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Graphs Definitions

A graph is a collection of points (nodes, vertices) joined by lines
(edges) where location doesn’t matter.
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A graph is a collection of points (nodes, vertices) joined by lines
(edges) where location doesn’t matter. For example

and are the same graph.
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Graphs Definitions

A graph is a collection of points (nodes, vertices) joined by lines
(edges) where location doesn’t matter. For example

and are the same graph.

Some graphs include loops (join a vertex to itself), multiple edges
(more than one edges join a pair of vertices), or direction (arrows not
lines).
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Graphs as Matrices

A graph G has an associated adjacency
matrix A, where

aij =







1, if an edge joins vertices i, j,

0, otherwise.
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Graphs as Matrices

A graph G has an associated adjacency
matrix A, where

aij =







1, if an edge joins vertices i, j,

0, otherwise.

In this case, A =





















0 1 1 0 0

1 0 1 1 1

1 1 0 0 1

0 1 0 0 0

0 1 1 0 0





















.
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:
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edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix

Find its eigenvalues,
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix

Find its eigenvalues,

Take their exponential, otherwise mean zero
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix

Find its eigenvalues,

Take their exponential, otherwise mean zero

Find their mean and variance, for statistical
analysis
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix

Find its eigenvalues,

Take their exponential, otherwise mean zero

Find their mean and variance, for statistical
analysis

Plot a single dot of mean versus variance.
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A Numerical Experiment

Find the adjacency matrices of all cubic graphs (each vertex has three
edges) with a given number of vertices. For each graph’s matrix:

Divide the matrix by 3, stochastic matrix

Find its eigenvalues,

Take their exponential, otherwise mean zero

Find their mean and variance, for statistical
analysis

Plot a single dot of mean versus variance.

n #G

10 19

12 85

14 509

16 4060
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n = 10

n=10

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65
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n = 12

n=12

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65
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n = 14

n=14

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65
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n = 16

n=16

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65
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n = 16

n=16

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65

Data appears to be
straight lines, with
roughly the same slope
and distance between
them. Call them “filars”
(Dictionary meaning:
threadlike).
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n = 16, Zoom in on Leftmost Filar

Mean

V
ar

ia
nc

e

1.174 1.175 1.176 1.177 1.178
0.45

0.46

0.47

0.48

0.49

0.5

0.51
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n = 16, Zoom in on 4th Subfilar of 1st Filar

Mean

V
ar

ia
nc

e

1.1754 1.17545 1.1755 1.17555
0.464

0.465

0.466

0.467

0.468

0.469

0.47

0.471
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n = 16, Zoom in on 5th Subsubfilar of 4th Subfilar of 1st Filar

Mean

V
ar

ia
nc

e

1.175450 1.175455 1.175460
0.4669

0.467

0.4671

0.4672

0.4673

0.4674

0.4675

0.4676

0.4677

0.4678
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n = 16, Zoom in on 5th Subsubfilar of 4th Subfilar of 1st Filar

Mean

V
ar

ia
nc

e

1.175450 1.175455 1.175460
0.4669

0.467

0.4671

0.4672

0.4673

0.4674

0.4675

0.4676

0.4677

0.4678

Appears to be a fractal
structure.
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Ten Vertex Cubic Graphs in Detail
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n = 10 with Labels

1

2

3

4

5

67

8
910

11

12

13
14

15
16

17

18
19

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64
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n = 10 with Labels

1

2

3

4

5

67

8
910

11

12

13
14

15
16

17

18
19

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Graphs 19,18,16,17,15,14 have no
subcycles of length 3,
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n = 10 with Labels

1

2

3

4

5

67

8
910

11

12

13
14

15
16

17

18
19

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Graphs 19,18,16,17,15,14 have no
subcycles of length 3,
Graphs 13,11,8 have 1 subcycle of
length 3,
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n = 10 with Labels

1

2

3

4

5

67

8
910
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Mean
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0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Graphs 19,18,16,17,15,14 have no
subcycles of length 3,
Graphs 13,11,8 have 1 subcycle of
length 3,
Graphs 10,9,6,7,5 have 2 subcycles of
length 3,
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n = 10 with Labels
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n = 10 with Labels
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0.54
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0.58

0.6

0.62

0.64

Graphs 19,18,16,17,15,14 have no
subcycles of length 3,
Graphs 13,11,8 have 1 subcycle of
length 3,
Graphs 10,9,6,7,5 have 2 subcycles of
length 3,
Graphs 12,3 have 3 subcycles of
length 3, and
Graphs 4,2,1 have 4 subcycles of
length 3.
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n = 10 with Labels

1

2

3

4

5

67

8
910
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1.175 1.18 1.185 1.19
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Graphs 19,18,16,17,15,14 have no
subcycles of length 3,
Graphs 13,11,8 have 1 subcycle of
length 3,
Graphs 10,9,6,7,5 have 2 subcycles of
length 3,
Graphs 12,3 have 3 subcycles of
length 3, and
Graphs 4,2,1 have 4 subcycles of
length 3.

Graphs 17,15 have the same number
of subcycles of length 4.
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Clustering Into Filars

tr(Aj) =

n
∑

i=1

λj
i , and the (k, k)th element of Aj is the number of closed

walks starting and finishing at vertex k of length j.
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Clustering Into Filars

tr(Aj) =

n
∑

i=1

λj
i , and the (k, k)th element of Aj is the number of closed

walks starting and finishing at vertex k of length j.

The mean of the exponentials of the eigenvalues of A/3 is

µ =
1

n

n
∑

i=1

exp(λi) =
1

n

n
∑

i=1

∞
∑

j=0

λj
i

j!
=

1

n

∞
∑

j=0

1

j!

n
∑

i=1

λj
i =

1

n

∞
∑

j=0

tr(Aj)

3jj!
.
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Clustering Into Filars

tr(Aj) =

n
∑

i=1

λj
i , and the (k, k)th element of Aj is the number of closed

walks starting and finishing at vertex k of length j.

The mean of the exponentials of the eigenvalues of A/3 is

µ =
1

n

n
∑

i=1

exp(λi) =
1
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∑
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∞
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1

j!
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∑

i=1

λj
i =

1
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j=0

tr(Aj)

3jj!
.

For all cubic graphs, tr(A0) = n, tr(A1) = 0 and tr(A2) = 3n, so

µ =
7

6
+

1

n

∞
∑

j=3

tr(Aj)

3jj!
.
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Clustering Into Filars

tr(Aj) =

n
∑

i=1

λj
i , and the (k, k)th element of Aj is the number of closed

walks starting and finishing at vertex k of length j.

The mean of the exponentials of the eigenvalues of A/3 is

µ =
1

n

n
∑

i=1

exp(λi) =
1

n

n
∑

i=1

∞
∑

j=0

λj
i

j!
=

1

n

∞
∑

j=0

1

j!

n
∑

i=1

λj
i =

1

n

∞
∑

j=0

tr(Aj)

3jj!
.

For all cubic graphs, tr(A0) = n, tr(A1) = 0 and tr(A2) = 3n, so

µ =
7

6
+

1

n

∞
∑

j=3

tr(Aj)

3jj!
.

Number of closed walks of increasing length separate graphs in
different filars, subfilars, etc.
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(Roughly) Filars as Straight Lines

Similarly, s2 =
1

n − 1





∞
∑

j=0

2j tr(Aj)

3jj!
− nµ2



.
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(Roughly) Filars as Straight Lines

Similarly, s2 =
1

n − 1





∞
∑

j=0

2j tr(Aj)

3jj!
− nµ2



.

Assume we move from graph A with mean µA to graph B with mean µB

where tr(Bj) = tr(Aj) for all j 6= k and tr(Bk) = tr(Ak) + δ.
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(Roughly) Filars as Straight Lines

Similarly, s2 =
1

n − 1





∞
∑

j=0

2j tr(Aj)

3jj!
− nµ2



.

Assume we move from graph A with mean µA to graph B with mean µB

where tr(Bj) = tr(Aj) for all j 6= k and tr(Bk) = tr(Ak) + δ.

Then µB = µA +
δ

n3kk!
, and

s2
B = s2

A +
δ2k

(n − 1)3kk!
− 2δµA

(n − 1)3kk!
− δ2

n(n − 1)32k(k!)2
.
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(Roughly) Filars as Straight Lines

Similarly, s2 =
1

n − 1





∞
∑

j=0

2j tr(Aj)

3jj!
− nµ2



.

Assume we move from graph A with mean µA to graph B with mean µB

where tr(Bj) = tr(Aj) for all j 6= k and tr(Bk) = tr(Ak) + δ.

Then µB = µA +
δ

n3kk!
, and

s2
B = s2

A +
δ2k

(n − 1)3kk!
− 2δµA

(n − 1)3kk!
− δ2

n(n − 1)32k(k!)2
.

When moving from graphs A to B, µ increases by δ/(n3kk!) and s2

increases by δ(2k − 2µ)/((n − 1)3kk!).
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(Roughly) Filars as Straight Lines

Similarly, s2 =
1

n − 1





∞
∑

j=0

2j tr(Aj)

3jj!
− nµ2



.

Assume we move from graph A with mean µA to graph B with mean µB

where tr(Bj) = tr(Aj) for all j 6= k and tr(Bk) = tr(Ak) + δ.

Then µB = µA +
δ

n3kk!
, and

s2
B = s2

A +
δ2k

(n − 1)3kk!
− 2δµA

(n − 1)3kk!
− δ2

n(n − 1)32k(k!)2
.

When moving from graphs A to B, µ increases by δ/(n3kk!) and s2

increases by δ(2k − 2µ)/((n − 1)3kk!).

Now µ only changes over a very small range. So the ratio (s2 increase/µ
increase) equals (n/(n − 1))(2k − 2µ).
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More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree q + 1 can be
written as

1

n

n
∑

i=1

etλi =
q + 1

2π

∫ 2
√

q

−2
√

q

est

√

4q − x2

(q + 1)2 − x2
dx+

1

n

∑

γ

∞
∑

k=1

l(γ)

2kl(γ)/2
Ikl(γ)(2

√
qt),

where γ runs over all oriented primitive closed geodesics, and l(γ) is the
length of γ.
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More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree q + 1 can be
written as

1

n

n
∑

i=1

etλi =
q + 1

2π

∫ 2
√

q

−2
√

q

est

√

4q − x2

(q + 1)2 − x2
dx+

1

n

∑

γ

∞
∑

k=1

l(γ)

2kl(γ)/2
Ikl(γ)(2

√
qt),

where γ runs over all oriented primitive closed geodesics, and l(γ) is the
length of γ. Letting nl be the number of geodesics of length l, and setting
q = 2, 1

n

n
∑

i=1

etλi = J(t) +
2

n

∞
∑

l=3

lnlFl(t),

where J(t) =
3

2π

∫ 2
√

2

−2
√

2

etx

√
8 − x2

9 − x2
dx and Fl(t) =

∞
∑

k=1

Ikl(2
√

2t)

2kl/2
.
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More Formal Derivation

The Ihara-Selberg trace formula for regular graphs of degree q + 1 can be
written as

1

n

n
∑

i=1

etλi =
q + 1

2π

∫ 2
√

q
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l(γ)

2kl(γ)/2
Ikl(γ)(2

√
qt),

where γ runs over all oriented primitive closed geodesics, and l(γ) is the
length of γ. Letting nl be the number of geodesics of length l, and setting
q = 2, 1

n

n
∑

i=1

etλi = J(t) +
2

n

∞
∑

l=3

lnlFl(t),

where J(t) =
3

2π

∫ 2
√

2

−2
√

2

etx

√
8 − x2

9 − x2
dx and Fl(t) =

∞
∑

k=1

Ikl(2
√

2t)

2kl/2
.

Note that Im(z) ≈ 1

m!

(z

2

)m

as m → ∞ and 0 < z ≪
√

m + 1.
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Mean and Variance

µ =
1

n

n
∑

i=1

eλi/3 = J(1/3) +
2

n

∞
∑

l=3

lnlFl(1/3),
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Mean and Variance

µ =
1

n

n
∑

i=1

eλi/3 = J(1/3) +
2

n

∞
∑

l=3

lnlFl(1/3),

σ =
1

n

n
∑

i=1

(

eλi/3 − µ
)2

=
1

n

n
∑

i=1

e2λi/3 − µ2
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Mean and Variance

µ =
1

n
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∑
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eλi/3 = J(1/3) +
2

n
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lnlFl(1/3),

σ =
1

n

n
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(
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n

n
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n

∞
∑
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lnl(Fl(2/3) − 2J(1/3)Fl(1/3))

+
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n

∞
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.

Fractals in Graphs – p. 18/28



Mean and Variance

µ =
1

n

n
∑

i=1

eλi/3 = J(1/3) +
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(
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=
1
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e2λi/3 − µ2

=
(

J(2/3) − J(1/3)2
)

+
2

n

∞
∑

l=3

lnl(Fl(2/3) − 2J(1/3)Fl(1/3))

+

(

2

n

∞
∑

l=3

lnlFl(1/3)

)2

.

Ignoring the (small) quadratic term, a change δl to nl changes µ by
2lFl(1/3)δl/n and σ by 2l(Fl(2/3) − 2J(1/3)Fl(1/3))δl/n – each filar is a
straight line.
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Hamiltonian Cycles

A Hamiltonian cycle is a closed path that only enters and exits each
vertex exactly once.
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Given a graph, the amount of work required to find Hamiltonian cycles
(or even prove they don’t exist) appears to be exponential.
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Given a proposed Hamiltonian cycle, its easy to prove is it is correct.
This is typical of NP-Complete problems.
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Hamiltonian Cycles

A Hamiltonian cycle is a closed path that only enters and exits each
vertex exactly once.

Given a graph, the amount of work required to find Hamiltonian cycles
(or even prove they don’t exist) appears to be exponential.

Given a proposed Hamiltonian cycle, its easy to prove is it is correct.
This is typical of NP-Complete problems.

Even the Hamiltonian cycle problem on cubic graphs is NP-Complete.

A bridge graph is one that can be split in pieces by removing an edge
(or vertex). This can be established in polynomial time, and a bridge
graph is clearly not Hamiltonian.
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Hamiltonian Cycles and Cubic Graph Filars

n=14

Mean

V
ar

ia
nc

e

1.175 1.18 1.185 1.19 1.195

0.45

0.5

0.55

0.6

0.65

Most non-Hamiltonian graphs are at the ends of filars, and are bridge
graphs. What is the relationship between bridge graphs and their

position in a filar?
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Eigenanalysis Inadequate

These twenty vertex cubic graphs are co-spectral (have the same
eigenvalues), the one on the left has Hamiltonian cycles, the one on the
right does not.

Fractals in Graphs – p. 21/28



A Conjecture

Robinson and Wormald proved that almost all regular graphs are
Hamiltonian.
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A Conjecture

Robinson and Wormald proved that almost all regular graphs are
Hamiltonian.

Graph Number Number Ratio Number Cubic Ratio
Size Cubic Non-H Non-H/Cubic Bridge Bridge/Non-H

10 19 2 0.1053 1 0.5000
12 85 5 0.0588 4 0.8000
14 509 35 0.0688 29 0.8286
16 4 060 219 0.0539 186 0.8493
18 41 301 1 666 0.0403 1 435 0.8613
20 510 490 14 498 0.0284 12 671 0.8740
22 7 319 447 148 790 0.0203 131 820 0.8859
24 117 940 535 1 768 732 0.0150 1 590 900 0.8995
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A Conjecture

Robinson and Wormald proved that almost all regular graphs are
Hamiltonian.

Graph Number Number Ratio Number Cubic Ratio
Size Cubic Non-H Non-H/Cubic Bridge Bridge/Non-H

10 19 2 0.1053 1 0.5000
12 85 5 0.0588 4 0.8000
14 509 35 0.0688 29 0.8286
16 4 060 219 0.0539 186 0.8493
18 41 301 1 666 0.0403 1 435 0.8613
20 510 490 14 498 0.0284 12 671 0.8740
22 7 319 447 148 790 0.0203 131 820 0.8859
24 117 940 535 1 768 732 0.0150 1 590 900 0.8995

Conjecture (Filar, Haythorpe & Nguyen):
Almost all regular non-Hamiltonian graphs are bridge graphs.
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A Property of Hamiltonian Cycles

A directed graph G has an adjacency matrix A, where

aij =







1, if an arrow joins vertex i to vertex j,

0, otherwise.
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A Property of Hamiltonian Cycles

A directed graph G has an adjacency matrix A, where

aij =







1, if an arrow joins vertex i to vertex j,

0, otherwise.

A Hamiltonian Cycle is a directed subgraph with the original n vertices
and n selected edges – one leaving each vertex. So its adjacency
matrix in a permutation matrix (I with row swaps).
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A Property of Hamiltonian Cycles

A directed graph G has an adjacency matrix A, where

aij =







1, if an arrow joins vertex i to vertex j,

0, otherwise.

A Hamiltonian Cycle is a directed subgraph with the original n vertices
and n selected edges – one leaving each vertex. So its adjacency
matrix in a permutation matrix (I with row swaps).

Theorem: An n × n permutation matrix is the adjacency matrix of some
Hamiltonian cyclic graph on n vertices if and only if its characteristic
polynomial is λn − 1 = 0.
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A System of Polynomial Equations
The modified adjacency matrix of a graph places the variable xij at row i column j

if there is a (directed) edge.
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A System of Polynomial Equations
The modified adjacency matrix of a graph places the variable xij at row i column j

if there is a (directed) edge. For example
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A System of Polynomial Equations
The modified adjacency matrix of a graph places the variable xij at row i column j

if there is a (directed) edge. For example
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A Hamiltonian cycle is equivalent to the solution of the system of polynomial

equations (xij = 1 if (directed) edge is in Hamiltonian cycle)

8

>

>

>

>

>

<

>

>

>

>

>

:

xij(1 − xij) = 0 for all (i, j) ∈ E,
P

j
xij − 1 = 0, for all i,

P

i
xij − 1 = 0 for all j,

det(λI − X) − λn + 1 = 0,
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A System of Polynomial Equations
The modified adjacency matrix of a graph places the variable xij at row i column j

if there is a (directed) edge. For example
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A Hamiltonian cycle is equivalent to the solution of the system of polynomial

equations (xij = 1 if (directed) edge is in Hamiltonian cycle)

8

>

>

>

>

>

<

>

>

>

>

>

:

xij(1 − xij) = 0 for all (i, j) ∈ E,
P

j
xij − 1 = 0, for all i,

P

i
xij − 1 = 0 for all j,

det(λI − X) − λn + 1 = 0,

If no solution, no Hamiltonian cycle.
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Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using
Buchberger’s algorithm.
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Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using
Buchberger’s algorithm. For example (Maple),
with(grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),

x32*(1-x32),x45*(1-x45),x51*(1-x51),x54*(1-x54),x21+x51-1,

x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,

x51+x54-1,x45*x54,x21*x32*x13,x21*x32*x13*x45*x54-x51*x32*
x13*x24*x45+1];

gbasis(ff,[x13,x21,x24,x32,x45,x51,x54])
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Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using
Buchberger’s algorithm. For example (Maple),
with(grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),

x32*(1-x32),x45*(1-x45),x51*(1-x51),x54*(1-x54),x21+x51-1,

x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,

x51+x54-1,x45*x54,x21*x32*x13,x21*x32*x13*x45*x54-x51*x32*
x13*x24*x45+1];

gbasis(ff,[x13,x21,x24,x32,x45,x51,x54])

which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1,x51-1,x54]
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Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using
Buchberger’s algorithm. For example (Maple),
with(grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),

x32*(1-x32),x45*(1-x45),x51*(1-x51),x54*(1-x54),x21+x51-1,

x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,

x51+x54-1,x45*x54,x21*x32*x13,x21*x32*x13*x45*x54-x51*x32*
x13*x24*x45+1];

gbasis(ff,[x13,x21,x24,x32,x45,x51,x54])

which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1,x51-1,x54]

and implies x13 = 1, x21 = 0, x24 = 1, x32 = 1, x45 = 1, x51 = 1 and
x54 = 0, so the Hamiltonian cycle 1-3-2-4-5-1.
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Solution Method

Can be solved (symbolically) using Gröbner bases, as applied using
Buchberger’s algorithm. For example (Maple),
with(grobner):ff:=[x13*(1-x13),x21*(1-x21),x24*(1-x24),

x32*(1-x32),x45*(1-x45),x51*(1-x51),x54*(1-x54),x21+x51-1,

x32-1,x13-1,x24+x54-1,x45-1,x13-1,x21+x24-1,x32-1,x45-1,

x51+x54-1,x45*x54,x21*x32*x13,x21*x32*x13*x45*x54-x51*x32*
x13*x24*x45+1];

gbasis(ff,[x13,x21,x24,x32,x45,x51,x54])

which returns
gbasis=[x13-1,x21,x24-1,x32-1,x45-1,x51-1,x54]

and implies x13 = 1, x21 = 0, x24 = 1, x32 = 1, x45 = 1, x51 = 1 and
x54 = 0, so the Hamiltonian cycle 1-3-2-4-5-1.

But, det(λI − X) grows exponentially in number of vertices.
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Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a
given graph. In addition, a Hamiltonian cycle will be obtained when the
path from any vertex visits every other vertex before returning.
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Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a
given graph. In addition, a Hamiltonian cycle will be obtained when the
path from any vertex visits every other vertex before returning.

Proof: An elementary product from a matrix A is a product of n entries from the matrix,
exactly one from each row and column.
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Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a
given graph. In addition, a Hamiltonian cycle will be obtained when the
path from any vertex visits every other vertex before returning.

Proof: An elementary product from a matrix A is a product of n entries from the matrix,
exactly one from each row and column.
Write it as a1j1a2j2 · · · , anjn

, (j1, j2, . . . , jn) a permutation of (1, 2, . . . , n).
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Proof: An elementary product from a matrix A is a product of n entries from the matrix,
exactly one from each row and column.
Write it as a1j1a2j2 · · · , anjn

, (j1, j2, . . . , jn) a permutation of (1, 2, . . . , n).
A signed elementary product prefixes ±1 depending on whether (j1, j2, . . . , jn) is even or
odd.
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det(A) is the sum of all the signed elementary products from A.
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A signed elementary product prefixes ±1 depending on whether (j1, j2, . . . , jn) is even or
odd.
det(A) is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve xij ’s, so will have
exactly one (directed) edge out from each vertex.
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Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a
given graph. In addition, a Hamiltonian cycle will be obtained when the
path from any vertex visits every other vertex before returning.

Proof: An elementary product from a matrix A is a product of n entries from the matrix,
exactly one from each row and column.
Write it as a1j1a2j2 · · · , anjn

, (j1, j2, . . . , jn) a permutation of (1, 2, . . . , n).
A signed elementary product prefixes ±1 depending on whether (j1, j2, . . . , jn) is even or
odd.
det(A) is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve xij ’s, so will have
exactly one (directed) edge out from each vertex.
Following these edges from a given vertex forms a subcycle, which may include all vertices.
Otherwise, additional subcycles can be formed by starting from a vertex not yet visited.
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Using the Symbolic Determinant

Theorem: The product terms making up the symbolic determinant of the
modified adjacency matrix represent sets of subcycles on all vertices of a
given graph. In addition, a Hamiltonian cycle will be obtained when the
path from any vertex visits every other vertex before returning.

Proof: An elementary product from a matrix A is a product of n entries from the matrix,
exactly one from each row and column.
Write it as a1j1a2j2 · · · , anjn

, (j1, j2, . . . , jn) a permutation of (1, 2, . . . , n).
A signed elementary product prefixes ±1 depending on whether (j1, j2, . . . , jn) is even or
odd.
det(A) is the sum of all the signed elementary products from A.
Applied to a modified adjacency matrix elementary products will involve xij ’s, so will have
exactly one (directed) edge out from each vertex.
Following these edges from a given vertex forms a subcycle, which may include all vertices.
Otherwise, additional subcycles can be formed by starting from a vertex not yet visited.
Elementary products can be scanned in linear time, but there are an exponential number of
them, and exponential time is required to form them in the symbolic determinant.

Fractals in Graphs – p. 26/28



An Example
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0 x1,2 0 x1,4 x1,5 0

x21 0 x2,3 0 0 x2,6

0 x3,2 0 x3,4 0 x3,6

x4,1 0 x4,3 0 x4,5 0

x5,1 0 0 x5,4 0 x5,6

0 x6,2 x6,3 0 x6,5 0
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0 x1,2 0 x1,4 x1,5 0

x21 0 x2,3 0 0 x2,6

0 x3,2 0 x3,4 0 x3,6

x4,1 0 x4,3 0 x4,5 0

x5,1 0 0 x5,4 0 x5,6

0 x6,2 x6,3 0 x6,5 0




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det(X) =

x54x41x26x15x63x32 + x54x41x36x23x15x62 − x54x12x41x36x23x65 −
x14x51x43x32x26x65 + x14x43x32x56x21x65 + x34x43x56x21x15x62 −
x34x12x43x56x21x65 − x34x51x43x26x15x62 + x34x12x51x43x26x65 +

x54x12x21x36x43x65 + x14x51x62x45x36x23 + x34x12x63x45x56x21 −
x34x12x51x63x45x26 − x14x63x32x45x56x21 + x14x51x63x32x45x26 −
x54x12x21x45x36x63 − x14x23x32x56x41x65 − x34x23x56x41x15x62

+x34x12x23x56x41x65 − x54x21x36x43x15x62
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Further Work and References

Fractals in other graphs? (They exist in regular graphs.)

Prove the bridge graph conjecture, or look at other kinds of graphs.

Is there a better polynomial form of the HCP?

GBs for other NP-Complete problems? (Already exact cover = Sudoku)

The development of Boolean Gröbner Bases techniques.
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• J.L. Nelson, S.K. Lucas, J.A. Filar & V. Ejov, Solving the Hamiltonian Cycle

problem using symbolic determinants, Taiwanese J. Math. 10 327-338 (2006).

• V. Ejov, J.A. Filar, S.K. Lucas & P. Zograf, Clustering of spectra and fractals of
regular graphs, J. Math. Anal. Appl. 333 236-246 (2007).

• V. Ejov, S. Friedland & G.T. Nguyen, A note on the graph’s resolvent and the

multifilar structure, Linear Algebra and its Applications 431 (2009) 1367–1379.

• E. Arnold, S.K. Lucas & L. Taalman, Gröbner Basis representations of
Sudoku, College Math. J. 41(2) 101-111 (2010).
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