# Maximizing Output From Oil Reservoirs Without Water Breakthrough 

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

January 312008

## Monty, Simpson \& $\pi$, Oh My!

## Monty, Simpson \& $\pi$, Oh My!

- Solved the Monty Hall problem with $n$ doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1-1 / e$. With Jason Rosenhouse, accepted by the Mathematical Gazette


## Monty, Simpson \& $\pi$, Oh My!

- Solved the Monty Hall problem with $n$ doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1-1 / e$. With Jason Rosenhouse, accepted by the Mathematical Gazette
- Discovered an Euler-Maclaurin-like form of the error term for the composite Simpson's rule (and a very simple derivation of the classic Euler-Maclaurin expansion). Submitted to Mathematics Magazine


## Monty, Simpson \& $\pi$, Oh My!

- Solved the Monty Hall problem with $n$ doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1-1$ /e. With Jason Rosenhouse, accepted by the Mathematical Gazette
- Discovered an Euler-Maclaurin-like form of the error term for the composite Simpson's rule (and a very simple derivation of the classic Euler-Maclaurin expansion). Submitted to Mathematics Magazine
- Using variants on $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{\left(1+x^{2}\right)} d x=\frac{22}{7}-\pi$, developed new series expansions for $\pi$ where each term can add any number of digits of accuracy. Showed how $\int_{0}^{1} \frac{x^{m}(1-x)^{n}\left(a+b x+c x^{2}\right)}{1+x^{2}} d x=( \pm)(z-\pi)$ to any accuracy with nonnegative integrand. In particular, $\int_{0}^{1} \frac{x^{8}(1-x)^{8}\left(25+816 x^{2}\right)}{3164\left(1+x^{2}\right)} d x=\frac{355}{113}-\pi$. Accepted by the American Mathematical Monthly


## Current Work

- Placing a circle pack, with C. Collins, K. Stephenson, UTenn, Numerical
- Generalizing Love's problem, deformations of an elastic half-space, with M. Bevis, Ohio, Applied
- Game theoretic considerations for truels and gruels, with D. Lanphier, W. Kentucky \& J. Rosenhouse, JMU, Game theory
- Generalized exponential distribution functions, with H. Hamdan, JMU, Probability/Numerical
- Convergence of numerical methods for an autocatalytic reaction, with P. Warne, JMU, Applied/Numerical
- Fractal structures in adjacency matrices for graphs, with J. Filar, UniSA, Pure/Numerical
- Bounded continued fraction and Pierce representations of reals and rationals, Analysis


## Other Potential Undergraduate Research Topics

- Improved bounds for the kissing problem: how many spheres can touch a central sphere, all of the same radius, in $n$-dimensions? Implement a new optimization algorithm. Numerical
- An integer-valued logistic equation: investigate the effect of assuming integer solutions only for this standard population model. Do we still see period doubling to chaos in the same way? Applied/chaos theory
- Analyze "Dreidel:" using a Markov chain approach find out what are your chances of winning, and how long a game lasts. Probability theory
- Sudoku uniqueness: build an efficient Sudoku solver, then use it to investigate the distribution of how many solutions there are for initial set-ups with various conditions. Computational/Recreational
- Nontransitive dice: find sets of dice where on average $A$ beats B beats $C$ beats $A$, and find what conditions are required. Game theory
- Minimal Goldbach Sets: what small sets of numbers appear to satisfy the Goldbach conjecture, like twin primes. Numerical/number theory


## Advertisement

- March 17, 3:45pm, Computation for fun (not profit): using numerical methods to solve problems unrelated to classical calculus-based numerical analysis.


## Advertisement

- March 17, 3:45pm, Computation for fun (not profit): using numerical methods to solve problems unrelated to classical calculus-based numerical analysis.
- March $14-\pi$-day, Formulas for $\pi$ : a wander through many of the various formulas for calculating $\pi$, most with easy to follow derivations.


## Outline

- Description of the problem
- Mathematical model
- Approximate position of surface
- Optimization methods
- Results
- Further directions


## Geometry of the Model



# Darcy's Law and Assumptions 

- $\mu$ - fluid viscosity
- $k$ - permeability
$\nabla \hat{p}=-\frac{\mu}{k} \mathbf{q}, \quad$ with
- q-volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure


# Darcy's Law and Assumptions 

- $\mu$ - fluid viscosity
- $k$-permeability
$\nabla \hat{p}=-\frac{\mu}{k} \mathbf{q}, \quad$ with
- $q$ - volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure
- Homogeneous medium, constant $k$, occupying all space


# Darcy's Law and Assumptions 

- $\mu$ - fluid viscosity
- $k$-permeability
- $\mathbf{q}$ - volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure
- Homogeneous medium, constant $k$, occupying all space
- Both fluids immiscible, have a sharp interface


# Darcy's Law and Assumptions 

- $\mu$ - fluid viscosity
- $k$-permeability
- $q$-volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure
- Homogeneous medium, constant $k$, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point $\operatorname{sink}(\mathrm{s})$


## Darcy's Law and Assumptions

- $\mu$ - fluid viscosity
- $k$-permeability
- $\mathbf{q}$ - volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure
- Homogeneous medium, constant $k$, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point $\operatorname{sink}(\mathrm{s})$
- Apply Darcy's law independently to both oil and water


## Darcy's Law and Assumptions

- $\mu$ - fluid viscosity
- $k$-permeability
- $\mathbf{q}$ - volume flux rate / unit area
- $\hat{p}$ - averaged modified pressure
- Homogeneous medium, constant $k$, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point $\operatorname{sink}(\mathrm{s})$
- Apply Darcy's law independently to both oil and water
- Steady state problem


## Constitutive Equations

- $\nabla . \mathbf{u}=0 \rightarrow \nabla^{2} \hat{p}^{(i)}=0$


## Constitutive Equations

- $\nabla . \mathbf{u}=0 \rightarrow \nabla^{2} \hat{p}^{(i)}=0$
- Dynamic b.c. $p^{\text {oil }}=p^{\text {water }} \quad$ on $\quad z=\zeta(x, y)$


## Constitutive Equations

- $\nabla . \mathbf{u}=0 \rightarrow \nabla^{2} \hat{p}^{(i)}=0$
- Dynamic b.c. $p^{\text {oil }}=p^{w a t e r}$ on $z=\zeta(x, y)$
- Material b.c. u-fluid velocity

$$
\frac{\partial \zeta}{\partial t}+\mathbf{u} \cdot \nabla(\zeta-z)=0 \quad \text { on } \quad z=\zeta(x, y)
$$

## Constitutive Equations

- $\nabla . \mathbf{u}=0 \rightarrow \nabla^{2} \hat{p}^{(i)}=0$
- Dynamic b.c. $p^{\text {oil }}=p^{w a t e r} \quad$ on $\quad z=\zeta(x, y)$
- Material b.c. u-fluid velocity

$$
\frac{\partial \zeta}{\partial t}+\mathbf{u} \cdot \nabla(\zeta-z)=0 \quad \text { on } \quad z=\zeta(x, y)
$$

- $\mathbf{u}$ and hence $\hat{p} \rightarrow 0$ at infinity, both fluids


## Constitutive Equations

- $\nabla . \mathbf{u}=0 \rightarrow \nabla^{2} \hat{p}^{(i)}=0$
- Dynamic b.c. $p^{\text {oil }}=p^{\text {water }}$ on $z=\zeta(x, y)$
- Material b.c. u-fluid velocity

$$
\frac{\partial \zeta}{\partial t}+\mathbf{u} \cdot \nabla(\zeta-z)=0 \quad \text { on } \quad z=\zeta(x, y)
$$

- u and hence $\hat{p} \rightarrow 0$ at infinity, both fluids
- Suction pressure due to sink, flow rate $m$ at $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

$$
p_{s}=\frac{-m \mu_{o i l}}{4 \pi k \sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}}
$$

## Scaling

- Scale length wrt $z^{\prime}$, pressure wrt $m_{0} \mu_{\text {oil }} / k z^{\prime}$.


## Scaling

- Scale length wrt $z^{\prime}$, pressure wrt $m_{0} \mu_{\text {oil }} / k z^{\prime}$.
- Choose $m_{0}=k z^{\prime 2}\left(\rho_{2}-\rho_{1}\right) g / \mu_{o i l} \Longrightarrow$ the dynamic b.c. is

$$
\tilde{\zeta}+\tilde{p}=0 \quad \text { on } \quad z=\tilde{\zeta}(x, y)
$$

## Ncailing

- Scale length wrt $z^{\prime}$, pressure wrt $m_{0} \mu_{\text {oil }} / k z^{\prime}$.
- Choose $m_{0}=k z^{2}\left(\rho_{2}-\rho_{1}\right) g / \mu_{o i l} \Longrightarrow$ the dynamic b.c. is

$$
\tilde{\zeta}+\tilde{p}=0 \quad \text { on } \quad z=\tilde{\zeta}(x, y) .
$$

- The dimensionless suction pressure becomes

$$
\tilde{p}_{s}=\frac{-F}{4 \pi \sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+(z-1)^{2}}}
$$

where

$$
F=\frac{m \mu_{o i l}}{k z^{\prime 2}\left(\rho_{w}-\rho_{o i l}\right) g} \sim \frac{\text { suction force }}{\text { density difference force }} .
$$

## The Problem

We want to solve

$$
\nabla^{2} \tilde{p}=-\sum F_{i} \delta\left(\mathbf{x}-\mathbf{x}_{\mathbf{i}}^{\prime}\right)
$$

with

$$
\zeta+p=0 \quad \text { on the lower boundary } \quad z=\zeta(x, y) .
$$

Given positions of sinks, what strengths maximize flow without the oil-water interface reaching the sinks? Call these critical values.

## Past Work - Boundary Integral Method

For $N$ sinks, each of strength $F_{i}$ at positions $\left(x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}\right)$, we get

$$
\begin{aligned}
& \frac{1}{2} \zeta\left(x_{0}, y_{0}\right)=\frac{1}{4 \pi} \sum_{i=1}^{N} \frac{F_{i}}{\left[\left(x_{0}-x_{i}^{\prime}\right)^{2}+\left(y_{0}-y_{i}^{\prime}\right)^{2}+\left(\zeta\left(x_{0}, y_{0}\right)-z_{i}^{\prime}\right)^{2}\right]^{1 / 2}}+ \\
& \frac{1}{4 \pi} \iint_{-\infty}^{\infty} \frac{\zeta\left(\frac{\partial \zeta}{\partial x}\left(x-x_{0}\right)+\frac{\partial \zeta}{\partial y}\left(y-y_{0}\right)-\left(\zeta(x, y)-\zeta\left(x_{0}, y_{0}\right)\right)\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(\zeta(x, y)-\zeta\left(x_{0}, y_{0}\right)\right)^{2}\right]^{3 / 2}} d x d y .
\end{aligned}
$$

## Solution Method

Solved by a form of pointwise iterative procedure:

- Initially approximate $\zeta$ by the small parameter expansion
- Solve at $(N+1) \times(N+1)$ points on a grid in the region

$$
-x_{\max } \leq x \leq x_{\max }, \quad-y_{\max } \leq y \leq y_{\max }
$$

- In the far field, approximate the solution by the small parameter expansion
- Use some integration procedure to find the required integrals at each point, taking into account infinite extent and the singularity
- Use a bicubic spline interpolation for $\zeta$ values required between solution points


## The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

## The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

For single sink at height one,

$$
\zeta(r)=\frac{F}{4 \pi}\left[\frac{1}{\sqrt{(\zeta(r)-1)^{2}+r^{2}}}+\frac{1}{\sqrt{(\zeta(r)+1)^{2}+r^{2}}}\right] .
$$

## The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

For single sink at height one,

$$
\zeta(r)=\frac{F}{4 \pi}\left[\frac{1}{\sqrt{(\zeta(r)-1)^{2}+r^{2}}}+\frac{1}{\sqrt{(\zeta(r)+1)^{2}+r^{2}}}\right] .
$$

For $N$ sinks at positions $\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$, surface is solution of
$\zeta(x, y)=\sum_{i=1}^{N} \frac{F_{i}}{4 \pi}\left[\frac{1}{r_{i}}+\frac{1}{r_{i}^{\prime}}\right]$, with $\begin{aligned} r_{i} & =\sqrt{\left(z_{i}-\zeta(x, y)\right)^{2}+\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}} \\ r_{i}^{\prime} & =\sqrt{\left(z_{i}+\zeta(x, y)\right)^{2}+\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}\end{aligned}$

## Muskat Model Solutions

- Use secant method to solve for each $(x, y)$, with previous solution as initial guess


## Muskat Model Solutions

- Use secant method to solve for each $(x, y)$, with previous solution as initial guess
- Care required in deciding on stability


## Muskat Model Solutions

- Use secant method to solve for each $(x, y)$, with previous solution as initial guess
- Care required in deciding on stability
- Solves extremely quickly, but is approximate


## Stability - Multiple Solutions

For a single sink strength 2.2 at $(0,0,1)$, surface at $x$ is the solution of

$$
g(\zeta)=\frac{2.2}{4 \pi}\left[\frac{1}{\sqrt{(\zeta-1)^{2}+x^{2}}}+\frac{1}{\sqrt{(\zeta+1)^{2}+x^{2}}}\right]-\zeta=0 .
$$



## Stability - Multiple Solutions

Two sinks at $(-2,0,1)$ and $(2,0,1)$, both $F=2.08$ (left) and $F=2.11$ (right):



## Multiple Solution Issues

So:

- When solving, start in far field and work in (mesh 0.005)


## Multiple Solution Issues

## So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere


## Multiple Solution Issues

## So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere
- Use solution at previous point as next initial point


## Multiple Solution Issues

## So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere
- Use solution at previous point as next initial point
- Identify if sudden jumps or solution greater than one


## Solution Error

The Muskat solution approximates the pressure field. Comparing Muskat and BIM solutions for a single sink at $(0,0,1), F=0.5,1.0,1.5,2.0$ :

Critical value of $F$ (maximum with stable cone) is 2.05 for BIM, 2.418 for Muskat. Maximum heights are 0.661 and 0.5774 respectively.


## Critical Sink Strengths - One Parameter

- $n$ sinks equally spaced on a circle of a given radius.
- By symmetry, all sinks of same strength for maximum flow.
- Solve using bisection.


## Critical Sink Strengths - One Parameter

- $n$ sinks equally spaced on a circle of a given radius.
- By symmetry, all sinks of same strength for maximum flow.
- Solve using bisection.



## Feasible Regions - Two Sinks

- 2 sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(x, 0,1), x=2,1,0.5$.
- For each $F_{1}$, find critical $F_{2}$ by bisection.



## Feasible Regions - Two Skew Sinks

2 sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(x, 0,1.1), x=2,1,0.5,0.0$.


## Feasible Region - Three Sinks Example

 3 sinks, $F_{1}$ at $(-1,0,1), F_{2}$ at $(0,0,1), F_{3}$ at $(1,0,1)$.



## Difficulties in Higher Dimensions

- Can't use bisection


## Difficulties in Higher Dimensions

- Can't use bisection
- Constrained optimization where boundary is unknown


## Difficulties in Higher Dimensions

- Can't use bisection
- Constrained optimization where boundary is unknown
- Boundary is not smooth


## Nelder Mead Downhill Simplex Method

- The only "standard" minimization method that doesn't use derivatives.


## Nelder Mead Downhill Simplex Method

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.


## Nelder Mead Downhill Simplex Method

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given $N+1$ points in $N$ dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.


## Nelder Mead Downhill Simplex Method

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given $N+1$ points in $N$ dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.
- Converged when range from best to worst points is sufficiently small.


## Nelder Mead Downhill Simplex Method

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given $N+1$ points in $N$ dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.
- Converged when range from best to worst points is sufficiently small.


Original


Reflection


Contract


Multiple Contraction

## Constrained Nelder Mead Using Penalty Method

Minimize $G-\sum_{i=1}^{N} F_{i}$, where $G= \begin{cases}0 & \text { in feasible region } \\ 1000 & \text { outside feasible }\end{cases}$

## Constrained Nelder Mead Using Penalty Method

Minimize $G-\sum_{i=1}^{N} F_{i}$, where $G= \begin{cases}0 & \text { in feasible region } \\ 1000 & \text { outside feasible }\end{cases}$

Doesn't deal with the discontinuity too well:


## Nelder Mead On Feasible Region Boundary

Given $F_{1}, F_{2}, \ldots, F_{n-1}$, calculate critical value for $F_{n}$, which is on the boundary. Then minimize $-\sum_{i=1}^{n} F_{i}$.

## Nelder Mead On Feasible Region Boundary

Given $F_{1}, F_{2}, \ldots, F_{n-1}$, calculate critical value for $F_{n}$, which is on the boundary. Then minimize $-\sum_{i=1}^{n} F_{i}$.

Works beautifully, 71 function evaluations with relative error $10^{-5}$ from $(0,0)$ :


## Feasible Region - Three Sinks Again

3 sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(0,0,1), F_{3}$ at $(x, 0,1)$.
Using symmetry, assume $F_{1}=F_{3}$, reduces to one parameter problem.
Find feasible regions with $x=0.4,0.5, \ldots, 1.0$.

## Feasible Region - Three Sinks Again

3 sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(0,0,1), F_{3}$ at $(x, 0,1)$.
Using symmetry, assume $F_{1}=F_{3}$, reduces to one parameter problem.
Find feasible regions with $x=0.4,0.5, \ldots, 1.0$.


## Critical Values - Three Sinks Example

3 sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(0,0,1), F_{3}$ at $(x, 0,1)$.


## Feasible Region and Sum With $x=0.4$




## Nonnegative Constrained Nelder Mead

Work with $F_{1}^{2}, F_{2}^{2}, \ldots, F_{n-1}^{2}$ to ensure the sink strengths are nonnegative.

## Nonnegative Constrained Nelder Mead

Work with $F_{1}^{2}, F_{2}^{2}, \ldots, F_{n-1}^{2}$ to ensure the sink strengths are nonnegative.
Since $F_{n}$ can be negative to stay on boundary, choose $n$th sink on edge of those of interest to keep it positive.

## Nonnegative Constrained Nelder Mead

Work with $F_{1}^{2}, F_{2}^{2}, \ldots, F_{n-1}^{2}$ to ensure the sink strengths are nonnegative.
Since $F_{n}$ can be negative to stay on boundary, choose $n$th sink on edge of those of interest to keep it positive.

Accuracy $10^{-5}$ gives solutions ( 80 iterations)
1.555331, 0.032775, 1.555086, sum 3.143193.

Restarting here gives
1.564512, 0.014617 , 1.564505, sum 3.143634 .

Accuracy $10^{-7}$ gives (427 iterations)
$1.571573,0.000726$, 1.571638 , sum 3.143937 .
Explicitly only two sinks:
$1.571944,0.000000$, 1.572008 , sum 3.143952 .

## Moving One Sink Between Two Fixed

Three sinks, $F_{1}$ at $(-1,0,1), F_{2}$ at $(x, 0,1), F_{3}$ at $(1,0,1)$.
Several times needed to restart simplex method - problem sufficiently ill conditioned that four digits accuracy lost in the individual sink strengths


## Three Sinks at an Angle

Three sinks, $F_{1}$ at $(-x, 0,1), F_{2}$ at $(0,0,1.1), F_{3}$ at $(x, 0,1.2)$.


## Four Sinks In A Row

Four sinks: $F_{1}$ at $(-x, 0,1), F_{2}$ at $(-x / 3,0,1)$,

$$
F_{3} \text { at }(x / 3,0,1), F_{4} \text { at }(x, 0,1) .
$$

Can assume $F_{1}=F_{4}$ and $F_{2}=F_{3}$ (two parameters) or run as is (four parameters). Gave identical answers until $x$ is sufficiently small, where convergence difficulties arise.


## Five Sinks In A Row



## Sinks Evenly Distributed Between $(-2,0,1)$ and $(2,0,1)$

| No. Sinks | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sum | 2.418 | 4.961 | 5.568 | 5.785 | 5.873 | 5.907 | 5.921 | 5.938 |
| Ind. Sinks |  |  |  |  |  |  |  | 1.026 |
|  |  |  |  |  |  |  | 0.896 | 0.054 |
|  |  |  |  |  |  | 0.925 | 0.356 | 0.457 |
|  |  |  |  |  | 1.014 | 0.483 | 0.422 | 0.328 |
|  |  |  |  | 1.144 | 0.585 | 0.465 | 0.378 | 0.319 |
|  |  |  | 1.351 | 0.731 | 0.550 | 0.439 | 0.367 | 0.318 |
|  |  | 1.741 | 0.968 | 0.683 | 0.526 | 0.428 | 0.360 | 0.309 |
|  | 2.418 | 1.478 | 0.927 | 0.668 | 0.519 | 0.424 | 0.358 | 0.310 |
|  |  | 1.741 | 0.968 | 0.683 | 0.526 | 0.428 | 0.360 | 0.309 |
|  |  |  | 1.351 | 0.731 | 0.550 | 0.439 | 0.367 | 0.318 |
|  |  |  |  | 1.144 | 0.585 | 0.465 | 0.378 | 0.319 |
|  |  |  |  |  | 1.014 | 0.483 | 0.422 | 0.328 |
|  |  |  |  |  |  | 0.925 | 0.356 | 0.457 |
|  |  |  |  |  |  |  | 0.896 | 0.054 |
|  |  |  |  |  |  |  |  | 1.026 |

## Sinks Evenly Distributed Between $(-2,0,1)$ and $(2,0,1)$

| No. Sinks | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sum | 4.182 | 5.348 | 5.701 | 5.838 | 5.894 | 5.915 | 5.930 |
| Ind. Sinks |  |  |  |  |  |  | 0.995 |
|  |  |  |  |  | 0.965 | 0.434 | 0.456 |
|  |  |  |  | 1.072 | 0.530 | 0.436 | 0.350 |
|  |  | 1.511 | 0.833 | 0.608 | 0.478 | 0.394 | 0.336 |
|  |  |  |  |  |  |  |  |
|  |  | 1.162 | 0.783 | 0.587 | 0.468 | 0.389 | 0.330 |
|  | 2.091 | 1.162 | 0.783 | 0.587 | 0.468 | 0.389 | 0.330 |
|  |  |  | 1.2311 | 0.833 | 0.608 | 0.478 | 0.394 |
|  |  |  |  | 0.650 | 0.503 | 0.406 | 0.345 |
|  |  |  |  |  |  | 0.072 | 0.530 |
|  |  |  |  |  | 0.436 | 0.350 |  |
|  |  |  |  |  |  | 0.434 | 0.456 |
|  |  |  |  |  |  | 0.895 | 0.147 |
|  |  |  |  |  |  |  | 0.995 |

## Sinks Evenly Distributed Between $(-0.5,0,1)$ and $(0.5,0,1)$

| No. Sinks | 1 | 3 | 5 | 7 | 9 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sum | 2.418 | 3.331 | 3.331 | 3.331 | 3.331 | 3.331 |
| Ind. Sinks |  |  |  |  |  | 1.294 |
|  |  |  |  |  | 1.294 | 0.000 |
|  |  |  | 1.294 | 0.000 | 0.000 | 0.000 |
|  |  | 1.294 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | 2.418 | 0.742 | 0.742 | 0.742 | 0.742 | 0.742 |
|  |  | 1.294 | 0.000 | 0.683 | 0.000 | 0.000 |
|  |  |  | 1.294 | 0.000 | 0.000 | 0.000 |
|  |  |  |  | 1.294 | 0.000 | 0.000 |
|  |  |  |  |  | 1.294 | 0.000 |
|  |  |  |  |  |  | 1.294 |

## Sinks Evenly Distributed Between $(-0.5,0,1)$ and $(0.5,0,1)$

| No. Sinks | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sum | 3.302 | 3.312 | 3.323 | 3.327 | 3.329 | 3.330 |
| Ind. Sinks |  |  |  |  |  | 1.282 |
|  |  |  |  |  | 1.277 | 0.000 |
|  |  |  | 1.300 | 0.000 | 0.000 | 0.000 |
|  |  | 1.389 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | 1.651 | 0.266 | 0.360 | 0.384 | 0.386 | 0.382 |
|  |  | 0.266 | 0.360 | 0.384 | 0.386 | 0.382 |
|  |  | 1.389 | 0.000 | 0.000 | 0.000 | 0.000 |
|  |  |  | 1.300 | 0.000 | 0.000 | 0.000 |
|  |  |  |  | 1.279 | 0.000 | 0.000 |
|  |  |  |  |  | 1.277 | 0.000 |
|  |  |  |  |  |  | 1.282 |

## Dual/Triple Completion

Dual Completion: Place sink in water layer

## Dual/Triple Completion

Dual Completion: Place sink in water layer
Triple Completion: Also place equal strength source further down in water layer

## Dual/Triple Completion

Dual Completion: Place sink in water layer
Triple Completion: Also place equal strength source further down in water layer

Muskat model formulation identical, just replace $F_{i}$ values for water sinks by $-F_{i} \mu_{w} / \mu_{o i l}$.

## Muskat - Stable Dual Completion



## Surface Shapes

$$
F_{1}=5 \text { at } 1, F_{2}=1.35,1.75, \ldots, 2.75 \text { at }-0.5
$$



## Conclusion

- Muskat model approximates interface height very quickly
- Developed a constrained nonnegative Nelder Mead method for finding optimal flow rates
- There is a minimal spacing beyond which additional sinks are superfluous
- Dual and triple completion alternative methods for delaying breakthrough


## Conclusion

- Muskat model approximates interface height very quickly
- Developed a constrained nonnegative Nelder Mead method for finding optimal flow rates
- There is a minimal spacing beyond which additional sinks are superfluous
- Dual and triple completion alternative methods for delaying breakthrough


## Further work:

- BIM formulation for dual and triple completion
- Other interesting geometries?

