Numerically evaluating oscillating infinite integrals

and a failed (of course) approach to the Riemann Hypothesis

Stephen Lucas

Department of Mathematics and Statistics
James Madison University

September 152014

Outline

- Why infinite oscillatory integrals?
- Techniques for oscillatory integrals.
- Techniques for multiple period oscillations.
- What is the Riemann hypothesis.
- X-ray plots and a conjecture.
- The (non)-applicability of oscillatory integration theory.

Thanks to Howard Stone (Princeton), Jim Hill (Wollongong)

The Electrified Disk

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0, \quad\left\{\begin{array}{l}
V=V_{0}, 0 \leq r<1, z=0 \\
\frac{\partial V}{\partial z}=0, r>1, z=0 \\
V \rightarrow 0 \text { as } \sqrt{r^{2}+z^{2}} \rightarrow \infty
\end{array}\right.
$$

The Electrified Disk

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0, \quad\left\{\begin{array}{l}
V=V_{0}, 0 \leq r<1, z=0 \\
\frac{\partial V}{\partial z}=0, r>1, z=0 \\
V \rightarrow 0 \text { as } \sqrt{r^{2}+z^{2}} \rightarrow \infty
\end{array}\right.
$$

A Hankel transform order zero reduces this to $\frac{\partial^{2} \bar{V}}{\partial z^{2}}-k^{2} \bar{V}=0$ which has solution $\bar{V}=A e^{-k z}$, or

$$
V(r, z)=\int_{0}^{\infty} A(k) e^{-k z} k J_{0}(r k) d k
$$

The Electrified Disk

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0, \quad\left\{\begin{array}{l}
V=V_{0}, 0 \leq r<1, z=0 \\
\frac{\partial V}{\partial z}=0, r>1, z=0 \\
V \rightarrow 0 \text { as } \sqrt{r^{2}+z^{2}} \rightarrow \infty
\end{array}\right.
$$

A Hankel transform order zero reduces this to $\frac{\partial^{2} \bar{V}}{\partial z^{2}}-k^{2} \bar{V}=0$ which has solution $\bar{V}=A e^{-k z}$, or $V(r, z)=\int_{0}^{\infty} A(k) e^{-k z} k J_{0}(r k) d k$.

The Electrified Disk

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0, \quad\left\{\begin{array}{l}
V=V_{0}, 0 \leq r<1, z=0 \\
\frac{\partial V}{\partial z}=0, r>1, z=0 \\
V \rightarrow 0 \text { as } \sqrt{r^{2}+z^{2}} \rightarrow \infty
\end{array}\right.
$$

A Hankel transform order zero reduces this to $\frac{\partial^{2} \bar{V}}{\partial z^{2}}-k^{2} \bar{V}=0$ which has solution $\bar{V}=A e^{-k z}$, or $V(r, z)=\int_{0}^{\infty} A(k) e^{-k z} k J_{0}(r k) d k$.

Boundary conditions at $z=0$:

Dual Integral Equations for unknown $A(k)$

Tranter's Method

[C.J. Tranter, Integral Equations in Mathematical Physics, 1966.]

To solve $\left\{\begin{array}{l}\int_{0}^{\infty} G(k) f(k) J_{\nu}(r k) d k=g(r) \quad 0 \leq r<1 \\ \int_{0}^{\infty} f(k) J_{\nu}(r k) d k=0 \quad r>1\end{array}\right.$

Tranter's Method

[C.J. Tranter, Integral Equations in Mathematical Physics, 1966.]

To solve $\left\{\begin{array}{l}\int_{0}^{\infty} G(k) f(k) J_{\nu}(r k) d k=g(r) \quad 0 \leq r<1 \\ \int_{0}^{\infty} f(k) J_{\nu}(r k) d k=0 \quad r>1\end{array}\right.$
use the Weber-Schafheitlin discontinuous integral
$\int_{0}^{\infty} k^{1-\beta} J_{2 m+\nu+\beta}(k) J_{\nu}(r k) d k=\left\{\begin{array}{l}\frac{\Gamma(\nu+m+1) r^{\nu}\left(1-r^{2}\right)^{\beta-1}}{2^{\beta-1} \Gamma(\nu+1) \Gamma(m+\beta)} \\ \times \mathcal{F}\left(\beta+\nu, \nu+1 ; r^{2}\right) \quad 0 \leq r<1 \\ 0 \quad r>1\end{array}\right.$
where m is an integer ≥ 0, real $\beta>0, \nu>-2-m$.

Tranter's Method (2)

Seek a solution $f(k)=k^{1-\beta} \sum_{m=0}^{\infty} a_{m} J_{2 m+\nu+\beta}(k)$, which automatically satisfies (2).

Tranter's Method (2)

Seek a solution $f(k)=k^{1-\beta} \sum_{m=0}^{\infty} a_{m} J_{2 m+\nu+\beta}(k)$, which automatically satisfies (2).
Substitute in (1), assume $g(r)=A r^{\nu}$, and use orthogonality of Jacobi polynomials to give:
$\sum_{m=0}^{\infty} a_{m} \int_{0}^{\infty} G(k) k^{1-2 \beta} J_{2 m+\nu+\beta}(k) J_{2 n+\nu+\beta}(k) d k=\frac{A \Gamma(\nu+1)}{2^{\beta} \Gamma(\nu+\beta+1)} \delta_{0 n}$ for $n=0,1,2, \ldots$.

Tranter's Method (2)

Seek a solution $f(k)=k^{1-\beta} \sum_{m=0}^{\infty} a_{m} J_{2 m+\nu+\beta}(k)$, which automatically satisfies (2).
Substitute in (1), assume $g(r)=A r^{\nu}$, and use orthogonality of Jacobi polynomials to give:
$\sum_{m=0}^{\infty} a_{m} \int_{0}^{\infty} G(k) k^{1-2 \beta} J_{2 m+\nu+\beta}(k) J_{2 n+\nu+\beta}(k) d k=\frac{A \Gamma(\nu+1)}{2^{\beta} \Gamma(\nu+\beta+1)} \delta_{0 n}$
for $n=0,1,2, \ldots$. Truncate and solve linear system of equations for a_{m}.

Choose β such that $k^{2-2 \beta} G(k)-1$ is as small as possible

Applications of Dual Integral Equations

Tranter's method is useful for mixed boundary problems with disc or channel geometries. For example

- Motion of a circular disc in Stokes flow, broadside translation, edgewise translation, with and without boundaries, in a rotating viscous flow, oscillatory motion of a disc in unsteady Stokes flow.
- Capillary wave scattering.
- Fluid motion of monomolecular films in a channel flow.
- Flow of inviscid fluid around a disc in a pipe.
- Diffraction by elliptic and circular apertures in uniaxially anisotropic crystals.
- Various soil transportation models.

Green's Function Applications

The Green's functions for various problems are of the form

$$
\begin{aligned}
& \int_{0}^{\infty} f(x) J_{n}(r x) d x \text { or } \int_{0}^{\infty} f(x) J_{a}(\rho x) J_{b}(\tau x) d x \text { for } n \in \mathbb{N} \text {, and } \\
& a, b \in\{0,1\} .
\end{aligned}
$$

Green's Function Applications

The Green's functions for various problems are of the form $\int_{0}^{\infty} f(x) J_{n}(r x) d x$ or $\int_{0}^{\infty} f(x) J_{a}(\rho x) J_{b}(\tau x) d x$ for $n \in \mathbb{N}$, and $a, b \in\{0,1\}$. For example

- Particle motion in rotating viscous flows, and the Oseen equation.
- Magnetohydrodynamics.
- Antennas or scatterers embedded in planar multilayered media.
- Transversely isotropic piezoelectric multilayered half spaces.
- Isotropic elastic solid with a cylindrical borehole and a rigid plug.
- Scattering by cracks beneath fluid-solid interfaces.
- Response of a layered elastic half-space to surface loading.

Extrapolation for Summing Series

Consider $I=\int_{0}^{\infty} f(x) J_{n}(x) d x$.

Extrapolation for Summing Series

Consider $I=\int_{0}^{\infty} f(x) J_{n}(x) d x$. Form the sequence $\left\{I_{j}\right\}_{j=0}^{\infty}$ where

$$
I_{j}=\sum_{i=0}^{j} u_{i}=\sum_{i=0}^{j} \int_{x_{i}}^{x_{i+1}} f(x) J_{n}(x) d x
$$

and accelerate convergence to $/$ using extrapolation.

Extrapolation for Summing Series

Consider $I=\int_{0}^{\infty} f(x) J_{n}(x) d x$. Form the sequence $\left\{I_{j}\right\}_{j=0}^{\infty}$ where

$$
\iota_{j}=\sum_{i=0}^{j} u_{i}=\sum_{i=0}^{j} \int_{x_{i}}^{x_{i+1}} f(x) J_{n}(x) d x
$$

and accelerate convergence to $/$ using extrapolation.

- Euler Transform: $\sum_{i=0}^{\infty} u_{i}=\frac{1}{2}\left(u_{0}+M u_{0}+M^{2} u_{0}+\cdots\right)$ where

$$
M u_{i}=\frac{1}{2}\left(u_{i}+u_{i+1}\right)
$$

Extrapolation for Summing Series

Consider $I=\int_{0}^{\infty} f(x) J_{n}(x) d x$. Form the sequence $\left\{I_{j}\right\}_{j=0}^{\infty}$ where

$$
I_{j}=\sum_{i=0}^{j} u_{i}=\sum_{i=0}^{j} \int_{x_{i}}^{x_{i+1}} f(x) J_{n}(x) d x
$$

and accelerate convergence to $/$ using extrapolation.

- Euler Transform: $\sum_{i=0}^{\infty} u_{i}=\frac{1}{2}\left(u_{0}+M u_{0}+M^{2} u_{0}+\cdots\right)$ where

$$
M u_{i}=\frac{1}{2}\left(u_{i}+u_{i+1}\right) .
$$

- ϵ-Algorithm: (Implemented in QUADPACK/IMSL)

$$
\epsilon_{n}^{(-1)}=0, \quad \epsilon_{n}^{(0)}=I_{n} \quad \text { and } \quad \epsilon_{n}^{(p)}=\epsilon_{n+1}^{(p-2)}+\left[\epsilon_{n+1}^{(p-1)}-\epsilon_{n-1}^{(p-1)}\right]^{-1}
$$

$\epsilon_{n}^{(2 k)}$ is the k th order Shanks' transform of $\left\{I_{n}\right\}$

More Extrapolation

- mW Transform: (Sidi, 1988)

To evaluate $\int_{a}^{\infty} g(x) d x$, form

$$
\begin{aligned}
& F\left(x_{s}\right)=\int_{a}^{x_{s}} g(x) d x, \quad \psi\left(x_{s}\right)=\int_{x_{s}}^{x_{s}+1} g(x) d x, \\
& M_{-1}^{(s)}=F\left(x_{s}\right) / \psi\left(x_{s}\right), \quad N_{-1}^{(s)}=1 / \psi\left(x_{s}\right), \\
& M_{p}^{(s)}=\left(M_{p-1}^{(s)}-M_{p-1}^{(s+1)}\right) /\left(x_{s}^{-1}-x_{s+p+1}^{-1}\right) \Rightarrow W_{p}^{(s)}=\frac{M_{p}^{(s)}}{N_{p}^{(s)}} \\
& N_{p}^{(s)}=\left(N_{p-1}^{(s)}-N_{p-1}^{(s+1)}\right) /\left(x_{s}^{-1}-x_{s+p+1}^{-1}\right) \quad \begin{array}{l}
s=0,1, \ldots, \\
p=0,1, \ldots
\end{array}
\end{aligned}
$$

$W_{p}^{(0)}$ gives the best approximation to the integral.

Further Numerical Details

- Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, Computer Approximations, (1968).

Further Numerical Details

- Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, Computer Approximations, (1968).
- Integrate between the x_{i} using $d q d a g()$ from IMSL automatic adaptive routine, or recent improvement by Shampine (2008).

Further Numerical Details

- Evaluate Bessel functions using IMSL routines or polynomial approximations from J.F. Hart, Computer Approximations, (1968).
- Integrate between the x_{i} using $d q d a g()$ from IMSL automatic adaptive routine, or recent improvement by Shampine (2008).
- Choosing interval endpoints as Bessel zeros (or midway between zeros, or approximate zeros, or offset zeros...).

Finding Bessel Zeros

- Bessel function zeros aren't evenly spaced

Finding Bessel Zeros

- Bessel function zeros aren't evenly spaced

- Assume asymptotic zeros, place zeros π apart.
- Find zeros using Newton, $x_{i+1}=x_{i}-\frac{J_{n}\left(x_{i}\right)}{\frac{n}{x_{i}} J_{n}\left(x_{i}\right)-J_{n+1}\left(x_{i}\right)}$.

Finding Bessel Zeros

- Bessel function zeros aren't evenly spaced

- Assume asymptotic zeros, place zeros π apart.
- Find zeros using Newton, $x_{i+1}=x_{i}-\frac{J_{n}\left(x_{i}\right)}{\frac{n}{x_{i}} J_{n}\left(x_{i}\right)-J_{n+1}\left(x_{i}\right)}$.
- For initial approximation to ith zero of $J_{n}(x)\left(j_{n, i}\right)$, use asymptotics for $j_{n, 1}, j_{n, 2}$ or simply $j_{n, i} \simeq j_{n, i-1}+\left(j_{n, i-1}-j_{n, i-2}\right), i \geq 3$.

$$
\int_{0}^{\infty} \frac{x}{1+x^{2}} J_{0}(x) d x
$$

$$
\int_{0}^{\infty} \frac{x}{1+x^{2}} J_{0}(x) d x
$$

$$
\int_{0}^{\infty} \frac{x}{1+x^{2}} J_{100}(x) d x
$$

Summary of Extrapolation Methods

- Euler Transform convergence consistently poorest.

Summary of Extrapolation Methods

- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.

Summary of Extrapolation Methods

- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.
- ϵ-algorithm works well when zeros are known, but still converges when zeros are approximated.

Summary of Extrapolation Methods

- Euler Transform convergence consistently poorest.
- mW transform best when zeros are known, else fails to accelerate convergence.
- ϵ-algorithm works well when zeros are known, but still converges when zeros are approximated.

So,
If zeros are known
Then use mW transform
Else (zeros approximated) use ϵ-algorithm.

$$
\left.I_{D, b, T}=\int_{0}^{\infty} f(x)\right)_{\Delta}(x)(x) S_{G}(T x) d x
$$

With $f(x)=1, a=0, b=5, \rho=1, \tau=3 / 2$:

The Transformation

Write

$$
\begin{array}{cc}
J_{a}(\rho x) J_{b}(\tau x)=h_{1}(x ; a, b, \rho, \tau)+h_{2}(x ; a, b, \rho, \tau), \\
h_{1}=\frac{1}{2}\left\{J_{a}(\rho x) J_{b}(\tau x)-Y_{a}(\rho x) Y_{b}(\tau x)\right\} \\
h_{2}=\frac{1}{2}\left\{J_{a}(\rho x) J_{b}(\tau x)+Y_{a}(\rho x) Y_{b}(\tau x)\right\} & \binom{\text { Wong, 1988 }}{\left\{J_{\nu}(x)\right\}^{2}}
\end{array}
$$

The Transformation

Write

$$
\begin{aligned}
& J_{a}(\rho x) J_{b}(\tau x)=h_{1}(x ; a, b, \rho, \tau)+h_{2}(x ; a, b, \rho, \tau), \\
& h_{1}= \frac{1}{2}\left\{J_{a}(\rho x) J_{b}(\tau x)-Y_{a}(\rho x) Y_{b}(\tau x)\right\} \\
& h_{2}=\frac{1}{2}\left\{J_{a}(\rho x) J_{b}(\tau x)+Y_{a}(\rho x) Y_{b}(\tau x)\right\}\binom{\text { Wong, 1988 }}{\left\{J_{\nu}(x)\right\}^{2}}
\end{aligned}
$$

For large x,

$$
\begin{aligned}
& h_{1} \sim \frac{1}{\pi \sqrt{\rho \tau} x} \cos \left\{(\rho+\tau) x-\frac{1}{2}(a+b+1) \pi\right\} \\
& h_{2} \sim \frac{1}{\pi \sqrt{\rho \tau} x} \cos \left\{(\rho-\tau) x-\frac{1}{2}(a-b) \pi\right\}
\end{aligned}
$$

Difficulties

- $Y_{n}(x) \rightarrow-\infty$ as $x \rightarrow 0$, so split \int_{0}^{∞} into $\int_{0}^{y \max }+\int_{y \max }^{\infty}$ where $y \max =\max \left\{1\right.$ st zero of $Y_{a}(\rho x), 1$ st zero of $\left.Y_{b}(\tau x)\right\}$.

Difficulties

- $Y_{n}(x) \rightarrow-\infty$ as $x \rightarrow 0$, so split \int_{0}^{∞} into $\int_{0}^{y m a x}+\int_{y \max }^{\infty}$ where y max $=\max \left\{1\right.$ st zero of $Y_{a}(\rho x)$, 1st zero of $\left.Y_{b}(\tau x)\right\}$.
- Poor initial behavior of h_{2} :
- Use ϵ-algorithm extrapolation for h_{2}.

Difficulties

- $Y_{n}(x) \rightarrow-\infty$ as $x \rightarrow 0$, so split \int_{0}^{∞} into $\int_{0}^{y \max }+\int_{y m a x}^{\infty}$ where y max $=\max \left\{1\right.$ st zero of $Y_{a}(\rho x)$, 1st zero of $\left.Y_{b}(\tau x)\right\}$.
- Poor initial behavior of h_{2} :
- Use ϵ-algorithm extrapolation for h_{2}.
- Use mW transform for h_{1}.

Transformation of $J_{0}(x) J_{5}(3 x / 2)$

h_{2} When $\rho \sim \tau$ and a, b Are Far Apart

Even Worse

Results

Excellent convergence rates. For example,

$$
\begin{aligned}
\int_{0}^{\infty} J_{0}(x) J_{1}(3 x / 2) d x=2 / 3 & \sim 200 \text { evals, error } \sim 10^{-5} \\
& \sim 600 \text { evals, error } \sim 10^{-14}
\end{aligned}
$$

Results

Excellent convergence rates. For example,

$$
\begin{aligned}
\int_{0}^{\infty} J_{0}(x) J_{1}(3 x / 2) d x=2 / 3 & \sim 200 \text { evals, error } \sim 10^{-5} \\
& \sim 600 \text { evals, error } \sim 10^{-14}
\end{aligned}
$$

IMSL - best was 14985 function evaluation, error 2.6×10^{-2}, error code indicating slow convergence.

Results

Excellent convergence rates. For example,

$$
\begin{aligned}
\int_{0}^{\infty} J_{0}(x) J_{1}(3 x / 2) d x=2 / 3 & \sim 200 \text { evals, error } \sim 10^{-5} \\
& \sim 600 \text { evals, error } \sim 10^{-14}
\end{aligned}
$$

IMSL - best was 14985 function evaluation, error 2.6×10^{-2}, error code indicating slow convergence.

Stephen Lucas
Numerically evaluating oscillating infinite integrals

The Riemann Hypothesis

- The Riemann zeta function is $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(\mathcal{R}(s)>1)$ or

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}(\mathcal{R}(s)>0)
$$

The Riemann Hypothesis

- The Riemann zeta function is $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(\mathcal{R}(s)>1)$ or

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}(\mathcal{R}(s)>0)
$$

- The Riemann zeta function satisfies the functional equation $\zeta(1-s)=2(2 \pi)^{-s} \cos (s \pi / 2) \Gamma(s) \zeta(s)$, which can be used to find $\zeta(s)$ for $\mathcal{R}(s)<0$.

The Riemann Hypothesis

- The Riemann zeta function is $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(\mathcal{R}(s)>1)$ or

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}(\mathcal{R}(s)>0)
$$

- The Riemann zeta function satisfies the functional equation $\zeta(1-s)=2(2 \pi)^{-s} \cos (s \pi / 2) \Gamma(s) \zeta(s)$, which can be used to find $\zeta(s)$ for $\mathcal{R}(s)<0$. It also shows $\zeta(s)$ has (trivial) zeros at the negative even integers.

The Riemann Hypothesis

- The Riemann zeta function is $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(\mathcal{R}(s)>1)$ or

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}(\mathcal{R}(s)>0)
$$

- The Riemann zeta function satisfies the functional equation $\zeta(1-s)=2(2 \pi)^{-s} \cos (s \pi / 2) \Gamma(s) \zeta(s)$, which can be used to find $\zeta(s)$ for $\mathcal{R}(s)<0$. It also shows $\zeta(s)$ has (trivial) zeros at the negative even integers.
- The Riemann hypothesis states that all the non-trivial zeros of $\zeta(s)$ lie on the line $\mathcal{R}(s)=1 / 2$.

The Riemann Hypothesis

- The Riemann zeta function is $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(\mathcal{R}(s)>1)$ or

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}(\mathcal{R}(s)>0)
$$

- The Riemann zeta function satisfies the functional equation $\zeta(1-s)=2(2 \pi)^{-s} \cos (s \pi / 2) \Gamma(s) \zeta(s)$, which can be used to find $\zeta(s)$ for $\mathcal{R}(s)<0$. It also shows $\zeta(s)$ has (trivial) zeros at the negative even integers.
- The Riemann hypothesis states that all the non-trivial zeros of $\zeta(s)$ lie on the line $\mathcal{R}(s)=1 / 2$.
- There are a variety of methods to more efficiently evaluate $\zeta(s)$, starting from the Euler-Maclaurin summation formpla.

X－Ray Plots

An X－Ray plot is a device for investigating complex functions．

X-Ray Plots

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero.

X-Ray Plots

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero. A zero of the function will thus be at intersections of different colored lines, which will cross at right angles.

X-Ray Plots

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero. A zero of the function will thus be at intersections of different colored lines, which will cross at right angles.

Most functions have reasonably nice x-ray plots.

X-Ray Plots

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero. A zero of the function will thus be at intersections of different colored lines, which will cross at right angles.

Most functions have reasonably nice x-ray plots.
Consider the x-ray plot of the Riemann zeta function - J. Arias-de-Reyna, X-ray of Riemann's zeta-function, unpublished preprint, 2003, http://arxiv.org/abs/math.NT/0309433

X-Ray Plots

An X-Ray plot is a device for investigating complex functions. Plot using two colors (black/grey, blue/red) the curves of the real and imaginary parts of the complex function equalling zero. A zero of the function will thus be at intersections of different colored lines, which will cross at right angles.

Most functions have reasonably nice x-ray plots.
Consider the x-ray plot of the Riemann zeta function - J. Arias-de-Reyna, X-ray of Riemann's zeta-function, unpublished preprint, 2003, http://arxiv.org/abs/math.NT/0309433

Clearly "difficult", not useful for analysis. But...

Riemann's ξ Function

- Define $\xi(s)=\Gamma(s / 2+1)(s-1) \pi^{-s / 2} \zeta(s)$.

Riemann's ξ Function

- Define $\xi(s)=\Gamma(s / 2+1)(s-1) \pi^{-s / 2} \zeta(s)$.
- $\xi(s)$ satisfies the functional equation $\xi(1-s)=\xi(s)$, is an entire function, and its zeros are the non-trivial zeros of $\zeta(s)$.

Riemann's ξ Function

- Define $\xi(s)=\Gamma(s / 2+1)(s-1) \pi^{-s / 2} \zeta(s)$.
- $\xi(s)$ satisfies the functional equation $\xi(1-s)=\xi(s)$, is an entire function, and its zeros are the non-trivial zeros of $\zeta(s)$.
- After some manipulation, $(s=\sigma+i t)$ we have

$$
\begin{aligned}
\xi(s)= & 8 \pi \int_{0}^{\infty} \psi_{2}(y) \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y \\
& +i 8 \pi \int_{0}^{\infty} \psi_{2}(y) \sinh ((\sigma-1 / 2) y) \sin (t y) e^{5 y / 2} d y
\end{aligned}
$$

where $\psi_{2}(y)=\sum_{n=1}^{\infty} a_{n}$ with $a_{n}=n^{2}\left(n^{2} e^{2 y} \pi-3 / 2\right) e^{-n^{2} \pi e^{2 y}}$.

X-Ray for $\xi(s)$

X-Ray for $\xi(s)$, Far Field

X-Ray for $\xi(s)$, Higher Up

X-Ray for $\xi(s)$, Even Higher Up

Riemann's Hypothesis Rewritten

$$
\begin{aligned}
\xi(s)= & 8 \pi \int_{0}^{\infty} \psi_{2}(y) \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y \\
& +i 8 \pi \int_{0}^{\infty} \psi_{2}(y) \sinh ((\sigma-1 / 2) y) \sin (t y) e^{5 y / 2} d y,
\end{aligned}
$$

Riemann's Hypothesis Rewritten

$$
\begin{aligned}
\xi(s)= & 8 \pi \int_{0}^{\infty} \psi_{2}(y) \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y \\
& +i 8 \pi \int_{0}^{\infty} \psi_{2}(y) \sinh ((\sigma-1 / 2) y) \sin (t y) e^{5 y / 2} d y
\end{aligned}
$$

Prove the real and imaginary integrals are not both zero simultaneously apart from when $\sigma=1 / 2$.

Riemann's Hypothesis Rewritten

$$
\begin{aligned}
\xi(s)= & 8 \pi \int_{0}^{\infty} \psi_{2}(y) \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y \\
& +i 8 \pi \int_{0}^{\infty} \psi_{2}(y) \sinh ((\sigma-1 / 2) y) \sin (t y) e^{5 y / 2} d y,
\end{aligned}
$$

Prove the real and imaginary integrals are not both zero simultaneously apart from when $\sigma=1 / 2$. Form implicit functions for blue and red curves. Can we bound the slopes for $\sigma=1 / 2+\epsilon$?

Filon Quadrature

- Real part is

$$
\begin{aligned}
8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty} & \left(n^{2} e^{2 y} \pi-\frac{3}{2}\right) e^{-n^{2} \pi e^{2 y}} \cosh \left(\left(\sigma-\frac{1}{2}\right) y\right) \\
& \times \cos (t y) e^{5 y / 2} d y
\end{aligned}
$$

- Integrand decays very quickly, so can truncate without losing precision.

Filon Quadrature

- Real part is

$$
\begin{aligned}
8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty} & \left(n^{2} e^{2 y} \pi-\frac{3}{2}\right) e^{-n^{2} \pi e^{2 y}} \cosh \left(\left(\sigma-\frac{1}{2}\right) y\right) \\
& \times \cos (t y) e^{5 y / 2} d y
\end{aligned}
$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate $\int_{a}^{b} f(x) \cos (t x) d x$ exactly, polynomial f, as a function of t.

Filon Quadrature

- Real part is

$$
\begin{aligned}
8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty} & \left(n^{2} e^{2 y} \pi-\frac{3}{2}\right) e^{-n^{2} \pi e^{2 y}} \cosh \left(\left(\sigma-\frac{1}{2}\right) y\right) \\
& \times \cos (t y) e^{5 y / 2} d y
\end{aligned}
$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate $\int_{a}^{b} f(x) \cos (t x) d x$ exactly, polynomial f, as a function of t.
Filon: Simpson's rule.

Filon Quadrature

- Real part is

$$
\begin{aligned}
8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty} & \left(n^{2} e^{2 y} \pi-\frac{3}{2}\right) e^{-n^{2} \pi e^{2 y}} \cosh \left(\left(\sigma-\frac{1}{2}\right) y\right) \\
& \times \cos (t y) e^{5 y / 2} d y
\end{aligned}
$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate $\int_{a}^{b} f(x) \cos (t x) d x$ exactly, polynomial f, as a function of t.
Filon: Simpson's rule.
- Filon quadrature are increasingly accurate as t increases (Iserles 2003).

Filon Quadrature

- Real part is

$$
\begin{aligned}
8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty} & \left(n^{2} e^{2 y} \pi-\frac{3}{2}\right) e^{-n^{2} \pi e^{2 y}} \cosh \left(\left(\sigma-\frac{1}{2}\right) y\right) \\
& \times \cos (t y) e^{5 y / 2} d y
\end{aligned}
$$

- Integrand decays very quickly, so can truncate without losing precision.
- Oscillatory quadrature: choose points and weights to evaluate $\int_{a}^{b} f(x) \cos (t x) d x$ exactly, polynomial f, as a function of t.
Filon: Simpson's rule.
- Filon quadrature are increasingly accurate as t increases (Iserles 2003). It doesn't work.

Why Doesn't It Work?

$8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty}\left(n^{2} e^{2 y} \pi-3 / 2\right) e^{-n^{2} \pi e^{2 y}} \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y$

- For a particular n, excellent convergence. But successive terms almost cancel each other out, more so as t increases.

Why Doesn't It Work?

$8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty}\left(n^{2} e^{2 y} \pi-3 / 2\right) e^{-n^{2} \pi e^{2 y}} \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y$

- For a particular n, excellent convergence. But successive terms almost cancel each other out, more so as t increases.
- Why? $\xi(s)$ contains $\Gamma(s / 2+1)$, which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).

Why Doesn't It Work?

$8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty}\left(n^{2} e^{2 y} \pi-3 / 2\right) e^{-n^{2} \pi e^{2 y}} \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y$

- For a particular n, excellent convergence. But successive terms almost cancel each other out, more so as t increases.
- Why? $\xi(s)$ contains $\Gamma(s / 2+1)$, which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).
- There are no asymptotic expansions for these integrals.

Why Doesn't It Work?

$8 \pi \sum_{n=1}^{\infty} n^{2} \int_{0}^{\infty}\left(n^{2} e^{2 y} \pi-3 / 2\right) e^{-n^{2} \pi e^{2 y}} \cosh ((\sigma-1 / 2) y) \cos (t y) e^{5 y / 2} d y$

- For a particular n, excellent convergence. But successive terms almost cancel each other out, more so as t increases.
- Why? $\xi(s)$ contains $\Gamma(s / 2+1)$, which converges exponentially fast to zero as the imaginary part of s increases (in the critical strip).
- There are no asymptotic expansions for these integrals.
- Is there a symmetric function with the same zeros as $\zeta(s)$ which doesn't exponentially decay for large t ? Perhaps generalizing the functional equation (Hill 2005)...

Help!

And thank you and any questions?

