precision.

Oscillatory quadrature: choose points and weights to evaluate∫ b

a
f (x) cos(tx) dx exactly, polynomial f , as a function of t.

Filon: Simpson’s rule.

Filon quadrature are increasingly accurate as t
increases (Iserles 2003). It doesn’t work.
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Why Doesn’t It Work?

8π
∞∑

n=1

n2

∫ ∞
0

(
n2e2yπ − 3/2

)
e−n2πe2y

cosh((σ−1/2)y) cos(ty)e5y/2 dy

For a particular n, excellent convergence. But successive
terms almost cancel each other out, more so as t increases.

Why? ξ(s) contains Γ(s/2 + 1), which converges
exponentially fast to zero as the imaginary part of s increases
(in the critical strip).

There are no asymptotic expansions for these integrals.

Is there a symmetric function with the same zeros as ζ(s)
which doesn’t exponentially decay for large t? Perhaps
generalizing the functional equation (Hill 2005)...
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Help!

And thank you and any questions?
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