Fractals in Cubic Graphs \& Hamiltonian Cycles

VMI, March 82010

Stephen Lucas

Department of Mathematics and Statistics
James Madison University, Harrisonburg VA
Thanks to: Vladimir Ejov, Jerzy Filar, Jessica Nelson, Giang Nguyen, Peter Zograf

Outline

- Graphs as Matrices.
- The fractals.
- Proofs.
- The Hamiltonian Cycle Problem
- The HCP as a Polynomial Problem

Graphs Definitions

- A graph is a collection of points (nodes, vertices) joined by lines (edges) where location doesn't matter.

Graphs Definitions

- A graph is a collection of points (nodes, vertices) joined by lines (edges) where location doesn't matter. For example

are the same graph.

Graphs Definitions

- A graph is a collection of points (nodes, vertices) joined by lines (edges) where location doesn't matter. For example

are the same graph.
- Some graphs include loops (join a vertex to itself), multiple edges (more than one edges join a pair of vertices), or direction (arrows not lines).

Graphs as Matrices

A graph G has an associated adjacency matrix A, where
$a_{i j}= \begin{cases}1, & \text { if an edge joins vertices } i, j, \\ 0, & \text { otherwise } .\end{cases}$

Graphs as Matrices

A graph G has an associated adjacency matrix A, where
$a_{i j}= \begin{cases}1, & \text { if an edge joins vertices } i, j, \\ 0, & \text { otherwise } .\end{cases}$
In this case, $A=\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}\right)$.

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero
- Find their mean and variance, for statistical analysis

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3 , stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero
- Find their mean and variance, for statistical analysis
- Plot a single dot of mean versus variance.

A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three edges) with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero
- Find their mean and variance, for statistical analysis
- Plot a single dot of mean versus variance.

n	$\# G$
10	19
12	85
14	509
16	4060

$n=10$

$$
n=12
$$

$$
n=14
$$

$$
n=16
$$

$$
n=16
$$

$n=16$, Zoom in on Leftmost Filar

$n=16$, Zoom in on 4th Subfilar of 1st Filar

$n=16$, Zoom in on 5th Subsubfilar of 4th Subfilar of 1st Filar

$n=16, \mathbf{Z o o m}$ in on $\mathbf{5 t h}$ Subsubfilar of 4th Subfilar of 1st Filar

Ten Vertex Cubic Graphs in Detail

(5)

(7)

(8)

(16)

(19)

$n=10$ with Labels

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,
Graphs $13,11,8$ have 1 subcycle of length 3 ,

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,
Graphs $13,11,8$ have 1 subcycle of length 3 ,
Graphs 10,9,6,7,5 have 2 subcycles of length 3,

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,
Graphs $13,11,8$ have 1 subcycle of length 3 ,
Graphs 10,9,6,7,5 have 2 subcycles of length 3,
Graphs 12,3 have 3 subcycles of length 3, and

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,
Graphs $13,11,8$ have 1 subcycle of length 3,
Graphs 10,9,6,7,5 have 2 subcycles of length 3 ,
Graphs 12,3 have 3 subcycles of length 3, and
Graphs 4,2,1 have 4 subcycles of length 3.

$n=10$ with Labels

Graphs 19,18,16,17,15,14 have no subcycles of length 3 ,
Graphs $13,11,8$ have 1 subcycle of length 3,
Graphs 10,9,6,7,5 have 2 subcycles of length 3 ,
Graphs 12,3 have 3 subcycles of length 3, and
Graphs 4,2,1 have 4 subcycles of length 3.

Graphs 17,15 have the same number of subcycles of length 4.

Clustering Into Filars

- $\operatorname{tr}\left(A^{j}\right)=\sum_{i=1}^{n} \lambda_{i}^{j}$, and the (k, k) th element of A^{j} is the number of closed walks starting and finishing at vertex k of length j.

Clustering Into Filars

- $\operatorname{tr}\left(A^{j}\right)=\sum_{i=1}^{n} \lambda_{i}^{j}$, and the (k, k) th element of A^{j} is the number of closed walks starting and finishing at vertex k of length j.
- The mean of the exponentials of the eigenvalues of $A / 3$ is

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \exp \left(\lambda_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{\infty} \frac{\lambda_{i}^{j}}{j!}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{1}{j!} \sum_{i=1}^{n} \lambda_{i}^{j}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{3^{j} j!}
$$

Clustering Into Filars

- $\operatorname{tr}\left(A^{j}\right)=\sum_{i=1}^{n} \lambda_{i}^{j}$, and the (k, k) th element of A^{j} is the number of closed walks starting and finishing at vertex k of length j.
- The mean of the exponentials of the eigenvalues of $A / 3$ is

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \exp \left(\lambda_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{\infty} \frac{\lambda_{i}^{j}}{j!}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{1}{j!} \sum_{i=1}^{n} \lambda_{i}^{j}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{3^{j} j!} .
$$

- For all cubic graphs, $\operatorname{tr}\left(A^{0}\right)=n, \operatorname{tr}\left(A^{1}\right)=0$ and $\operatorname{tr}\left(A^{2}\right)=3 n$, so

$$
\mu=\frac{7}{6}+\frac{1}{n} \sum_{j=3}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{3^{j} j!} .
$$

Clustering Into Filars

- $\operatorname{tr}\left(A^{j}\right)=\sum_{i=1}^{n} \lambda_{i}^{j}$, and the (k, k) th element of A^{j} is the number of closed walks starting and finishing at vertex k of length j.
- The mean of the exponentials of the eigenvalues of $A / 3$ is

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \exp \left(\lambda_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{\infty} \frac{\lambda_{i}^{j}}{j!}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{1}{j!} \sum_{i=1}^{n} \lambda_{i}^{j}=\frac{1}{n} \sum_{j=0}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{3^{j} j!} .
$$

- For all cubic graphs, $\operatorname{tr}\left(A^{0}\right)=n, \operatorname{tr}\left(A^{1}\right)=0$ and $\operatorname{tr}\left(A^{2}\right)=3 n$, so

$$
\mu=\frac{7}{6}+\frac{1}{n} \sum_{j=3}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{3^{j} j!} .
$$

- Number of closed walks of increasing length separate graphs in different filars, subfilars, etc.

(Roughly) Filars as Straight Lines

$$
\text { Similarly, } s^{2}=\frac{1}{n-1}\left(\sum_{j=0}^{\infty} \frac{2^{j} \operatorname{tr}\left(A^{j}\right)}{3^{j} j!}-n \mu^{2}\right) .
$$

(Roughly) Filars as Straight Lines

Similarly, $s^{2}=\frac{1}{n-1}\left(\sum_{j=0}^{\infty} \frac{2^{j} \operatorname{tr}\left(A^{j}\right)}{3^{j} j!}-n \mu^{2}\right)$.
Assume we move from graph A with mean μ_{A} to graph B with mean μ_{B} where $\operatorname{tr}\left(B^{j}\right)=\operatorname{tr}\left(A^{j}\right)$ for all $j \neq k$ and $\operatorname{tr}\left(B^{k}\right)=\operatorname{tr}\left(A^{k}\right)+\delta$.

(Roughly) Filars as Straight Lines

Similarly, $s^{2}=\frac{1}{n-1}\left(\sum_{j=0}^{\infty} \frac{2^{j} \operatorname{tr}\left(A^{j}\right)}{3^{j} j!}-n \mu^{2}\right)$.
Assume we move from graph A with mean μ_{A} to graph B with mean μ_{B} where $\operatorname{tr}\left(B^{j}\right)=\operatorname{tr}\left(A^{j}\right)$ for all $j \neq k$ and $\operatorname{tr}\left(B^{k}\right)=\operatorname{tr}\left(A^{k}\right)+\delta$.
Then $\mu_{B}=\mu_{A}+\frac{\delta}{n 3^{k} k!}$, and
$s_{B}^{2}=s_{A}^{2}+\frac{\delta 2^{k}}{(n-1) 3^{k} k!}-\frac{2 \delta \mu_{A}}{(n-1) 3^{k} k!}-\frac{\delta^{2}}{n(n-1) 3^{2 k}(k!)^{2}}$.

(Roughly) Filars as Straight Lines

Similarly, $s^{2}=\frac{1}{n-1}\left(\sum_{j=0}^{\infty} \frac{2^{j} \operatorname{tr}\left(A^{j}\right)}{3^{j} j!}-n \mu^{2}\right)$.
Assume we move from graph A with mean μ_{A} to graph B with mean μ_{B} where $\operatorname{tr}\left(B^{j}\right)=\operatorname{tr}\left(A^{j}\right)$ for all $j \neq k$ and $\operatorname{tr}\left(B^{k}\right)=\operatorname{tr}\left(A^{k}\right)+\delta$.
Then $\mu_{B}=\mu_{A}+\frac{\delta}{n 3^{k} k!}$, and
$s_{B}^{2}=s_{A}^{2}+\frac{\delta 2^{k}}{(n-1) 3^{k} k!}-\frac{2 \delta \mu_{A}}{(n-1) 3^{k} k!}-\frac{\delta^{2}}{n(n-1) 3^{2 k}(k!)^{2}}$.
When moving from graphs A to B, μ increases by $\delta /\left(n 3^{k} k!\right)$ and s^{2} increases by $\delta\left(2^{k}-2 \mu\right) /\left((n-1) 3^{k} k!\right)$.

(Roughly) Filars as Straight Lines

Similarly, $s^{2}=\frac{1}{n-1}\left(\sum_{j=0}^{\infty} \frac{2^{j} \operatorname{tr}\left(A^{j}\right)}{3^{j} j!}-n \mu^{2}\right)$.
Assume we move from graph A with mean μ_{A} to graph B with mean μ_{B} where $\operatorname{tr}\left(B^{j}\right)=\operatorname{tr}\left(A^{j}\right)$ for all $j \neq k$ and $\operatorname{tr}\left(B^{k}\right)=\operatorname{tr}\left(A^{k}\right)+\delta$.
Then $\mu_{B}=\mu_{A}+\frac{\delta}{n 3^{k} k!}$, and
$s_{B}^{2}=s_{A}^{2}+\frac{\delta 2^{k}}{(n-1) 3^{k} k!}-\frac{2 \delta \mu_{A}}{(n-1) 3^{k} k!}-\frac{\delta^{2}}{n(n-1) 3^{2 k}(k!)^{2}}$.
When moving from graphs A to B, μ increases by $\delta /\left(n 3^{k} k!\right)$ and s^{2} increases by $\delta\left(2^{k}-2 \mu\right) /\left((n-1) 3^{k} k!\right)$.

Now μ only changes over a very small range. So the ratio (s^{2} increase $/ \mu$ increase) equals $(n /(n-1))\left(2^{k}-2 \mu\right)$.

More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree $q+1$ can be written as
$\frac{1}{n} \sum_{i=1}^{n} e^{t \lambda_{i}}=\frac{q+1}{2 \pi} \int_{-2 \sqrt{q}}^{2 \sqrt{q}} e^{s t} \frac{\sqrt{4 q-x^{2}}}{(q+1)^{2}-x^{2}} d x+\frac{1}{n} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l(\gamma)}{2^{k l(\gamma) / 2}} I_{k l(\gamma)}(2 \sqrt{q} t)$,
where γ runs over all oriented primitive closed geodesics, and $l(\gamma)$ is the length of γ.

More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree $q+1$ can be written as
$\frac{1}{n} \sum_{i=1}^{n} e^{t \lambda_{i}}=\frac{q+1}{2 \pi} \int_{-2 \sqrt{q}}^{2 \sqrt{q}} e^{s t} \frac{\sqrt{4 q-x^{2}}}{(q+1)^{2}-x^{2}} d x+\frac{1}{n} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l(\gamma)}{2^{k l(\gamma) / 2}} I_{k l(\gamma)}(2 \sqrt{q} t)$,
where γ runs over all oriented primitive closed geodesics, and $l(\gamma)$ is the length of γ. Letting n_{l} be the number of geodesics of length l, and setting $q=2$,

$$
\frac{1}{n} \sum_{i=1}^{n} e^{t \lambda_{i}}=J(t)+\frac{2}{n} \sum_{l=3}^{\infty} l n_{l} F_{l}(t)
$$

where $J(t)=\frac{3}{2 \pi} \int_{-2 \sqrt{2}}^{2 \sqrt{2}} e^{t x} \frac{\sqrt{8-x^{2}}}{9-x^{2}} d x$ and $F_{l}(t)=\sum_{k=1}^{\infty} \frac{I_{k l}(2 \sqrt{2} t)}{2^{k l / 2}}$.

More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree $q+1$ can be written as
$\frac{1}{n} \sum_{i=1}^{n} e^{t \lambda_{i}}=\frac{q+1}{2 \pi} \int_{-2 \sqrt{q}}^{2 \sqrt{q}} e^{s t} \frac{\sqrt{4 q-x^{2}}}{(q+1)^{2}-x^{2}} d x+\frac{1}{n} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l(\gamma)}{2^{k l(\gamma) / 2}} I_{k l(\gamma)}(2 \sqrt{q} t)$,
where γ runs over all oriented primitive closed geodesics, and $l(\gamma)$ is the length of γ. Letting n_{l} be the number of geodesics of length l, and setting $q=2$,

$$
\frac{1}{n} \sum_{i=1}^{n} e^{t \lambda_{i}}=J(t)+\frac{2}{n} \sum_{l=3}^{\infty} l n_{l} F_{l}(t)
$$

where $J(t)=\frac{3}{2 \pi} \int_{-2 \sqrt{2}}^{2 \sqrt{2}} e^{t x} \frac{\sqrt{8-x^{2}}}{9-x^{2}} d x$ and $F_{l}(t)=\sum_{k=1}^{\infty} \frac{I_{k l}(2 \sqrt{2} t)}{2^{k l / 2}}$.
Note that $I_{m}(z) \approx \frac{1}{m!}\left(\frac{z}{2}\right)^{m}$ as $m \rightarrow \infty$ and $0<z \ll \sqrt{m+1}$.

Mean and Variance

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{i} / 3}=J(1 / 3)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3)
$$

Mean and Variance

$$
\begin{gathered}
\mu=\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{i} / 3}=J(1 / 3)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3) \\
\sigma=\frac{1}{n} \sum_{i=1}^{n}\left(e^{\lambda_{i} / 3}-\mu\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} e^{2 \lambda_{i} / 3}-\mu^{2}
\end{gathered}
$$

Mean and Variance

$$
\begin{gathered}
\mu=\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{i} / 3}=J(1 / 3)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3), \\
\sigma=\frac{1}{n} \sum_{i=1}^{n}\left(e^{\lambda_{i} / 3}-\mu\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} e^{2 \lambda_{i} / 3}-\mu^{2} \\
=\left(J(2 / 3)-J(1 / 3)^{2}\right)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l}\left(F_{l}(2 / 3)-2 J(1 / 3) F_{l}(1 / 3)\right) \\
+\left(\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3)\right)^{2} .
\end{gathered}
$$

Mean and Variance

$$
\begin{gathered}
\mu=\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{i} / 3}=J(1 / 3)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3) \\
\sigma=\frac{1}{n} \sum_{i=1}^{n}\left(e^{\lambda_{i} / 3}-\mu\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} e^{2 \lambda_{i} / 3}-\mu^{2} \\
= \\
\left(J(2 / 3)-J(1 / 3)^{2}\right)+\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l}\left(F_{l}(2 / 3)-2 J(1 / 3) F_{l}(1 / 3)\right) \\
+\left(\frac{2}{n} \sum_{l=3}^{\infty} \ln _{l} F_{l}(1 / 3)\right)^{2} .
\end{gathered}
$$

Ignoring the (small) quadratic term, a change δ_{l} to n_{l} changes μ by $2 l F_{l}(1 / 3) \delta_{l} / n$ and σ by $2 l\left(F_{l}(2 / 3)-2 J(1 / 3) F_{l}(1 / 3)\right) \delta_{l} / n$ - each filar is a straight line.

Hamiltonian Cycles

- A Hamiltonian cycle is a closed path that only enters and exits each vertex exactly once.

Hamiltonian Cycles

- A Hamiltonian cycle is a closed path that only enters and exits each vertex exactly once.
- Given a graph, the amount of work required to find Hamiltonian cycles (or even prove they don't exist) appears to be exponential.

Hamiltonian Cycles

- A Hamiltonian cycle is a closed path that only enters and exits each vertex exactly once.
- Given a graph, the amount of work required to find Hamiltonian cycles (or even prove they don't exist) appears to be exponential.
- Given a proposed Hamiltonian cycle, its easy to prove is it is correct. This is typical of NP-Complete problems.

Hamiltonian Cycles

- A Hamiltonian cycle is a closed path that only enters and exits each vertex exactly once.
- Given a graph, the amount of work required to find Hamiltonian cycles (or even prove they don't exist) appears to be exponential.
- Given a proposed Hamiltonian cycle, its easy to prove is it is correct. This is typical of NP-Complete problems.
- Even the Hamiltonian cycle problem on cubic graphs is NP-Complete.

Hamiltonian Cycles

- A Hamiltonian cycle is a closed path that only enters and exits each vertex exactly once.
- Given a graph, the amount of work required to find Hamiltonian cycles (or even prove they don't exist) appears to be exponential.
- Given a proposed Hamiltonian cycle, its easy to prove is it is correct. This is typical of NP-Complete problems.
- Even the Hamiltonian cycle problem on cubic graphs is NP-Complete.
- A bridge graph is one that can be split in pieces by removing an edge (or vertex). This can be established in polynomial time, and a bridge graph is clearly not Hamiltonian.

Hamiltonian Cycles and Cubic Graph Filars

Most non-Hamiltonian graphs are at the ends of filars, and are bridge graphs. What is the relationship between bridge graphs and their JIAMES position in a filar?

Eigenanalysis Inadequate

These twenty vertex cubic graphs are co-spectral (have the same eigenvalues), the one on the left has Hamiltonian cycles, the one on the right does not.

A Conjecture

Robinson and Wormald proved that almost all regular graphs are Hamiltonian.

A Conjecture

Robinson and Wormald proved that almost all regular graphs are Hamiltonian.

Graph	Number	Number	Ratio	Number Cubic	Ratio
Size	Cubic	Non-H	Non-H/Cubic	Bridge	Bridge/Non-H
10	19	2	0.1053	1	0.5000
12	85	5	0.0588	4	0.8000
14	509	35	0.0688	29	0.8286
16	4060	219	0.0539	186	0.8493
18	41301	1666	0.0403	1435	0.8613
20	510490	14498	0.0284	12671	0.8740
22	7319447	148790	0.0203	131820	0.8859
24	117940535	1768732	0.0150	1590900	0.8995

A Conjecture

Robinson and Wormald proved that almost all regular graphs are Hamiltonian.

Graph	Number	Number	Ratio	Number Cubic	Ratio
Size	Cubic	Non-H	Non-H/Cubic	Bridge	Bridge/Non-H
10	19	2	0.1053	1	0.5000
12	85	5	0.0588	4	0.8000
14	509	35	0.0688	29	0.8286
16	4060	219	0.0539	186	0.8493
18	41301	1666	0.0403	1435	0.8613
20	510490	14498	0.0284	12671	0.8740
22	7319447	148790	0.0203	131820	0.8859
24	117940535	1768732	0.0150	1590900	0.8995

Conjecture (Filar, Haythorpe \& Nguyen):
Almost all regular non-Hamiltonian graphs are bridge graphs.

A Property of Hamiltonian Cycles

- A directed graph G has an adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an arrow joins vertex } i \text { to vertex } j \\ 0, & \text { otherwise. }\end{cases}
$$

A Property of Hamiltonian Cycles

- A directed graph G has an adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an arrow joins vertex } i \text { to vertex } j \\ 0, & \text { otherwise. }\end{cases}
$$

- A Hamiltonian Cycle is a directed subgraph with the original n vertices and n selected edges - one leaving each vertex. So its adjacency matrix in a permutation matrix (I with row swaps).

A Property of Hamiltonian Cycles

- A directed graph G has an adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an arrow joins vertex } i \text { to vertex } j \\ 0, & \text { otherwise }\end{cases}
$$

- A Hamiltonian Cycle is a directed subgraph with the original n vertices and n selected edges - one leaving each vertex. So its adjacency matrix in a permutation matrix (I with row swaps).

Theorem: An $n \times n$ permutation matrix is the adjacency matrix of some Hamiltonian cyclic graph on n vertices if and only if its characteristic polynomial is $\lambda^{n}-1=0$.

A System of Polynomial Equations

The modified adjacency matrix of a graph places the variable $x_{i j}$ at row i column j if there is a (directed) edge.

A System of Polynomial Equations

The modified adjacency matrix of a graph places the variable $x_{i j}$ at row i column j if there is a (directed) edge. For example

$$
X=\left(\begin{array}{ccccc}
0 & 0 & x_{1,3} & 0 & 0 \\
x_{2,1} & 0 & 0 & x_{2,4} & 0 \\
0 & x_{3,2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{4,5} \\
x_{5,1} & 0 & 0 & x_{5,4} & 0
\end{array}\right)
$$

A System of Polynomial Equations

The modified adjacency matrix of a graph places the variable $x_{i j}$ at row i column j if there is a (directed) edge. For example

$$
X=\left(\begin{array}{ccccc}
0 & 0 & x_{1,3} & 0 & 0 \\
x_{2,1} & 0 & 0 & x_{2,4} & 0 \\
0 & x_{3,2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{4,5} \\
x_{5,1} & 0 & 0 & x_{5,4} & 0
\end{array}\right)
$$

A Hamiltonian cycle is equivalent to the solution of the system of polynomial equations ($x_{i j}=1$ if (directed) edge is in Hamiltonian cycle)

$$
\left\{\begin{aligned}
x_{i j}\left(1-x_{i j}\right) & =0 \text { for all }(i, j) \in E, \\
\sum_{j} x_{i j}-1 & =0, \text { for all } i, \\
\sum_{i} x_{i j}-1 & =0 \text { for all } j \\
\operatorname{det}(\lambda I-X)-\lambda^{n}+1 & =0
\end{aligned}\right.
$$

A System of Polynomial Equations

The modified adjacency matrix of a graph places the variable $x_{i j}$ at row i column j if there is a (directed) edge. For example

$$
X=\left(\begin{array}{ccccc}
0 & 0 & x_{1,3} & 0 & 0 \\
x_{2,1} & 0 & 0 & x_{2,4} & 0 \\
0 & x_{3,2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{4,5} \\
x_{5,1} & 0 & 0 & x_{5,4} & 0
\end{array}\right)
$$

A Hamiltonian cycle is equivalent to the solution of the system of polynomial equations ($x_{i j}=1$ if (directed) edge is in Hamiltonian cycle)

$$
\left\{\begin{aligned}
x_{i j}\left(1-x_{i j}\right) & =0 \text { for all }(i, j) \in E, \\
\sum_{j} x_{i j}-1 & =0, \text { for all } i, \\
\sum_{i} x_{i j}-1 & =0 \text { for all } j \\
\operatorname{det}(\lambda I-X)-\lambda^{n}+1 & =0
\end{aligned}\right.
$$

If no solution, no Hamiltonian cycle.

Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using Buchberger's algorithm.

Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using Buchberger's algorithm. For example (Maple),
with (grobner):ff:=[x13*(1-x13), x21*(1-x21), x24*(1-x24),
$x 32 *(1-x 32), x 45 *(1-x 45), x 51 *(1-x 51), x 54 *(1-x 54), x 21+x 51-1$, x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1, $x 51+x 54-1, x 45 * x 54, x 21 * x 32 * x 13, x 21 * x 32 * x 13 * x 45 * x 54-x 51 * x 32 *$ $x 13 * x 24 * x 45+1]$;
gbasis(ff, [x13, x21, x24, x32,x45, x51,x54])

Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using Buchberger's algorithm. For example (Maple),
with (grobner):ff:=[x13*(1-x13), x21*(1-x21), x24*(1-x24),
$x 32 *(1-x 32), x 45 *(1-x 45), x 51 *(1-x 51), x 54 *(1-x 54), x 21+x 51-1$, $\mathrm{x} 32-1, \mathrm{x} 13-1, \mathrm{x} 24+\mathrm{x} 4-1, \mathrm{x} 45-1, \mathrm{x} 13-1, \mathrm{x} 21+\mathrm{x} 24-1, \mathrm{x} 32-1, \mathrm{x} 45-1$, $x 51+x 54-1, x 45 * x 54, x 21 * x 32 * x 13, x 21 * x 32 * x 13 * x 45 * x 54-x 51 * x 32 *$ $x 13 * x 24 * x 45+1]$;
gbasis(ff, $\times 13, \times 21, x 24, x 32, \times 45, x 51, x 54])$
which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1,x51-1,x54]

Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using Buchberger's algorithm. For example (Maple),
with (grobner):ff:=[x13*(1-x13), x21*(1-x21), x24*(1-x24),
$x 32 *(1-x 32), x 45 *(1-x 45), x 51 *(1-x 51), x 54 *(1-x 54), x 21+x 51-1$, $\mathrm{x} 32-1, \mathrm{x} 13-1, \mathrm{x} 24+\mathrm{x} 4-1, \mathrm{x} 45-1, \mathrm{x} 13-1, \mathrm{x} 21+\mathrm{x} 24-1, \mathrm{x} 32-1, \mathrm{x} 45-1$, $x 51+x 54-1, x 45 * x 54, x 21 * x 32 * x 13, x 21 * x 32 * x 13 * x 45 * x 54-x 51 * x 32 *$ $x 13 * x 24 * x 45+1]$;
gbasis(ff, $\times 13, \times 21, x 24, x 32, \times 45, x 51, x 54])$
which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1, x51-1, x54]
and implies $x_{13}=1, x_{21}=0, x_{24}=1, x_{32}=1, x_{45}=1, x_{51}=1$ and $x_{54}=0$, so the Hamiltonian cycle 1-3-2-4-5-1.

Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using Buchberger's algorithm. For example (Maple),
with (grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),
$x 32 *(1-x 32), x 45 *(1-x 45), x 51 *(1-x 51), x 54 *(1-x 54), x 21+x 51-1$,
x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,
$x 51+x 54-1, x 45 * x 54, x 21 * x 32 * x 13, x 21 * x 32 * x 13 * x 45 * x 54-x 51 * x 32 *$
x13*x24*x45+1];
gbasis(ff, [x13,x21,x24,x32,x45,x51,x54])
which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1, x51-1, x54]
and implies $x_{13}=1, x_{21}=0, x_{24}=1, x_{32}=1, x_{45}=1, x_{51}=1$ and
$x_{54}=0$, so the Hamiltonian cycle 1-3-2-4-5-1.
But, $\operatorname{det}(\lambda I-X)$ grows exponentially in number of vertices.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.

Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.
A signed elementary product prefixes ± 1 depending on whether $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is even or odd.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.
A signed elementary product prefixes ± 1 depending on whether $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is even or odd.
$\operatorname{det}(A)$ is the sum of all the signed elementary products from A.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.
A signed elementary product prefixes ± 1 depending on whether $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is even or odd.
$\operatorname{det}(A)$ is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve $x_{i j}$'s, so will have exactly one (directed) edge out from each vertex.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.
A signed elementary product prefixes ± 1 depending on whether $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is even or odd.
$\operatorname{det}(A)$ is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve $x_{i j}$'s, so will have exactly one (directed) edge out from each vertex.
Following these edges from a given vertex forms a subcycle, which may include all vertices. Otherwise, additional subcycles can be formed by starting from a vertex not yet visited.

Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the modified adjacency matrix represent sets of subcycles on all vertices of a given graph. In addition, a Hamiltonian cycle will be obtained when the path from any vertex visits every other vertex before returning.
Proof: An elementary product from a matrix A is a product of n entries from the matrix, exactly one from each row and column.
Write it as $a_{1 j_{1}} a_{2 j_{2}} \cdots, a_{n j_{n}},\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ a permutation of $(1,2, \ldots, n)$.
A signed elementary product prefixes ± 1 depending on whether $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is even or odd.
$\operatorname{det}(A)$ is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve $x_{i j}$'s, so will have exactly one (directed) edge out from each vertex.
Following these edges from a given vertex forms a subcycle, which may include all vertices. Otherwise, additional subcycles can be formed by starting from a vertex not yet visited.
Elementary products can be scanned in linear time, but there are an exponential number of them, and exponential time is required to form them in the symbolic determinant.

An Example

4 $X=\left(\begin{array}{cccccc}0 & x_{1,2} & 0 & x_{1,4} & x_{1,5} & 0 \\ x_{21} & 0 & x_{2,3} & 0 & 0 & x_{2,6} \\ 0 & x_{3,2} & 0 & x_{3,4} & 0 & x_{3,6} \\ x_{4,1} & 0 & x_{4,3} & 0 & x_{4,5} & 0 \\ x_{5,1} & 0 & 0 & x_{5,4} & 0 & x_{5,6} \\ 0 & x_{6,2} & x_{6,3} & 0 & x_{6,5} & 0\end{array}\right)$

An Example

Further Work and References

- Fractals in other graphs? (They exist in regular graphs.)
- Prove the bridge graph conjecture, or look at other kinds of graphs.
- Is there a better polynomial form of the HCP?
- GBs for other NP-Complete problems? (Already exact cover = Sudoku)
- The development of Boolean Gröbner Bases techniques.

Further Work and References

- Fractals in other graphs? (They exist in regular graphs.)
- Prove the bridge graph conjecture, or look at other kinds of graphs.
- Is there a better polynomial form of the HCP?
- GBs for other NP-Complete problems? (Already exact cover = Sudoku)
- The development of Boolean Gröbner Bases techniques.
- J.L. Nelson, S.K. Lucas, J.A. Filar \& V. Ejov, Solving the Hamiltonian Cycle problem using symbolic determinants, Taiwanese J. Math. 10 327-338 (2006).
- V. Ejov, J.A. Filar, S.K. Lucas \& P. Zograf, Clustering of spectra and fractals of regular graphs, J. Math. Anal. Appl. 333 236-246 (2007).
- V. Ejov, S. Friedland \& G.T. Nguyen, A note on the graph's resolvent and the multifilar structure, Linear Algebra and its Applications 431 (2009) 1367-1379.
- E. Arnold, S.K. Lucas \& L. Taalman, Gröbner Basis representations of Sudoku, College Math. J. 41(2) 101-111 (2010).

