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Monty, Simpson & π, Oh My!
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Monty, Simpson & π, Oh My!

Solved the Monty Hall problem with n doors and the choice of switching every

time Monty opens a door. Optimal is switching once at the end. If you switch
every time, probability of winning price ⇒ 1 − 1/e. With Jason Rosenhouse,

accepted by the Mathematical Gazette
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Discovered an Euler-Maclaurin-like form of the error term for the composite
Simpson’s rule (and a very simple derivation of the classic Euler-Maclaurin
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Monty, Simpson & π, Oh My!

Solved the Monty Hall problem with n doors and the choice of switching every

time Monty opens a door. Optimal is switching once at the end. If you switch
every time, probability of winning price ⇒ 1 − 1/e. With Jason Rosenhouse,

accepted by the Mathematical Gazette

Discovered an Euler-Maclaurin-like form of the error term for the composite
Simpson’s rule (and a very simple derivation of the classic Euler-Maclaurin

expansion). Submitted to Mathematics Magazine

Using variants on
∫ 1

0

x
4(1−x)4

(1+x2)
dx = 22

7
− π, developed new series expansions

for π where each term can add any number of digits of accuracy. Showed how
∫ 1

0

x
m(1−x)n(a+bx+cx

2)

1+x2 dx = (±)(z − π) to any accuracy with nonnegative

integrand. In particular,
∫ 1

0

x8(1 − x)8(25 + 816x2)

3164(1 + x2)
dx =

355

113
− π. Accepted

by the American Mathematical Monthly
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Current Work

Placing a circle pack, with C. Collins, K. Stephenson, UTenn, Numerical

Generalizing Love’s problem, deformations of an elastic half-space, with M.

Bevis, Ohio, Applied

Game theoretic considerations for truels and gruels, with D. Lanphier, W.
Kentucky & J. Rosenhouse, JMU, Game theory

Generalized exponential distribution functions, with H. Hamdan, JMU,
Probability/Numerical

Convergence of numerical methods for an autocatalytic reaction, with P.

Warne, JMU, Applied/Numerical

Fractal structures in adjacency matrices for graphs, with J. Filar, UniSA,
Pure/Numerical

Bounded continued fraction and Pierce representations of reals and rationals,
Analysis
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Other Potential Undergraduate Research Topics

Improved bounds for the kissing problem: how many spheres can touch a central
sphere, all of the same radius, in n-dimensions? Implement a new optimization
algorithm. Numerical

An integer-valued logistic equation: investigate the effect of assuming integer solutions
only for this standard population model. Do we still see period doubling to chaos in the
same way? Applied/chaos theory

Analyze “Dreidel:” using a Markov chain approach find out what are your chances of
winning, and how long a game lasts. Probability theory

Sudoku uniqueness: build an efficient Sudoku solver, then use it to investigate the
distribution of how many solutions there are for initial set-ups with various conditions.
Computational/Recreational

Nontransitive dice: find sets of dice where on average A beats B beats C beats A, and
find what conditions are required. Game theory

Minimal Goldbach Sets: what small sets of numbers appear to satisfy the Goldbach
conjecture, like twin primes. Numerical/number theory
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Advertisement

March 17, 3:45pm, Computation for fun (not profit) : using
numerical methods to solve problems unrelated to classical
calculus-based numerical analysis.
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Advertisement

March 17, 3:45pm, Computation for fun (not profit) : using
numerical methods to solve problems unrelated to classical
calculus-based numerical analysis.

March 14 – π-day, Formulas for π: a wander through many of the
various formulas for calculating π, most with easy to follow derivations.
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Outline

Description of the problem

Mathematical model

Approximate position of surface

Optimization methods

Results

Further directions
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Geometry of the Model

x

y
z

Positions (x ,y ,z )
Sink(s), Strength F

i i i

i

Oil

Water

Oil-Water Interface
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Darcy’s Law and Assumptions

∇p̂ = −
µ

k
q, with

µ - fluid viscosity

k - permeability

q - volume flux rate / unit area

p̂ - averaged modified pressure
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q - volume flux rate / unit area

p̂ - averaged modified pressure
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Both fluids immiscible, have a sharp interface

Model the well(s) by point sink(s)

Apply Darcy’s law independently to both oil and water
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Darcy’s Law and Assumptions

∇p̂ = −
µ

k
q, with

µ - fluid viscosity

k - permeability

q - volume flux rate / unit area

p̂ - averaged modified pressure

Homogeneous medium, constant k, occupying all space

Both fluids immiscible, have a sharp interface

Model the well(s) by point sink(s)

Apply Darcy’s law independently to both oil and water

Steady state problem
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Constitutive Equations

∇.u = 0 → ∇2p̂(i) = 0
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Constitutive Equations

∇.u = 0 → ∇2p̂(i) = 0

Dynamic b.c. poil = pwater on z = ζ(x, y)
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Constitutive Equations

∇.u = 0 → ∇2p̂(i) = 0

Dynamic b.c. poil = pwater on z = ζ(x, y)

Material b.c. u - fluid velocity

∂ζ

∂t
+ u.∇(ζ − z) = 0 on z = ζ(x, y)
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Constitutive Equations

∇.u = 0 → ∇2p̂(i) = 0

Dynamic b.c. poil = pwater on z = ζ(x, y)

Material b.c. u - fluid velocity

∂ζ

∂t
+ u.∇(ζ − z) = 0 on z = ζ(x, y)

u and hence p̂ → 0 at infinity, both fluids

Suction pressure due to sink, flow rate m at (x′, y′, z′)

ps =
−mµoil

4πk
√

(x − x′)2 + (y − y′)2 + (z − z′)2
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Scaling

Scale length wrt z′, pressure wrt m0µoil/kz′.
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Scaling

Scale length wrt z′, pressure wrt m0µoil/kz′.

Choose m0 = kz′2(ρ2 − ρ1)g/µoil =⇒ the dynamic b.c. is

ζ̃ + p̃ = 0 on z = ζ̃(x, y).
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Scaling

Scale length wrt z′, pressure wrt m0µoil/kz′.

Choose m0 = kz′2(ρ2 − ρ1)g/µoil =⇒ the dynamic b.c. is

ζ̃ + p̃ = 0 on z = ζ̃(x, y).

The dimensionless suction pressure becomes

p̃s =
−F

4π
√

(x − x′)2 + (y − y′)2 + (z − 1)2

where

F =
mµoil

kz′2(ρw − ρoil)g
∼

suction force
density difference force

.
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The Problem

We want to solve

∇
2p̃ = −

∑

Fiδ(x − x′
i
),

with

ζ + p = 0 on the lower boundary z = ζ(x, y).

Given positions of sinks, what strengths maximize flow without the
oil-water interface reaching the sinks? Call these critical values.

Optimal Oil Output – p. 11/43



Past Work – Boundary Integral Method

For N sinks, each of strength Fi at positions (x′

i, y
′

i, z
′

i), we get

1

2
ζ(x0, y0) =

1

4π

N
∑

i=1

Fi

[(x0 − x′

i)
2 + (y0 − y′

i)
2 + (ζ(x0, y0) − z′i)

2]1/2
+

1

4π

∫∫

∞

−∞

ζ
(

∂ζ
∂x (x − x0) + ∂ζ

∂y (y − y0) − (ζ(x, y) − ζ(x0, y0))
)

[(x − x0)2 + (y − y0)2 + (ζ(x, y) − ζ(x0, y0))2]3/2
dx dy.
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Solution Method

Solved by a form of pointwise iterative procedure:

Initially approximate ζ by the small parameter expansion

Solve at (N + 1) × (N + 1) points on a grid in the region

−xmax ≤ x ≤ xmax, −ymax ≤ y ≤ ymax

In the far field, approximate the solution by the small parameter
expansion

Use some integration procedure to find the required integrals at each
point, taking into account infinite extent and the singularity

Use a bicubic spline interpolation for ζ values required between
solution points
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The Muskat Model

Balance suction pressure field (assuming half-plane solution) with
gravitational restoring force.
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The Muskat Model

Balance suction pressure field (assuming half-plane solution) with
gravitational restoring force.

For single sink at height one,

ζ(r) =
F

4π

[

1
√

(ζ(r) − 1)2 + r2
+

1
√

(ζ(r) + 1)2 + r2

]

.
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The Muskat Model

Balance suction pressure field (assuming half-plane solution) with
gravitational restoring force.

For single sink at height one,

ζ(r) =
F

4π

[

1
√

(ζ(r) − 1)2 + r2
+

1
√

(ζ(r) + 1)2 + r2

]

.

For N sinks at positions (xi, yi, zi), i = 1, . . . , N , surface is solution of

ζ(x, y) =
N

∑

i=1

Fi

4π

[

1

ri
+

1

r′i

]

, with
ri =

√

(zi − ζ(x, y))2 + (x − xi)2 + (y − yi)2

r′i =
√

(zi + ζ(x, y))2 + (x − xi)2 + (y − yi)2
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Muskat Model Solutions

Use secant method to solve for each (x, y), with previous solution as
initial guess
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Muskat Model Solutions

Use secant method to solve for each (x, y), with previous solution as
initial guess

Care required in deciding on stability
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Muskat Model Solutions

Use secant method to solve for each (x, y), with previous solution as
initial guess

Care required in deciding on stability

Solves extremely quickly, but is approximate
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Stability – Multiple Solutions

For a single sink strength 2.2 at (0,0,1), surface at x is the solution of

g(ζ) =
2.2

4π

[

1
√

(ζ − 1)2 + x2
+

1
√

(ζ + 1)2 + x2

]

− ζ = 0.

ζ

g
(ζ

)

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

x=0.05, 0.00

x=0.25

x=0.20

x=0.15

x=0.10
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Stability – Multiple Solutions

Two sinks at (−2, 0, 1) and (2, 0, 1), both F = 2.08 (left) and F = 2.11

(right):

ζ

g
(ζ

)

-0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x=2.05, 2.00

x=2.25

x=2.20

x=2.15

x=2.10

ζ

g
(ζ

)

-0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x=2.05, 2.00

x=2.25

x=2.20

x=2.15

x=2.10
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Multiple Solution Issues

So:

When solving, start in far field and work in (mesh 0.005)
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Multiple Solution Issues

So:

When solving, start in far field and work in (mesh 0.005)

Don’t just evaluate under sink, maximum height or breakthrough can
be elsewhere
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Multiple Solution Issues
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When solving, start in far field and work in (mesh 0.005)

Don’t just evaluate under sink, maximum height or breakthrough can
be elsewhere

Use solution at previous point as next initial point
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Multiple Solution Issues

So:

When solving, start in far field and work in (mesh 0.005)

Don’t just evaluate under sink, maximum height or breakthrough can
be elsewhere

Use solution at previous point as next initial point

Identify if sudden jumps or solution greater than one
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Solution Error

The Muskat solution approximates the pressure field. Comparing Muskat
and BIM solutions for a single sink at (0, 0, 1), F = 0.5, 1.0, 1.5, 2.0:

Critical value of F (maximum
with stable cone) is 2.05 for
BIM, 2.418 for Muskat. Max-
imum heights are 0.661 and
0.5774 respectively.

Radius

In
te

rfa
ce

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6
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Critical Sink Strengths – One Parameter

n sinks equally spaced on a circle of a given radius.

By symmetry, all sinks of same strength for maximum flow.

Solve using bisection.
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Critical Sink Strengths – One Parameter

n sinks equally spaced on a circle of a given radius.

By symmetry, all sinks of same strength for maximum flow.

Solve using bisection.

Radius

F
c

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

2 sinks

5 sinks

10 sinks

1 sink
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Feasible Regions – Two Sinks

2 sinks, F1 at (−x, 0, 1), F2 at (x, 0, 1), x = 2, 1, 0.5.

For each F1, find critical F2 by bisection.

4.5

F1

F
2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x=2.0

x=0.5

x=1.0
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Feasible Regions – Two Skew Sinks

2 sinks, F1 at (−x, 0, 1), F2 at (x, 0, 1.1), x = 2, 1, 0.5, 0.0.

F1

F
2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x=2.0

x=0.0

x=1.0

x=0.5
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Feasible Region – Three Sinks Example

3 sinks, F1 at (−1, 0, 1), F2 at (0, 0, 1), F3 at (1, 0, 1).

0

0.5

1

1.5

2

F
2

0
0.5

1
1.5

2
2.5

F 1
0 0.5 1 1.5 2 2.5F

3
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Difficulties in Higher Dimensions

Can’t use bisection
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Difficulties in Higher Dimensions

Can’t use bisection

Constrained optimization where boundary is unknown
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Difficulties in Higher Dimensions

Can’t use bisection

Constrained optimization where boundary is unknown

Boundary is not smooth
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Nelder Mead Downhill Simplex Method

The only “standard” minimization method that doesn’t use derivatives.
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Nelder Mead Downhill Simplex Method

The only “standard” minimization method that doesn’t use derivatives.

Not very efficient, but quite robust.
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Nelder Mead Downhill Simplex Method

The only “standard” minimization method that doesn’t use derivatives.

Not very efficient, but quite robust.

Given N + 1 points in N dimensions, identify the worst point, and
reflect it through the mean of the others. If better, expand. If worse,
contract. If still worse, multiple contraction around best.
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Nelder Mead Downhill Simplex Method

The only “standard” minimization method that doesn’t use derivatives.

Not very efficient, but quite robust.

Given N + 1 points in N dimensions, identify the worst point, and
reflect it through the mean of the others. If better, expand. If worse,
contract. If still worse, multiple contraction around best.

Converged when range from best to worst points is sufficiently small.
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Nelder Mead Downhill Simplex Method

The only “standard” minimization method that doesn’t use derivatives.

Not very efficient, but quite robust.

Given N + 1 points in N dimensions, identify the worst point, and
reflect it through the mean of the others. If better, expand. If worse,
contract. If still worse, multiple contraction around best.

Converged when range from best to worst points is sufficiently small.

Original Reflection Reflect &
Expand

Contract Multiple
Contraction
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Constrained Nelder Mead Using Penalty Method

Minimize G −

N
∑

i=1

Fi, where G =







0 in feasible region

1000 outside feasible
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Constrained Nelder Mead Using Penalty Method

Minimize G −

N
∑

i=1

Fi, where G =







0 in feasible region

1000 outside feasible

Doesn’t deal with the
discontinuity too well:

F1

F
2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
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Nelder Mead On Feasible Region Boundary

Given F1, F2, . . . , Fn−1, calculate critical value for Fn, which is on the

boundary. Then minimize −

n
∑

i=1

Fi.
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Nelder Mead On Feasible Region Boundary

Given F1, F2, . . . , Fn−1, calculate critical value for Fn, which is on the

boundary. Then minimize −

n
∑

i=1

Fi.

Works beautifully, 71
function evaluations with
relative error 10−5 from
(0,0):

xxx

F1

F
3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5 Sum
4.01
3.95
3.89
3.82
3.76
3.70
3.64
3.58
3.51
3.45
3.39
3.33
3.27
3.21
3.14
3.08
3.02
2.96
2.90
2.83
2.77
2.71
2.65
2.59
2.52
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Feasible Region – Three Sinks Again

3 sinks, F1 at (−x, 0, 1), F2 at (0, 0, 1), F3 at (x, 0, 1).

Using symmetry, assume F1 = F3, reduces to one parameter problem.

Find feasible regions with x = 0.4, 0.5, . . . , 1.0.
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Feasible Region – Three Sinks Again

3 sinks, F1 at (−x, 0, 1), F2 at (0, 0, 1), F3 at (x, 0, 1).

Using symmetry, assume F1 = F3, reduces to one parameter problem.

Find feasible regions with x = 0.4, 0.5, . . . , 1.0.

F1 & F 3

F
2

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

F1 & F 3

S
um

0 0.5 1 1.5 2

2.5

3

3.5

4

(b)
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Critical Values – Three Sinks Example

3 sinks, F1 at (−x, 0, 1), F2 at (0, 0, 1), F3 at (x, 0, 1).

x

S
in

k
S

tre
ng

th
s

S
um

0.5 1 1.5 2

-2

-1

0

1

2

3

3

3.5

4

4.5

5

F2

F1 & F3

Sum
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Feasible Region and Sum Withx = 0.4

-1

-0.5

0

0.5

1

1.5

2

2.5

F
2

0

1

2

F1

0 0.5 1 1.5 2

F3

F2
2.21356
2.00872
1.80388
1.59905
1.39421
1.18937
0.984535
0.779698
0.574862
0.370025
0.165188

-0.0396485
-0.244485
-0.449322
-0.654159

F1

F
3

0 0.5 1 1.5 2
0

0.5

1

1.5

2
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Nonnegative Constrained Nelder Mead

Work with F 2
1 , F 2

2 , . . . , F 2
n−1 to ensure the sink strengths are nonnegative.
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Nonnegative Constrained Nelder Mead

Work with F 2
1 , F 2

2 , . . . , F 2
n−1 to ensure the sink strengths are nonnegative.

Since Fn can be negative to stay on boundary, choose nth sink on edge of
those of interest to keep it positive.
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Nonnegative Constrained Nelder Mead

Work with F 2
1 , F 2

2 , . . . , F 2
n−1 to ensure the sink strengths are nonnegative.

Since Fn can be negative to stay on boundary, choose nth sink on edge of
those of interest to keep it positive.

Accuracy 10−5 gives solutions (80 iterations)
1.555331, 0.032775, 1.555086, sum 3.143193.
Restarting here gives
1.564512, 0.014617, 1.564505, sum 3.143634.
Accuracy 10−7 gives (427 iterations)
1.571573, 0.000726, 1.571638, sum 3.143937.
Explicitly only two sinks:
1.571944, 0.000000, 1.572008, sum 3.143952.
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Moving One Sink Between Two Fixed

Three sinks, F1 at (−1, 0, 1), F2 at (x, 0, 1), F3 at (1, 0, 1).

Several times needed to restart simplex method – problem sufficiently ill
conditioned that four digits accuracy lost in the individual sink strengths

x

S
in

k
S

tre
ng

th
s

S
um

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

F2

F1

F3
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Three Sinks at an Angle

Three sinks, F1 at (−x, 0, 1), F2 at (0, 0, 1.1), F3 at (x, 0, 1.2).

x

S
in

k
S

tre
ng

th
s

S
um

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

3

3.5

4

4.5

5

5.5

6

SumF3

F2

F1
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Four Sinks In A Row
Four sinks: F1 at (−x, 0, 1), F2 at (−x/3, 0, 1),

F3 at (x/3, 0, 1), F4 at (x, 0, 1).

Can assume F1 = F4 and F2 = F3 (two parameters) or run as is (four
parameters). Gave identical answers until x is sufficiently small, where
convergence difficulties arise.

x

S
in

k
S

tre
ng

th
s

S
um

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2

2.5

3

3.5

4

4.5

5

5.5
F1 & F4

F2 & F3

Sum
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Five Sinks In A Row
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Sinks Evenly Distributed Between(−2, 0, 1) and (2, 0, 1)

No. Sinks 1 3 5 7 9 11 13 15

Sum 2.418 4.961 5.568 5.785 5.873 5.907 5.921 5.938

Ind. Sinks 1.026

0.896 0.054

0.925 0.356 0.457

1.014 0.483 0.422 0.328

1.144 0.585 0.465 0.378 0.319

1.351 0.731 0.550 0.439 0.367 0.318

1.741 0.968 0.683 0.526 0.428 0.360 0.309

2.418 1.478 0.927 0.668 0.519 0.424 0.358 0.310

1.741 0.968 0.683 0.526 0.428 0.360 0.309

1.351 0.731 0.550 0.439 0.367 0.318

1.144 0.585 0.465 0.378 0.319

1.014 0.483 0.422 0.328

0.925 0.356 0.457

0.896 0.054

1.026
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Sinks Evenly Distributed Between(−2, 0, 1) and (2, 0, 1)

No. Sinks 2 4 6 8 10 12 14

Sum 4.182 5.348 5.701 5.838 5.894 5.915 5.930

Ind. Sinks 0.995

0.895 0.147

0.965 0.434 0.456

1.072 0.530 0.436 0.350

1.234 0.650 0.503 0.406 0.345

1.511 0.833 0.608 0.478 0.394 0.336

2.091 1.162 0.783 0.587 0.468 0.389 0.330

2.091 1.162 0.783 0.587 0.468 0.389 0.330

1.511 0.833 0.608 0.478 0.394 0.336

1.234 0.650 0.503 0.406 0.345

1.072 0.530 0.436 0.350

0.965 0.434 0.456

0.895 0.147

0.995
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Sinks Evenly Distributed Between(−0.5, 0, 1) and (0.5, 0, 1)

No. Sinks 1 3 5 7 9 11

Sum 2.418 3.331 3.331 3.331 3.331 3.331

Ind. Sinks 1.294

1.294 0.000

1.294 0.000 0.000

1.294 0.000 0.000 0.000

1.294 0.000 0.000 0.000 0.000

2.418 0.742 0.742 0.742 0.742 0.742

1.294 0.000 0.683 0.000 0.000

1.294 0.000 0.000 0.000

1.294 0.000 0.000

1.294 0.000

1.294
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Sinks Evenly Distributed Between(−0.5, 0, 1) and (0.5, 0, 1)

No. Sinks 2 4 6 8 10 12

Sum 3.302 3.312 3.323 3.327 3.329 3.330

Ind. Sinks 1.282

1.277 0.000

1.279 0.000 0.000

1.300 0.000 0.000 0.000

1.389 0.000 0.000 0.000 0.000

1.651 0.266 0.360 0.384 0.386 0.382

1.651 0.266 0.360 0.384 0.386 0.382

1.389 0.000 0.000 0.000 0.000

1.300 0.000 0.000 0.000

1.279 0.000 0.000

1.277 0.000

1.282
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Dual/Triple Completion

Dual Completion: Place sink in water layer
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Dual/Triple Completion

Dual Completion: Place sink in water layer

Triple Completion: Also place equal strength source further down in
water layer
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Dual/Triple Completion

Dual Completion: Place sink in water layer

Triple Completion: Also place equal strength source further down in
water layer

Muskat model formulation identical, just replace Fi values for water sinks
by −Fiµw/µoil.
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Muskat – Stable Dual Completion
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Surface Shapes

F1 = 5 at 1, F2 = 1.35, 1.75, . . . , 2.75 at −0.5

F2=2.75

F2=1.35

R
0 1 2 3 4 5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Optimal Oil Output – p. 42/43



Conclusion

Muskat model approximates interface height very quickly

Developed a constrained nonnegative Nelder Mead method for finding
optimal flow rates

There is a minimal spacing beyond which additional sinks are
superfluous

Dual and triple completion alternative methods for delaying
breakthrough
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Conclusion

Muskat model approximates interface height very quickly

Developed a constrained nonnegative Nelder Mead method for finding
optimal flow rates

There is a minimal spacing beyond which additional sinks are
superfluous

Dual and triple completion alternative methods for delaying
breakthrough

Further work:

BIM formulation for dual and triple completion

Other interesting geometries?
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