A fractal structure in cubic graphs

Stephen Lucas

School of Mathematics and Statistics
University of South Australia
Thanks to: Jerzy Filar, Vladimir Ejov, Jessica Nelson

A Numerical Experiment

A graph G has an associated adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an edge joins vertices } i, j, \\ 0, & \text { otherwise } .\end{cases}
$$

A Numerical Experiment

A graph G has an associated adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an edge joins vertices } i, j, \\ 0, & \text { otherwise }\end{cases}
$$

Find the adjacency matrices of all cubic graphs with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero
- Find their mean and variance, for statistical analysis
- Plot a single dot of mean versus variance.

A Numerical Experiment

A graph G has an associated adjacency matrix A, where

$$
a_{i j}= \begin{cases}1, & \text { if an edge joins vertices } i, j, \\ 0, & \text { otherwise }\end{cases}
$$

Find the adjacency matrices of all cubic graphs with a given number of vertices. For each graph's matrix:

- Divide the matrix by 3, stochastic matrix
- Find its eigenvalues,
- Take their exponential, otherwise mean zero
- Find their mean and variance, for statistical analysis

n	$\# G$
10	19
12	85
14	509
16	4060

- Plot a single dot of mean versus variance.

$$
n=10
$$

$$
n=12
$$

$$
n=14
$$

$$
n=16
$$

$n=16$

Data appears to be straight lines, with roughly the same slope and distance between them. Call them "filars" (threadlike).

