Maximizing Output From Oil Reservoirs Without Water Breakthrough

Stephen Lucas

Department of Mathematics and Statistics

James Madison University, Harrisonburg VA

January 31 2008

Solved the Monty Hall problem with *n* doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1 - 1/e$. With Jason Rosenhouse, accepted by the Mathematical Gazette

- Solved the Monty Hall problem with *n* doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1 1/e$. With Jason Rosenhouse, accepted by the Mathematical Gazette
- Discovered an Euler-Maclaurin-like form of the error term for the composite Simpson's rule (and a very simple derivation of the classic Euler-Maclaurin expansion). Submitted to Mathematics Magazine

- Solved the Monty Hall problem with *n* doors and the choice of switching every time Monty opens a door. Optimal is switching once at the end. If you switch every time, probability of winning price $\Rightarrow 1 1/e$. With Jason Rosenhouse, accepted by the Mathematical Gazette
- Discovered an Euler-Maclaurin-like form of the error term for the composite Simpson's rule (and a very simple derivation of the classic Euler-Maclaurin expansion). Submitted to Mathematics Magazine
- ✓ Using variants on $\int_0^1 \frac{x^4(1-x)^4}{(1+x^2)} dx = \frac{22}{7} \pi$, developed new series expansions for π where each term can add any number of digits of accuracy. Showed how $\int_0^1 \frac{x^m(1-x)^n(a+bx+cx^2)}{1+x^2} dx = (\pm)(z-\pi)$ to any accuracy with nonnegative integrand. In particular, $\int_0^1 \frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)} dx = \frac{355}{113} \pi$. Accepted by the American Mathematical Monthly

Current Work

- Placing a circle pack, with C. Collins, K. Stephenson, UTenn, Numerical
- Generalizing Love's problem, deformations of an elastic half-space, with M. Bevis, Ohio, Applied
- Game theoretic considerations for truels and gruels, with D. Lanphier, W. Kentucky & J. Rosenhouse, JMU, Game theory
- Generalized exponential distribution functions, with H. Hamdan, JMU, Probability/Numerical
- Convergence of numerical methods for an autocatalytic reaction, with P. Warne, JMU, Applied/Numerical
- Fractal structures in adjacency matrices for graphs, with J. Filar, UniSA, Pure/Numerical
- Bounded continued fraction and Pierce representations of reals and rationals,
 Analysis
 JAMES
 MADISON

Other Potential Undergraduate Research Topics

- Improved bounds for the kissing problem: how many spheres can touch a central sphere, all of the same radius, in n-dimensions? Implement a new optimization algorithm. Numerical
- An integer-valued logistic equation: investigate the effect of assuming integer solutions only for this standard population model. Do we still see period doubling to chaos in the same way? Applied/chaos theory
- Analyze "Dreidel:" using a Markov chain approach find out what are your chances of winning, and how long a game lasts. Probability theory
- Sudoku uniqueness: build an efficient Sudoku solver, then use it to investigate the distribution of how many solutions there are for initial set-ups with various conditions. Computational/Recreational
- Nontransitive dice: find sets of dice where on average A beats B beats C beats A, and find what conditions are required. Game theory
- Minimal Goldbach Sets: what small sets of numbers appear to satisfy the Goldbach conjecture, like twin primes. Numerical/number theory

Advertisement

March 17, 3:45pm, Computation for fun (not profit): using numerical methods to solve problems unrelated to classical calculus-based numerical analysis.

Advertisement

- March 17, 3:45pm, Computation for fun (not profit): using numerical methods to solve problems unrelated to classical calculus-based numerical analysis.
- March 14 π -day, **Formulas for** π : a wander through many of the various formulas for calculating π , most with easy to follow derivations.

Outline

- Description of the problem
- Mathematical model
- Approximate position of surface
- Optimization methods
- Results
- Further directions

Geometry of the Model

- **9** μ fluid viscosity
 - k permeability
- q volume flux rate / unit area
- $\mathbf{P} \ \hat{p} \ \mathbf{p} \$

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}$,

with

- **9** μ fluid viscosity
 - \bullet k permeability
- q volume flux rate / unit area
- $\checkmark \hat{p}$ averaged modified pressure
- Homogeneous medium, constant k, occupying all space

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}$, with

- μ fluid viscosity
- \bullet k permeability
- q volume flux rate / unit area
- $\checkmark \hat{p}$ averaged modified pressure
- Homogeneous medium, constant k, occupying all space
- Both fluids immiscible, have a sharp interface

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}, \quad ext{with}$

- μ fluid viscosity
- \bullet k permeability
- q volume flux rate / unit area
- $\mathbf{P} \ \hat{p} \ \mathbf{p} \$
- Homogeneous medium, constant k, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point sink(s)

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}$, with

- μ fluid viscosity
- \bullet k permeability
- q volume flux rate / unit area
- $\mathbf{P} \ \hat{p} \ \mathbf{p} \$
- Homogeneous medium, constant k, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point sink(s)
- Apply Darcy's law independently to both oil and water

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}, \quad ext{with}$

- μ fluid viscosity
- $\blacktriangleright k$ permeability
- q volume flux rate / unit area
- $\mathbf{P} \ \hat{p} \ \mathbf{p} \$
- Homogeneous medium, constant k, occupying all space
- Both fluids immiscible, have a sharp interface
- Model the well(s) by point sink(s)
- Apply Darcy's law independently to both oil and water
- Steady state problem

 $abla \hat{p} = -rac{\mu}{k} \mathbf{q}, \quad ext{with}$

$$. \mathbf{u} = 0 \rightarrow \nabla^2 \hat{p}^{(i)} = 0$$

$$. \mathbf{u} = 0 \rightarrow \nabla^2 \hat{p}^{(i)} = 0$$

Dynamic b.c.
$$p^{oil} = p^{water}$$
 on $z = \zeta(x, y)$

$$. \mathbf{u} = 0 \rightarrow \nabla^2 \hat{p}^{(i)} = 0$$

Dynamic b.c.
$$p^{oil} = p^{water}$$
 on $z = \zeta(x, y)$

Material b.c. u - fluid velocity

$$\frac{\partial \zeta}{\partial t} + \mathbf{u} . \nabla (\zeta - z) = 0 \quad \text{on} \quad z = \zeta(x, y)$$

$$\nabla . \mathbf{u} = 0 \rightarrow \nabla^2 \hat{p}^{(i)} = 0$$
 Dynamic b.c. $p^{oil} = p^{water}$ on $z =$

Material b.c. u - fluid velocity

$$rac{\partial \zeta}{\partial t} + \mathbf{u} \cdot \nabla (\zeta - z) = 0$$
 on $z = \zeta(x, y)$

 $\zeta(x,y)$

 \checkmark u and hence $\hat{p} \rightarrow 0$ at infinity, both fluids

$$. \mathbf{u} = 0 \rightarrow \nabla^2 \hat{p}^{(i)} = 0$$

Dynamic b.c.
$$p^{oil} = p^{water}$$
 on $z = \zeta(x, y)$

Material b.c. u - fluid velocity

$$rac{\partial \zeta}{\partial t} + \mathbf{u}.
abla (\zeta - z) = 0 \quad \text{on} \quad z = \zeta(x, y)$$

- \checkmark u and hence $\hat{p} \rightarrow 0$ at infinity, both fluids
- Suction pressure due to sink, flow rate m at (x', y', z')

$$p_s = \frac{-m\mu_{oil}}{4\pi k\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}$$

Scale length wrt z', pressure wrt $m_0\mu_{oil}/kz'$.

Scaling

Scale length wrt z', pressure wrt $m_0\mu_{oil}/kz'$.

● Choose $m_0 = k z'^2 (\rho_2 - \rho_1) g / \mu_{oil} \implies$ the dynamic b.c. is

$$\tilde{\zeta} + \tilde{p} = 0$$
 on $z = \tilde{\zeta}(x, y)$.

Scaling

Scale length wrt z', pressure wrt $m_0\mu_{oil}/kz'$.

• Choose $m_0 = k z'^2 (\rho_2 - \rho_1) g / \mu_{oil} \Longrightarrow$ the dynamic b.c. is

$$\tilde{\zeta} + \tilde{p} = 0$$
 on $z = \tilde{\zeta}(x, y)$.

The dimensionless suction pressure becomes

$$\tilde{p}_s = \frac{-F}{4\pi\sqrt{(x-x')^2 + (y-y')^2 + (z-1)^2}}$$

where

$$F = rac{m\mu_{oil}}{kz'^2(
ho_w -
ho_{oil})g} \sim rac{\mathrm{suction\ force}}{\mathrm{density\ difference\ force}}$$

The Problem

We want to solve

$$\nabla^2 \tilde{p} = -\sum F_i \delta(\mathbf{x} - \mathbf{x}'_i),$$

with

$$\zeta + p = 0$$
 on the lower boundary $z = \zeta(x, y)$.

Given positions of sinks, what strengths maximize flow without the oil-water interface reaching the sinks? Call these critical values.

Past Work – Boundary Integral Method

For N sinks, each of strength F_i at positions (x'_i, y'_i, z'_i) , we get

$$\frac{1}{2}\zeta(x_0, y_0) = \frac{1}{4\pi} \sum_{i=1}^{N} \frac{F_i}{[(x_0 - x_i')^2 + (y_0 - y_i')^2 + (\zeta(x_0, y_0) - z_i')^2]^{1/2}} + \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\zeta\left(\frac{\partial\zeta}{\partial x}(x - x_0) + \frac{\partial\zeta}{\partial y}(y - y_0) - (\zeta(x, y) - \zeta(x_0, y_0))\right)}{[(x_0 - y_0)^2 + (\zeta(x_0 - y_0))^2]^{1/2}} dx dy.$$

$$\frac{1}{4\pi} \iint_{-\infty} \frac{1}{[(x-x_0)^2 + (y-y_0)^2 + (\zeta(x,y) - \zeta(x_0,y_0))^2]^{3/2}} dx dx$$

Solution Method

Solved by a form of pointwise iterative procedure:

- Initially approximate ζ by the small parameter expansion
- Solve at $(N+1) \times (N+1)$ points on a grid in the region

$$-x_{max} \le x \le x_{max}, \qquad -y_{max} \le y \le y_{max}$$

- In the far field, approximate the solution by the small parameter expansion
- Use some integration procedure to find the required integrals at each point, taking into account infinite extent and the singularity
- Use a bicubic spline interpolation for ζ values required between solution points

The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

For single sink at height one,

$$\zeta(r) = \frac{F}{4\pi} \left[\frac{1}{\sqrt{(\zeta(r) - 1)^2 + r^2}} + \frac{1}{\sqrt{(\zeta(r) + 1)^2 + r^2}} \right]$$

The Muskat Model

Balance suction pressure field (assuming half-plane solution) with gravitational restoring force.

For single sink at height one,

$$\zeta(r) = \frac{F}{4\pi} \left[\frac{1}{\sqrt{(\zeta(r) - 1)^2 + r^2}} + \frac{1}{\sqrt{(\zeta(r) + 1)^2 + r^2}} \right]$$

For N sinks at positions (x_i, y_i, z_i) , i = 1, ..., N, surface is solution of

$$\zeta(x,y) = \sum_{i=1}^{N} \frac{F_i}{4\pi} \left[\frac{1}{r_i} + \frac{1}{r'_i} \right], \text{ with } \begin{array}{l} r_i = \sqrt{(z_i - \zeta(x,y))^2 + (x - x_i)^2 + (y - y_i)^2} \\ r'_i = \sqrt{(z_i + \zeta(x,y))^2 + (x - x_i)^2 + (y - y_i)^2} \end{array}$$

Muskat Model Solutions

Use secant method to solve for each (x, y), with previous solution as initial guess

Muskat Model Solutions

- Use secant method to solve for each (x, y), with previous solution as initial guess
- Care required in deciding on stability

Muskat Model Solutions

- Use secant method to solve for each (x, y), with previous solution as initial guess
- Care required in deciding on stability
- Solves extremely quickly, but is approximate

Stability – Multiple Solutions

For a single sink strength 2.2 at (0,0,1), surface at x is the solution of

Stability – Multiple Solutions

Two sinks at (-2, 0, 1) and (2, 0, 1), both F = 2.08 (left) and F = 2.11 (right):

So:

When solving, start in far field and work in (mesh 0.005)

So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere

So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere
- Use solution at previous point as next initial point

So:

- When solving, start in far field and work in (mesh 0.005)
- Don't just evaluate under sink, maximum height or breakthrough can be elsewhere
- Use solution at previous point as next initial point
- Identify if sudden jumps or solution greater than one

Solution Error

The Muskat solution approximates the pressure field. Comparing Muskat and BIM solutions for a single sink at (0, 0, 1), F = 0.5, 1.0, 1.5, 2.0:

Critical value of F (maximum with stable cone) is 2.05 for BIM, 2.418 for Muskat. Maximum heights are 0.661 and 0.5774 respectively.

Critical Sink Strengths – One Parameter

- \square n sinks equally spaced on a circle of a given radius.
- By symmetry, all sinks of same strength for maximum flow.
- Solve using bisection.

Critical Sink Strengths – One Parameter

- \square n sinks equally spaced on a circle of a given radius.
- By symmetry, all sinks of same strength for maximum flow.
- Solve using bisection.

Feasible Regions – Two Sinks

- **2** sinks, F_1 at (-x, 0, 1), F_2 at (x, 0, 1), x = 2, 1, 0.5.
- **Solution** For each F_1 , find critical F_2 by bisection.

Feasible Regions – Two Skew Sinks

2 sinks, F_1 at (-x, 0, 1), F_2 at (x, 0, 1.1), x = 2, 1, 0.5, 0.0.

Feasible Region – Three Sinks Example

3 sinks, F_1 at (-1, 0, 1), F_2 at (0, 0, 1), F_3 at (1, 0, 1).

Difficulties in Higher Dimensions

Can't use bisection

Difficulties in Higher Dimensions

- Can't use bisection
- Constrained optimization where boundary is unknown

Difficulties in Higher Dimensions

- Can't use bisection
- Constrained optimization where boundary is unknown
- Boundary is not smooth

The only "standard" minimization method that doesn't use derivatives.

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given N + 1 points in N dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given N + 1 points in N dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.
- Converged when range from best to worst points is sufficiently small.

- The only "standard" minimization method that doesn't use derivatives.
- Not very efficient, but quite robust.
- Given N + 1 points in N dimensions, identify the worst point, and reflect it through the mean of the others. If better, expand. If worse, contract. If still worse, multiple contraction around best.
- Converged when range from best to worst points is sufficiently small.

Constrained Nelder Mead Using Penalty Method

Minimize
$$G - \sum_{i=1}^{N} F_i$$
, where $G = \begin{cases} 0 & \text{in feasible region} \\ 1000 & \text{outside feasible} \end{cases}$

Constrained Nelder Mead Using Penalty Method

Minimize
$$G - \sum_{i=1}^{N} F_i$$
, where $G = \begin{cases} 0 & \text{in feasible region} \\ 1000 & \text{outside feasible} \end{cases}$

Doesn't deal with the discontinuity too well:

Nelder Mead On Feasible Region Boundary

Given $F_1, F_2, \ldots, F_{n-1}$, calculate critical value for F_n , which is on the boundary. Then minimize $-\sum_{i=1}^n F_i$.

Nelder Mead On Feasible Region Boundary

Given $F_1, F_2, \ldots, F_{n-1}$, calculate critical value for F_n , which is on the boundary. Then minimize $-\sum_{i=1}^n F_i$.

Works beautifully, 71 function evaluations with relative error 10^{-5} from (0,0):

Feasible Region – Three Sinks Again

3 sinks, F_1 at (-x, 0, 1), F_2 at (0, 0, 1), F_3 at (x, 0, 1).

Using symmetry, assume $F_1 = F_3$, reduces to one parameter problem.

Find feasible regions with $x = 0.4, 0.5, \ldots, 1.0$.

Feasible Region – Three Sinks Again

3 sinks, F_1 at (-x, 0, 1), F_2 at (0, 0, 1), F_3 at (x, 0, 1).

Using symmetry, assume $F_1 = F_3$, reduces to one parameter problem.

Find feasible regions with $x = 0.4, 0.5, \ldots, 1.0$.

Critical Values – Three Sinks Example

3 sinks, F_1 at (-x, 0, 1), F_2 at (0, 0, 1), F_3 at (x, 0, 1).

Feasible Region and Sum With x = 0.4

Nonnegative Constrained Nelder Mead

Work with $F_1^2, F_2^2, \ldots, F_{n-1}^2$ to ensure the sink strengths are nonnegative.

Nonnegative Constrained Nelder Mead

Work with $F_1^2, F_2^2, \ldots, F_{n-1}^2$ to ensure the sink strengths are nonnegative.

Since F_n can be negative to stay on boundary, choose *n*th sink on edge of those of interest to keep it positive.

Nonnegative Constrained Nelder Mead

Work with $F_1^2, F_2^2, \ldots, F_{n-1}^2$ to ensure the sink strengths are nonnegative.

Since F_n can be negative to stay on boundary, choose *n*th sink on edge of those of interest to keep it positive.

Accuracy 10^{-5} gives solutions (80 iterations) 1.555331, 0.032775, 1.555086, sum 3.143193. Restarting here gives 1.564512, 0.014617, 1.564505, sum 3.143634. Accuracy 10^{-7} gives (427 iterations) 1.571573, 0.000726, 1.571638, sum 3.143937. Explicitly only two sinks: 1.571944, 0.000000, 1.572008, sum 3.143952.

Moving One Sink Between Two Fixed

Three sinks, F_1 at (-1, 0, 1), F_2 at (x, 0, 1), F_3 at (1, 0, 1).

Several times needed to restart simplex method – problem sufficiently ill conditioned that four digits accuracy lost in the individual sink strengths

Three Sinks at an Angle

Three sinks, F_1 at (-x, 0, 1), F_2 at (0, 0, 1.1), F_3 at (x, 0, 1.2).

Four Sinks In A Row

Four sinks: F_1 at (-x, 0, 1), F_2 at (-x/3, 0, 1), F_3 at (x/3, 0, 1), F_4 at (x, 0, 1).

Can assume $F_1 = F_4$ and $F_2 = F_3$ (two parameters) or run as is (four parameters). Gave identical answers until x is sufficiently small, where convergence difficulties arise.

Five Sinks In A Row

Sinks Evenly Distributed Between (-2, 0, 1) and (2, 0, 1)

No. Sinks	1	3	5	7	9	11	13	15
Sum	2.418	4.961	5.568	5.785	5.873	5.907	5.921	5.938
Ind. Sinks								1.026
							0.896	0.054
						0.925	0.356	0.457
					1.014	0.483	0.422	0.328
				1.144	0.585	0.465	0.378	0.319
			1.351	0.731	0.550	0.439	0.367	0.318
		1.741	0.968	0.683	0.526	0.428	0.360	0.309
	2.418	1.478	0.927	0.668	0.519	0.424	0.358	0.310
		1.741	0.968	0.683	0.526	0.428	0.360	0.309
			1.351	0.731	0.550	0.439	0.367	0.318
				1.144	0.585	0.465	0.378	0.319
					1.014	0.483	0.422	0.328
						0.925	0.356	0.457
							0.896	0.054
								1.026

Sinks Evenly Distributed Between (-2, 0, 1) and (2, 0, 1)

No. Sinks	2	4	6	8	10	12	14
Sum	4.182	5.348	5.701	5.838	5.894	5.915	5.930
Ind. Sinks							0.995
						0.895	0.147
					0.965	0.434	0.456
				1.072	0.530	0.436	0.350
			1.234	0.650	0.503	0.406	0.345
		1.511	0.833	0.608	0.478	0.394	0.336
	2.091	1.162	0.783	0.587	0.468	0.389	0.330
	2.091	1.162	0.783	0.587	0.468	0.389	0.330
		1.511	0.833	0.608	0.478	0.394	0.336
			1.234	0.650	0.503	0.406	0.345
				1.072	0.530	0.436	0.350
					0.965	0.434	0.456
						0.895	0.147
							0.995

Sinks Evenly Distributed Between (-0.5, 0, 1) and (0.5, 0, 1)

No. Sinks	1	3	5	7	9	11
Sum	2.418	3.331	3.331	3.331	3.331	3.331
Ind. Sinks						1.294
					1.294	0.000
				1.294	0.000	0.000
			1.294	0.000	0.000	0.000
		1.294	0.000	0.000	0.000	0.000
	2.418	0.742	0.742	0.742	0.742	0.742
		1.294	0.000	0.683	0.000	0.000
			1.294	0.000	0.000	0.000
				1.294	0.000	0.000
					1.294	0.000
						1.294

Sinks Evenly Distributed Between (-0.5, 0, 1) and (0.5, 0, 1)

No. Sinks	2	4	6	8	10	12
Sum	3.302	3.312	3.323	3.327	3.329	3.330
Ind. Sinks						1.282
					1.277	0.000
				1.279	0.000	0.000
			1.300	0.000	0.000	0.000
		1.389	0.000	0.000	0.000	0.000
	1.651	0.266	0.360	0.384	0.386	0.382
	1.651	0.266	0.360	0.384	0.386	0.382
		1.389	0.000	0.000	0.000	0.000
			1.300	0.000	0.000	0.000
				1.279	0.000	0.000
					1.277	0.000
						1.282

Dual/Triple Completion

Dual Completion: Place <u>sink</u> in water layer

Dual/Triple Completion

Dual Completion: Place <u>sink</u> in water layer

Triple Completion: Also place equal strength <u>source</u> further down in water layer

Dual/Triple Completion

Dual Completion: Place <u>sink</u> in water layer

Triple Completion: Also place equal strength <u>source</u> further down in water layer

Muskat model formulation identical, just replace F_i values for water sinks by $-F_i\mu_w/\mu_{oil}$.

Muskat – Stable Dual Completion

Surface Shapes

 $F_1 = 5$ at 1, $F_2 = 1.35, 1.75, \dots, 2.75$ at -0.5

Conclusion

- Muskat model approximates interface height very quickly
- Developed a constrained nonnegative Nelder Mead method for finding optimal flow rates
- There is a minimal spacing beyond which additional sinks are superfluous
- Dual and triple completion alternative methods for delaying breakthrough

Conclusion

- Muskat model approximates interface height very quickly
- Developed a constrained nonnegative Nelder Mead method for finding optimal flow rates
- There is a minimal spacing beyond which additional sinks are superfluous
- Dual and triple completion alternative methods for delaying breakthrough

Further work:

- BIM formulation for dual and triple completion
- Other interesting geometries?

