Numerically evaluating oscillating infinite integrals and a failed (of course) approach to the Riemann Hypothesis

Stephen Lucas

Department of Mathematics and Statistics James Madison University



September 15 2014

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| •       | 00000           | 00000000 | 0000000         | 00000000 | 000       |
| Outline |                 |          |                 |          |           |

- Why infinite oscillatory integrals?
- Techniques for oscillatory integrals.
- Techniques for multiple period oscillations.
- What is the Riemann hypothesis.
- X-ray plots and a conjecture.
- The (non)-applicability of oscillatory integration theory.

Thanks to Howard Stone (Princeton), Jim Hill (Wollongong)



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | ●○○○○           | 00000000 |                 | 00000000 | 000       |
| The Ele | ectrified Disk  |          |                 |          |           |

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0, \quad \begin{cases} V = V_0, \ 0 \le r < 1, \ z = 0\\ \frac{\partial V}{\partial z} = 0, \ r > 1, \ z = 0\\ V \to 0 \text{ as } \sqrt{r^2 + z^2} \to \infty \end{cases}$$

. ۱ /



٠ /

# Outline Why Oscillatory Solution Multiple Period Riemann Integrals The Electrified Disk Very Solution <td

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0, \quad \begin{cases} V = V_0, \ 0 \le r < 1, \ z = 0\\ \frac{\partial V}{\partial z} = 0, \ r > 1, \ z = 0\\ V \to 0 \text{ as } \sqrt{r^2 + z^2} \to \infty \end{cases}$$

A Hankel transform order zero reduces this to  $\frac{\partial^2 \bar{V}}{\partial z^2} - k^2 \bar{V} = 0$ which has solution  $\bar{V} = Ae^{-kz}$ , or  $V(r, z) = \int_0^\infty A(k)e^{-kz}kJ_0(rk) dk.$ 



# Outline Why Oscillatory Solution Multiple Period Riemann Integrals o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0, \quad \begin{cases} V = V_0, \ 0 \le r < 1, \ z = 0\\ \frac{\partial V}{\partial z} = 0, \ r > 1, \ z = 0\\ V \to 0 \text{ as } \sqrt{r^2 + z^2} \to \infty \end{cases}$$

A Hankel transform order zero reduces this to  $\frac{\partial^2 \bar{V}}{\partial z^2} - k^2 \bar{V} = 0$ which has solution  $\bar{V} = Ae^{-kz}$ , or  $V(r,z) = \int_0^\infty A(k)e^{-kz}kJ_0(rk) dk$ . Boundary conditions at z = 0:  $\begin{cases} \int_0^\infty kA(k)J_0(rk) dk = V_0 \quad 0 \le r < 1\\ \int_0^\infty k^2A(k)J_0(rk) dk = 0 \quad r > 1 \end{cases}$ 

# Outline Why Oscillatory Solution Multiple Period Riemann Integrals 0 00000 0000000 0000000 00000000 000 000 The Electrified Disk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0, \quad \begin{cases} V = V_0, \ 0 \le r < 1, \ z = 0\\ \frac{\partial V}{\partial z} = 0, \ r > 1, \ z = 0\\ V \to 0 \text{ as } \sqrt{r^2 + z^2} \to \infty \end{cases}$$

A Hankel transform order zero reduces this to  $\frac{\partial^2 V}{\partial x^2} - k^2 \bar{V} = 0$ which has solution  $\overline{V} = Ae^{-kz}$ , or  $V(r, z) = \int_{0}^{\infty} A(k)e^{-kz}kJ_{0}(rk) dk.$ Boundary conditions at z = 0:  $\begin{cases} \int_0^\infty kA(k)J_0(rk) \, dk = V_0 \quad 0 \le r < 1\\ \int_0^\infty k^2 A(k)J_0(rk) \, dk = 0 \quad r > 1\\ \int_0^\infty k^2 A(k)J_0(rk) \, dk = 0 \quad r > 1 \end{cases}$ for unknown A(k)

### Outline Why Oscillatory Solution Multiple Period Riemann Integrals o o o o o o o Tranter's Method V V V V V

[C.J. Tranter, Integral Equations in Mathematical Physics, 1966.]

To solve 
$$\begin{cases} \int_{0}^{\infty} G(k)f(k)J_{\nu}(rk) \, dk = g(r) & 0 \le r < 1 \\ \int_{0}^{\infty} f(k)J_{\nu}(rk) \, dk = 0 & r > 1 \end{cases}$$
(2)

JAMES MADISON

### Outline Why Oscillatory Solution Multiple Period Riemann Integrals 0 0000 0000000 0000000 0000000 0000000

[C.J. Tranter, Integral Equations in Mathematical Physics, 1966.]

To solve 
$$\begin{cases} \int_{0}^{\infty} G(k)f(k)J_{\nu}(rk) \, dk = g(r) & 0 \le r < 1 \\ \int_{0}^{\infty} f(k)J_{\nu}(rk) \, dk = 0 & r > 1 \end{cases}$$
(2)

use the Weber-Schafheitlin discontinuous integral

$$\int_{0}^{\infty} k^{1-\beta} J_{2m+\nu+\beta}(k) J_{\nu}(rk) dk = \begin{cases} \frac{\Gamma(\nu+m+1)r^{\nu}(1-r^{2})^{\beta-1}}{2^{\beta-1}\Gamma(\nu+1)\Gamma(m+\beta)} \\ \times \mathcal{F}(\beta+\nu,\nu+1;r^{2}) & 0 \le r < 1 \\ 0 & r > 1 \end{cases}$$

where m is an integer  $\geq$  0, real  $\beta >$  0,  $\nu > -2-m.$ 



| Outline   | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|-----------|-----------------|----------|-----------------|----------|-----------|
| 0         | ○○●○○           | 00000000 |                 | 00000000 | 000       |
| Tranter's | s Method (2)    |          |                 |          |           |

Seek a solution 
$$f(k) = k^{1-\beta} \sum_{m=0}^{\infty} a_m J_{2m+\nu+\beta}(k)$$
, which automatically satisfies (2).



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 O
 O
 O
 O
 O
 O
 O

 Tranter's Method (2)
 Image: Colored and Colo

Seek a solution 
$$f(k) = k^{1-\beta} \sum_{m=0}^{\infty} a_m J_{2m+\nu+\beta}(k)$$
, which  
automatically satisfies (2).  
Substitute in (1), assume  $g(r) = Ar^{\nu}$ , and use orthogonality of  
Jacobi polynomials to give:

00

$$\sum_{m=0}^{\infty} a_m \int_0^{\infty} G(k) k^{1-2\beta} J_{2m+\nu+\beta}(k) J_{2n+\nu+\beta}(k) \, dk = \frac{A\Gamma(\nu+1)}{2^{\beta} \Gamma(\nu+\beta+1)} \delta_{0n}$$

for n = 0, 1, 2, ...



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 O
 O
 O
 O
 O
 O
 O

 Tranter's Method (2)
 Image: Solution of the solution of

Seek a solution 
$$f(k) = k^{1-\beta} \sum_{m=0}^{\infty} a_m J_{2m+\nu+\beta}(k)$$
, which  
automatically satisfies (2).  
Substitute in (1), assume  $g(r) = Ar^{\nu}$ , and use orthogonality of  
Jacobi polynomials to give:

00

$$\sum_{m=0}^{\infty} a_m \int_0^{\infty} G(k) k^{1-2\beta} J_{2m+\nu+\beta}(k) J_{2n+\nu+\beta}(k) \, dk = \frac{A\Gamma(\nu+1)}{2^{\beta} \Gamma(\nu+\beta+1)} \delta_{0n+\beta}(k) \, dk = \frac{A\Gamma(\nu+1)}{2^{\beta} \Gamma(\nu+1)} \delta_{0n+\beta}(k) \, dk = \frac{A\Gamma(\nu+1)}{2^$$

for n = 0, 1, 2, ... Truncate and solve linear system of equations for  $a_m$ .

Choose  $\beta$  such that  $k^{2-2\beta}G(k)-1$  is as small as possible



Tranter's method is useful for mixed boundary problems with disc or channel geometries. For example

- Motion of a circular disc in Stokes flow, broadside translation, edgewise translation, with and without boundaries, in a rotating viscous flow, oscillatory motion of a disc in unsteady Stokes flow.
- Capillary wave scattering.
- Fluid motion of monomolecular films in a channel flow.
- Flow of inviscid fluid around a disc in a pipe.
- Diffraction by elliptic and circular apertures in uniaxially anisotropic crystals.
- Various soil transportation models.



Outline<br/>oWhy Oscillatory<br/>occoSolution<br/>coccocoMultiple Period<br/>coccocoRiemann<br/>coccocoIntegrals<br/>coccocoGreen's Function ApplicationsThe Green's functions for various problems are of the form $\int_0^\infty f(x) J_n(rx) dx$  or  $\int_0^\infty f(x) J_a(\rho x) J_b(\tau x) dx$  for  $n \in \mathbb{N}$ , and

 $a, b \in \{0, 1\}.$ 



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 Green's Function Applications
 Green's Function Applications
 Multiple Period
 Notes and the second seco

The Green's functions for various problems are of the form  $\int_0^{\infty} f(x)J_n(rx) dx$  or  $\int_0^{\infty} f(x)J_a(\rho x)J_b(\tau x) dx$  for  $n \in \mathbb{N}$ , and  $a, b \in \{0, 1\}$ . For example

- Particle motion in rotating viscous flows, and the Oseen equation.
- Magnetohydrodynamics.
- Antennas or scatterers embedded in planar multilayered media.
- Transversely isotropic piezoelectric multilayered half spaces.
- Isotropic elastic solid with a cylindrical borehole and a rigid plug.
- Scattering by cracks beneath fluid-solid interfaces.
- Response of a layered elastic half-space to surface loading.



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 ••••••••••
 •••••••
 ••••••
 •••••
 •••••
 •••••
 •••••

 Extrapolation for Summing Series
 \_\_\_\_\_\_
 \_\_\_\_\_\_
 \_\_\_\_\_\_\_
 \_\_\_\_\_\_\_

Consider 
$$I = \int_0^\infty f(x) J_n(x) dx$$
.





Consider 
$$I = \int_0^\infty f(x) J_n(x) dx$$
. Form the sequence  $\{I_j\}_{j=0}^\infty$  where  

$$I_j = \sum_{i=0}^j u_i = \sum_{i=0}^j \int_{x_i}^{x_{i+1}} f(x) J_n(x) dx,$$

and accelerate convergence to I using extrapolation.



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 Extrapolation for Summing Series

Consider  $I = \int_0^\infty f(x) J_n(x) dx$ . Form the sequence  $\{I_j\}_{j=0}^\infty$  where  $I_j = \sum_{i=0}^j u_i = \sum_{i=0}^j \int_{x_i}^{x_{i+1}} f(x) J_n(x) dx$ ,

and accelerate convergence to I using extrapolation.

• Euler Transform: 
$$\sum_{i=0}^{\infty} u_i = \frac{1}{2}(u_0 + Mu_0 + M^2u_0 + \cdots)$$
 where  $Mu_i = \frac{1}{2}(u_i + u_{i+1}).$ 



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 Extrapolation for Summing Series

Consider  $I = \int_0^\infty f(x) J_n(x) dx$ . Form the sequence  $\{I_j\}_{j=0}^\infty$  where  $I_j = \sum_{i=0}^j u_i = \sum_{i=0}^j \int_{x_i}^{x_{i+1}} f(x) J_n(x) dx,$ 

and accelerate convergence to I using extrapolation.

- Euler Transform:  $\sum_{i=0}^{\infty} u_i = \frac{1}{2}(u_0 + Mu_0 + M^2u_0 + \cdots)$  where  $Mu_i = \frac{1}{2}(u_i + u_{i+1}).$
- *e*-Algorithm: (Implemented in QUADPACK/IMSL)

$$\epsilon_n^{(-1)} = 0, \quad \epsilon_n^{(0)} = I_n \quad \text{and} \quad \epsilon_n^{(p)} = \epsilon_{n+1}^{(p-2)} + \left[\epsilon_{n+1}^{(p-1)} - \epsilon_{n-1}^{(p-1)}\right]^{-1}$$
  
 $\epsilon_n^{(2k)}$  is the *k*th order Shanks' transform of  $\{I_n\}$ 

Outline Why Oscillatory Solution Multiple Period Riemann 0000000 More Extrapolation • mW Transform: (Sidi, 1988) To evaluate  $\int_{0}^{\infty} g(x) dx$ , form  $F(x_s) = \int_{-\infty}^{x_s} g(x) dx, \quad \psi(x_s) = \int_{-\infty}^{x_{s+1}} g(x) dx,$  $M_{1}^{(s)} = F(x_s)/\psi(x_s), \quad N_{1}^{(s)} = 1/\psi(x_s),$  $M_{p}^{(s)} = \left(M_{p-1}^{(s)} - M_{p-1}^{(s+1)}\right) / \left(x_{s}^{-1} - x_{s+p+1}^{-1}\right) \qquad \Rightarrow \qquad W_{p}^{(s)} = \frac{M_{p}^{(s)}}{N_{p}^{(s)}}$  $N_{p}^{(s)} = \left(N_{p-1}^{(s)} - N_{p-1}^{(s+1)}\right) / \left(x_{s}^{-1} - x_{s+p+1}^{-1}\right) \qquad s = 0, 1, \dots, \\ p = 0, 1, \dots$ JAMES  $W_{p}^{(0)}$  gives the best approximation to the integral.



• Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, *Computer Approximations*, (1968).





- Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, *Computer Approximations*, (1968).
- Integrate between the x<sub>i</sub> using dqdag() from IMSL automatic adaptive routine, or recent improvement by Shampine (2008).





- Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, *Computer Approximations*, (1968).
- Integrate between the x<sub>i</sub> using dqdag() from IMSL automatic adaptive routine, or recent improvement by Shampine (2008).
- Choosing interval endpoints as Bessel zeros (or midway between zeros, or approximate zeros, or offset zeros...).



 Outline
 Why Oscillatory
 Solution
 Multiple Period
 Riemann
 Integrals

 October
 <td

40 X

0

-0.5

10



60

70



• Find zeros using Newton,  $x_{i+1} = x_i - \frac{J_n(x_i)}{\frac{n}{x_i}J_n(x_i) - J_{n+1}(x_i)}$ .





- Find zeros using Newton,  $x_{i+1} = x_i \frac{J_n(x_i)}{\frac{n}{x_i}J_n(x_i) J_{n+1}(x_i)}$ .
- For initial approximation to *i*th zero of  $J_n(x)$   $(j_{n,i})$ , use asymptotics for  $j_{n,1}$ ,  $j_{n,2}$  or simply  $j_{n,i} \simeq j_{n,i-1} + (j_{n,i-1} - j_{n,i-2}), i \ge 3.$

| Outline                       | Why Oscillatory         | Solution | Multiple Period | Riemann  | Integrals |
|-------------------------------|-------------------------|----------|-----------------|----------|-----------|
| 0                             | 00000                   | 00000000 |                 | 00000000 | 000       |
| $\int_0^\infty \frac{x}{1+x}$ | $\frac{1}{x^2}J_0(x)dx$ |          |                 |          |           |



AMES ADISON UNIVERSITY.

Stephen Lucas Numerically evaluating oscillating infinite integrals

| Outline                       | Why Oscillatory                   | Solution | Multiple Period | Riemann  | Integrals |
|-------------------------------|-----------------------------------|----------|-----------------|----------|-----------|
| 0                             | 00000                             | 00000000 | 0000000         | 00000000 | 000       |
| $\int_0^\infty \frac{x}{1+x}$ | $\frac{x}{\sqrt{x^2}}J_{10}(x)dx$ |          |                 |          |           |



Stephen Lucas

ΤY

Numerically evaluating oscillating infinite integrals

| Outline                       | Why Oscillatory             | Solution | Multiple Period | Riemann  | Integrals |
|-------------------------------|-----------------------------|----------|-----------------|----------|-----------|
| 0                             | 00000                       | 00000000 | 0000000         | 00000000 | 000       |
| $\int_0^\infty \frac{x}{1+x}$ | $\frac{1}{x^2}J_{100}(x)dx$ |          |                 |          |           |



Stephen Lucas Numerically evaluating oscillating infinite integrals

| 0 | 00000 | 0000000  | 0000000 | 00000000 | 000 |
|---|-------|----------|---------|----------|-----|
| 0 | 00000 | 00000000 | 000000  | 0000000  | 000 |

• Euler Transform convergence consistently poorest.





- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.





- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.
- ε-algorithm works well when zeros are known, but still converges when zeros are approximated.





- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.
- ε-algorithm works well when zeros are known, but still converges when zeros are approximated.

So,

If zeros are known Then use mW transform Else (zeros approximated) use  $\epsilon$ -algorithm.





With f(x) = 1, a = 0, b = 5,  $\rho = 1$ ,  $\tau = 3/2$ :



Stephen Lucas Numerically evaluating oscillating infinite integrals

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | ○●○○○○○         | 00000000 | 000       |
| The T   | ransformation   |          |                 |          |           |

Write

$$J_{a}(\rho x)J_{b}(\tau x) = h_{1}(x;a,b,\rho,\tau) + h_{2}(x;a,b,\rho,\tau),$$

$$h_{1} = \frac{1}{2} \{ J_{a}(\rho x) J_{b}(\tau x) - Y_{a}(\rho x) Y_{b}(\tau x) \}$$

$$h_{2} = \frac{1}{2} \{ J_{a}(\rho x) J_{b}(\tau x) + Y_{a}(\rho x) Y_{b}(\tau x) \}$$

$$\begin{pmatrix} \text{Wong, 1988} \\ \{ J_{\nu}(x) \}^{2} \end{pmatrix}$$



# Outline Why Oscillatory Solution Multiple Period Riemann Integrals O O O O O O O The Transformation Image: Solution Image: Solution Image: Solution Image: Solution Image: Solution

Write

$$J_{a}(\rho x)J_{b}(\tau x) = h_{1}(x; a, b, \rho, \tau) + h_{2}(x; a, b, \rho, \tau),$$

$$h_{1} = \frac{1}{2} \{J_{a}(\rho x)J_{b}(\tau x) - Y_{a}(\rho x)Y_{b}(\tau x)\}$$

$$h_{2} = \frac{1}{2} \{J_{a}(\rho x)J_{b}(\tau x) + Y_{a}(\rho x)Y_{b}(\tau x)\}$$

$$\begin{pmatrix} \text{Wong, 1988} \\ \{J_{\nu}(x)\}^{2} \end{pmatrix}$$

For large x,

$$h_1 \sim \frac{1}{\pi \sqrt{\rho \tau} x} \cos \left\{ (\rho + \tau) x - \frac{1}{2} (a + b + 1) \pi \right\}$$
$$h_2 \sim \frac{1}{\pi \sqrt{\rho \tau} x} \cos \left\{ (\rho - \tau) x - \frac{1}{2} (a - b) \pi \right\}$$

| Outline<br>0 | Why Oscillatory | Solution<br>00000000 | Multiple Period | Riemann<br>00000000 | Integrals<br>000 |
|--------------|-----------------|----------------------|-----------------|---------------------|------------------|
| Difficult    | ies             |                      |                 |                     |                  |

• 
$$Y_n(x) \to -\infty$$
 as  $x \to 0$ , so split  $\int_0^\infty \text{ into } \int_0^{ymax} + \int_{ymax}^\infty$   
where  $ymax = \max\{\text{1st zero of } Y_a(\rho x), \text{1st zero of } Y_b(\tau x)\}$ .


| Outline   | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|-----------|-----------------|----------|-----------------|----------|-----------|
| 0         | 00000           | 00000000 | ००●००००         | 00000000 | 000       |
| Difficult | ties            |          |                 |          |           |

• Use  $\epsilon$ -algorithm extrapolation for  $h_2$ .



| Outline   | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|-----------|-----------------|----------|-----------------|----------|-----------|
| 0         | 00000           | 00000000 |                 | 00000000 | 000       |
| Difficult | ies             |          |                 |          |           |

• 
$$Y_n(x) \to -\infty$$
 as  $x \to 0$ , so split  $\int_0^\infty \text{into } \int_0^{ymax} + \int_{ymax}^\infty$   
where  $ymax = \max\{\text{1st zero of } Y_a(\rho x), \text{1st zero of } Y_b(\tau x)\}.$ 

- Poor initial behavior of h<sub>2</sub>:
  - Use  $\epsilon$ -algorithm extrapolation for  $h_2$ .
  - Use mW transform for  $h_1$ .











Stephen Lucas Numerically evaluating oscillating infinite integrals

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | ○○○○○●○         | 00000000 | 000       |
| Even W  | orse            |          |                 |          |           |



Stephen Lucas Numerically evaluating oscillating infinite integrals

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | ○○○○○●          | 00000000 | 000       |
| Results |                 |          |                 |          |           |

Excellent convergence rates. For example,

$$\int_0^\infty J_0(x) J_1(3x/2) \, dx = 2/3$$

 $\sim 200$  evals, error  $~\sim 10^{-5}$   $\sim 600$  evals, error  $~\sim 10^{-14}$ 



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | ○○○○○●          | 00000000 | 000       |
| Results |                 |          |                 |          |           |

Excellent convergence rates. For example,

$$\int_0^\infty J_0(x) J_1(3x/2) \, dx = 2/3 \qquad \sim 200 \text{ evals, error } \sim 10^{-5} \\ \sim 600 \text{ evals, error } \sim 10^{-14}$$

IMSL – best was 14 985 function evaluation, error  $2.6 \times 10^{-2}$ , error code indicating slow convergence.



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | ○○○○○●          | 00000000 | 000       |
| Results |                 |          |                 |          |           |

Excellent convergence rates. For example,

٠

$$\int_{0}^{\infty} J_{0}(x) J_{1}(3x/2) \, dx = 2/3 ~~ \sim 200$$
 evals, error  $~ \sim 10^{-5}$   $~ \sim 600$  evals, error  $~ \sim 10^{-14}$ 

IMSL – best was 14 985 function evaluation, error  $2.6 \times 10^{-2}$ , error code indicating slow convergence.



Stephen Lucas Numerically evaluating oscillating infinite integrals

## Outline Why Oscillatory Solution Multiple Period Riemann Integrals The Riemann Hypothesis

• The Riemann zeta function is 
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (\mathcal{R}(s) > 1)$$
 or  

$$\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} (\mathcal{R}(s) > 0).$$



### Outline Why Oscillatory Solution Multiple Period Riemann Integrals o o o o o o o

- The Riemann zeta function is  $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (\mathcal{R}(s) > 1)$  or  $\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} (\mathcal{R}(s) > 0).$
- The Riemann zeta function satisfies the functional equation  $\zeta(1-s) = 2(2\pi)^{-s} \cos(s\pi/2)\Gamma(s)\zeta(s)$ , which can be used to find  $\zeta(s)$  for  $\mathcal{R}(s) < 0$ .



### Outline Why Oscillatory Solution Multiple Period Riemann Integrals o o o o o o o

- The Riemann zeta function is  $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (\mathcal{R}(s) > 1)$  or  $\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} (\mathcal{R}(s) > 0).$
- The Riemann zeta function satisfies the functional equation  $\zeta(1-s) = 2(2\pi)^{-s} \cos(s\pi/2)\Gamma(s)\zeta(s)$ , which can be used to find  $\zeta(s)$  for  $\mathcal{R}(s) < 0$ . It also shows  $\zeta(s)$  has (trivial) zeros at the negative even integers.



### Outline Why Oscillatory Solution Multiple Period Riemann Integrals The Riemann Hypothesis The Riemann Hypothesis Integrals Integrals Integrals

- The Riemann zeta function is  $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (\mathcal{R}(s) > 1)$  or  $\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} (\mathcal{R}(s) > 0).$
- The Riemann zeta function satisfies the functional equation
   ζ(1 − s) = 2(2π)<sup>-s</sup> cos(sπ/2)Γ(s)ζ(s), which can be used to
   find ζ(s) for R(s) < 0. It also shows ζ(s) has (trivial) zeros
   at the negative even integers.</li>
- The Riemann hypothesis states that all the non-trivial zeros of  $\zeta(s)$  lie on the line  $\mathcal{R}(s) = 1/2$ .



### Outline Why Oscillatory Solution Multiple Period Riemann Integrals The Riemann Hypothesis The Riemann Hypothesis Integrals Integrals Integrals

- The Riemann zeta function is  $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (\mathcal{R}(s) > 1)$  or  $\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} (\mathcal{R}(s) > 0).$
- The Riemann zeta function satisfies the functional equation
   ζ(1 − s) = 2(2π)<sup>-s</sup> cos(sπ/2)Γ(s)ζ(s), which can be used to
   find ζ(s) for R(s) < 0. It also shows ζ(s) has (trivial) zeros
   at the negative even integers.</li>
- The Riemann hypothesis states that all the non-trivial zeros of  $\zeta(s)$  lie on the line  $\mathcal{R}(s) = 1/2$ .
- There are a variety of methods to more efficiently evaluate  $\zeta(s)$ , starting from the Euler-Maclaurin summation formula.

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |

An X-Ray plot is a device for investigating complex functions.



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero.



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |

Most functions have reasonably nice x-ray plots.



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |

Most functions have reasonably nice x-ray plots.

Consider the x-ray plot of the Riemann zeta function – J. Arias-de-Reyna, X-ray of Riemann's zeta-function, *unpublished preprint*, 2003, http://arxiv.org/abs/math.NT/0309433



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 | 0000000         | ○●○○○○○○ | 000       |
| X-Ray P | lots            |          |                 |          |           |

Most functions have reasonably nice x-ray plots.

Consider the x-ray plot of the Riemann zeta function – J. Arias-de-Reyna, X-ray of Riemann's zeta-function, *unpublished preprint*, 2003, http://arxiv.org/abs/math.NT/0309433

Clearly "difficult", not useful for analysis. But...



| Outline | Why Oscillatory    | Solution | Multiple Period | Riemann  | Integrals |
|---------|--------------------|----------|-----------------|----------|-----------|
| 0       | 00000              | 00000000 | 0000000         | ○○●○○○○○ | 000       |
| Rieman  | n's $\xi$ Function | on       |                 |          |           |

• Define 
$$\xi(s) = \Gamma(s/2+1)(s-1)\pi^{-s/2}\zeta(s)$$
.



| Outline | Why Oscillatory     | Solution | Multiple Period | Riemann  | Integrals |
|---------|---------------------|----------|-----------------|----------|-----------|
| 0       | 00000               | 00000000 |                 | ○○●○○○○○ | 000       |
| Rieman  | in's $\xi$ Function | on       |                 |          |           |

- Define  $\xi(s) = \Gamma(s/2+1)(s-1)\pi^{-s/2}\zeta(s)$ .
- ξ(s) satisfies the functional equation ξ(1 − s) = ξ(s), is an entire function, and its zeros are the non-trivial zeros of ζ(s).



# Outline Why Oscillatory Solution Multiple Period Riemann Integrals Nemann's & Function Riemann's function Function Solution Solution Solution

- Define  $\xi(s) = \Gamma(s/2+1)(s-1)\pi^{-s/2}\zeta(s)$ .
- ξ(s) satisfies the functional equation ξ(1 − s) = ξ(s), is an entire function, and its zeros are the non-trivial zeros of ζ(s).
- After some manipulation, (  $s = \sigma + it$  ) we have

$$\begin{split} \xi(s) &= 8\pi \int_0^\infty \psi_2(y) \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy \\ &+ i8\pi \int_0^\infty \psi_2(y) \sinh((\sigma - 1/2)y) \sin(ty) e^{5y/2} \, dy, \end{split}$$

where 
$$\psi_2(y) = \sum_{n=1}^{\infty} a_n$$
 with  $a_n = n^2 (n^2 e^{2y} \pi - 3/2) e^{-n^2 \pi e^{2y}}$ .





Stephen Lucas Numerically evaluating oscillating infinite integrals

Outline<br/>oWhy Oscillatory<br/>coocoSolution<br/>coocoMultiple Period<br/>coocoRiemann<br/>coocoIntegrals<br/>cooX-Ray for  $\xi(s)$ , Far Field



Outline<br/>oWhy Oscillatory<br/>ococoSolution<br/>ocococoMultiple Period<br/>ocococoRiemann<br/>ococococoIntegrals<br/>ocoVPout for  $\zeta(c)$ Higher IIp

### X-Ray for $\xi(s)$ , Higher Up





### X-Ray for $\xi(s)$ , Even Higher Up



| <b>D</b> ' | 7 1 1 1         | 1 D 10   |                 |         |           |
|------------|-----------------|----------|-----------------|---------|-----------|
|            | 00000           | 0000000  | 0000000         | 0000000 | 000       |
| Outline    | Why Oscillatory | Solution | Multiple Period | Riemann | Integrals |

#### Riemann's Hypothesis Rewritten

$$\begin{aligned} \xi(s) &= 8\pi \int_0^\infty \psi_2(y) \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy \\ &+ i8\pi \int_0^\infty \psi_2(y) \sinh((\sigma - 1/2)y) \sin(ty) e^{5y/2} \, dy, \end{aligned}$$



| <b>D</b> ' | 7 11 .1         | · • •    |                 |         |           |
|------------|-----------------|----------|-----------------|---------|-----------|
|            |                 |          |                 | 0000000 |           |
| Outline    | Why Oscillatory | Solution | Multiple Period | Riemann | Integrals |

### Riemann's Hypothesis Rewritten

$$\begin{split} \xi(s) &= 8\pi \int_0^\infty \psi_2(y) \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy \\ &+ i8\pi \int_0^\infty \psi_2(y) \sinh((\sigma - 1/2)y) \sin(ty) e^{5y/2} \, dy, \end{split}$$

Prove the real and imaginary integrals are not both zero simultaneously apart from when  $\sigma = 1/2$ .



| D'      |                 | 1 D 10   |                 |         |           |
|---------|-----------------|----------|-----------------|---------|-----------|
| 0       | 00000           | 0000000  | 000000          | 0000000 | 000       |
| Outline | Why Oscillatory | Solution | Multiple Period | Riemann | Integrals |

### Riemann's Hypothesis Rewritten

$$\begin{split} \xi(s) &= 8\pi \int_0^\infty \psi_2(y) \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy \\ &+ i8\pi \int_0^\infty \psi_2(y) \sinh((\sigma - 1/2)y) \sin(ty) e^{5y/2} \, dy, \end{split}$$

Prove the real and imaginary integrals are not both zero simultaneously apart from when  $\sigma = 1/2$ . Form implicit functions for blue and red curves. Can we bound the slopes for  $\sigma = 1/2 + \epsilon$ ?



| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 |                 | 00000000 | ●○○       |
| Filon Q | uadrature       |          |                 |          |           |

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - \frac{3}{2} \right) e^{-n^2 \pi e^{2y}} \cosh\left( \left( \sigma - \frac{1}{2} \right) y \right)$$
$$\times \cos(ty) e^{5y/2} dy$$

• Integrand decays very quickly, so can truncate without losing precision.



| Outline  | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|----------|-----------------|----------|-----------------|----------|-----------|
| 0        | 00000           | 00000000 |                 | 00000000 | ●○○       |
| Filon Qı | ladrature       |          |                 |          |           |

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - \frac{3}{2} \right) e^{-n^2 \pi e^{2y}} \cosh\left( \left( \sigma - \frac{1}{2} \right) y \right)$$
$$\times \cos(ty) e^{5y/2} dy$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate  $\int_{a}^{b} f(x) \cos(tx) dx$  exactly, polynomial f, as a function of t.



| Outline  | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|----------|-----------------|----------|-----------------|----------|-----------|
| 0        | 00000           | 00000000 |                 | 00000000 | ●○○       |
| Filon Qı | ladrature       |          |                 |          |           |

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - \frac{3}{2} \right) e^{-n^2 \pi e^{2y}} \cosh\left( \left( \sigma - \frac{1}{2} \right) y \right)$$
$$\times \cos(ty) e^{5y/2} dy$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate  $\int_{a}^{b} f(x) \cos(tx) dx$  exactly, polynomial f, as a function of t. Filon: Simpson's rule.



| Outline  | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|----------|-----------------|----------|-----------------|----------|-----------|
| 0        | 00000           | 00000000 | 0000000         | 00000000 | ●○○       |
| Filon Qı | uadrature       |          |                 |          |           |

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - \frac{3}{2} \right) e^{-n^2 \pi e^{2y}} \cosh\left( \left( \sigma - \frac{1}{2} \right) y \right)$$
$$\times \cos(ty) e^{5y/2} dy$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate  $\int_{a}^{b} f(x) \cos(tx) dx$  exactly, polynomial f, as a function of t. Filon: Simpson's rule.
- Filon quadrature are increasingly accurate as t increases (Iserles 2003).



| Outline  | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|----------|-----------------|----------|-----------------|----------|-----------|
| 0        | 00000           | 00000000 | 0000000         | 00000000 | ●○○       |
| Filon Qı | uadrature       |          |                 |          |           |

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - \frac{3}{2} \right) e^{-n^2 \pi e^{2y}} \cosh\left( \left( \sigma - \frac{1}{2} \right) y \right)$$
$$\times \cos(ty) e^{5y/2} dy$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate  $\int_{a}^{b} f(x) \cos(tx) dx$  exactly, polynomial f, as a function of t. Filon: Simpson's rule.
- Filon quadrature are increasingly accurate as t increases (Iserles 2003). It doesn't work.



## Outline Why Oscillatory Solution Multiple Period Riemann Integrals Why Doesn't It Work? Why Doesn't It Work? Why Doesn't It Work? Why Doesn't It Work?

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - 3/2 \right) e^{-n^2 \pi e^{2y}} \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy$$

• For a particular *n*, excellent convergence. But successive terms almost cancel each other out, more so as *t* increases.



## Outline Why Oscillatory Solution Multiple Period Riemann Integrals 0 0000000 00000000 00000000 00000000 00000000 Why Doesn't It Work?

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - 3/2 \right) e^{-n^2 \pi e^{2y}} \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy$$

- For a particular *n*, excellent convergence. But successive terms almost cancel each other out, more so as *t* increases.
- Why? ξ(s) contains Γ(s/2 + 1), which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).


## Outline Why Oscillatory Solution Multiple Period Riemann Integrals 0 0000000 00000000 00000000 00000000 00000000 Why Doesn't It Work?

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - 3/2 \right) e^{-n^2 \pi e^{2y}} \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy$$

- For a particular *n*, excellent convergence. But successive terms almost cancel each other out, more so as *t* increases.
- Why? ξ(s) contains Γ(s/2 + 1), which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).
- There are no asymptotic expansions for these integrals.



## Outline Why Oscillatory Solution Multiple Period Riemann Integrals 0 000000 00000000 00000000 00000000 00000000 Why Doesn't It Work?

$$8\pi \sum_{n=1}^{\infty} n^2 \int_0^{\infty} \left( n^2 e^{2y} \pi - 3/2 \right) e^{-n^2 \pi e^{2y}} \cosh((\sigma - 1/2)y) \cos(ty) e^{5y/2} \, dy$$

- For a particular *n*, excellent convergence. But successive terms almost cancel each other out, more so as *t* increases.
- Why? ξ(s) contains Γ(s/2 + 1), which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).
- There are no asymptotic expansions for these integrals.
- Is there a symmetric function with the same zeros as ζ(s) which doesn't exponentially decay for large t? Perhaps generalizing the functional equation (Hill 2005)...

| Outline | Why Oscillatory | Solution | Multiple Period | Riemann  | Integrals |
|---------|-----------------|----------|-----------------|----------|-----------|
| 0       | 00000           | 00000000 |                 | 00000000 | ○○●       |
| Help!   |                 |          |                 |          |           |

## And thank you and any questions?

