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The primes . . . those exasperating, unruly integers that refuse to be divided evenly by any integers

except themselves and one.
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Research Projects
Numerical Analysis
Accurately finding multiple roots.

Euler-Maclaurin-like summation for Simp-
son’s rule.

Placing a circle pack.

Applied Math
Deformation of half-spaces.
Micro-pore diffusion in a finite volume.

Froth Flotation.
Deformation of spectacle lenses.

Pure Math
Fractals in regular graphs.

Integral approximations to π.
The Hamiltonian cycle problem.

New
Improving kissing sphere bounds.
Counting cycles in graphs.

Integer-valued logistic equation.
Fitting data to predator-prey.

Representing reals using bounded
continued fractions.

Analysis of “Dreidel”.
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The Prime Number Theorem

A prime number is any integer ≥ 2 with no divisors except itself and one.

Let π(x) be the number of primes less than or equal to x. (π(x)→∞ as
x→∞)

The prime number theorem states that

π(x) ∼
x

lnx
or lim

x→∞

π(x)

x/ lnx
= 1.

Another form states that

π(x) ∼ −

∫ x

0

dt

ln t
(= li(x))
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Plot of π(x), x/ ln x, li(x)
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History of the PNT

Legendre (1798) conjectured π(x) =
x

A lnx+B
.

Legendre (1808) used numerical evidence to claim

π(x) =
x

lnx+A(x)
, where lim

x→∞
A(x) = 1.08366 . . ..

Gauss (1849, as early as 1792) used numerical evidence to
conjecture that

π(x) ∼ −

∫ x

0

dt

ln t
.

Dirichlet (1837) introduced Dirichlet series:

f̂(s) =
∞∑

n=1

f(n)

ns
.
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History of the PNT (cont’d)

Chebyshev (1851) introduced

θ(x) =
∑

p≤x

ln p, ψ(x) =
∑

pm≤x

ln p,

and showed that the PNT is equivalent to

lim
x→∞

θ(x)

x
= 1, lim

x→∞

ψ(x)

x
= 1.

Riemann (1860) introduced the Riemann zeta function:

ζ(s) =
∞∑

n=1

1

ns
=
∏

p

(
1−

1

ps

)−1

, <(s) > 1.
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Riemann Zeta Function

Integrals extend to whole plane by analytic continuation.

Only singularity at s = 1, ζ(s) =
1

s− 1
+ γ + γ1(s− 1) + · · ·.

Showed using residue calculus that

ψ(x) = x−
∑

ρ

xρ

ρ
−
ζ ′(0)

ζ(0)
−

1

2
ln
(
1− x−2

)
,

where ρ are the non-trivial zeros of ζ(s), so the PNT is equivalent to

lim
x→∞

1

x

∑

ρ

xρ

ρ
= 0.

Riemann hypothesis: <(ρ) =
1

2
.
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First Proof of the PNT

Hadamard & de la Valèe Poussin (1896, independently) showed ∃a, t0

such that ζ(σ + it) 6= 0 if σ ≥ 1−
1

a log |t|
, |t| ≥ t0, so

ψ(x) = x+O
(
xe−c(log x)1/14

)
.
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Improvements to the PNT Proof

Mertens (1898) gave a short proof that ζ(s) 6= 0, <(s) = 1.

Ikehara (1930) & Wiener (1932) used Tauberian theorems to prove
Ikehara’s theorem:

Let f̂(s) =
∞∑

n=1

an

ns
, {ai} real and nonnegative.

If f̂(s) converges for <(s) > 1, and ∃A > 0 s.t. for all t ∈ R,

f̂(s)−
A

(s− 1)
→ finite limit as s→ 1+ + it, then

∑
n≤x an ∼ Ax.

This can be used to show lim
x→∞

ψ(x)/x = 1 directly.
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Improvements (cont’d)

Erdös & Selberg (1949) produced an “elementary” proof – no complex
analysis.

Newman (1980) showed lim
x→∞

ψ(x)/x = 1 using straightforward

contour integration.

Lucas, Martin & Lever – current work, looks at π(x) directly.
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Laplace Transforms

L{f(x)} = f̄(s) =

∫ ∞

0

e−sxf(x) dx.

L−1{f̄(s)} = H(x)f(x) =
1

2πi

∫ ε+i∞

ε−i∞

f̄(s)esx ds.

H is the unit step function.

ε to the right of any singularities in f̄(s).

assume f̄(s)→ 0 as |s| → ∞.

Choose ḡ(s) such that f̄(s)− ḡ(s) is analytic at the rightmost
singularity in f̄(s). If ḡ(s)→ 0 as |s| → ∞, then shift the integration
contour to the left, apply the Cauchy integral theorem, and get that
f(x) = g(x) +O(xc), where c is the new position of ε. (e.g. Smith,
1966)
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Arithmetic Functions and Dirichlet Series

An arithmetic function is a map f : N→ C.

Its Dirichlet series is f̂(s) =
∞∑

n=1

f(n)

ns
,

convergent for <(s) > c if f(n) = O(nc−1) as n→∞.

Given that

1

2πi

∫ ε+i∞

ε−i∞

xs

s
ds =





0, x < 1,

1, x > 1,
ε > 0,

then

1

2πi

∫ ε+i∞

ε−i∞

xsf̂(s)
ds

s
=

∞∑

n=1

f(n)×





0, x < n,

1, x > n,

=
∑

1≤n≤x

f(n).
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The Transform

We can recognize this as the inversion of a Laplace-like transform
(x = et):

(Mf)(t) =

∫ ∞

1

f(x)x−s−1 dx,

H(x− 1)f(x) =
1

2πi

∫ ε+i∞

ε−i∞

(Mf)(t)xt dt.

Some useful transform pairs are:

f
M
←→ M(f)

γ + ln(lnx)
1

s
log

1

s

xali(xc)
1

s− a
log

c

s− a− c
, <(s) > c > 0

Γ(k)−1xc(lnx)k−1 1

(s− c)k
, <(s) > c; k > 0
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Average Order Asymptotics

The average order of an arithmetic function is f̃(x) =
1

x

∑

1≤n≤x

f(n).

Then xf̃(x) =
1

2πi

∫ ε+i∞

ε−i∞

f̂(s)xs−1 ds,

and xf̃(x)
M
←→

f̂(s)

s
and f̃(x)

M
←→

f̂(s+ 1)

s+ 1
.

So, to find the asymptotic form of an average order:

find its Dirichlet series f̂(s) in closed form,

identify the position and form of the singularities in
f̂(s)

s
,

sum the inverse transforms of the singular parts.

Direct PNT – p. 15/28



Average Order Asymptotics

The average order of an arithmetic function is f̃(x) =
1

x

∑

1≤n≤x

f(n).

Then xf̃(x) =
1

2πi

∫ ε+i∞

ε−i∞

f̂(s)xs−1 ds,

and xf̃(x)
M
←→

f̂(s)

s
and f̃(x)

M
←→

f̂(s+ 1)

s+ 1
.

So, to find the asymptotic form of an average order:

find its Dirichlet series f̂(s) in closed form,

identify the position and form of the singularities in
f̂(s)

s
,

sum the inverse transforms of the singular parts.

Direct PNT – p. 15/28



Average Order Asymptotics

The average order of an arithmetic function is f̃(x) =
1

x

∑

1≤n≤x

f(n).

Then xf̃(x) =
1

2πi

∫ ε+i∞

ε−i∞

f̂(s)xs−1 ds,

and xf̃(x)
M
←→

f̂(s)

s
and f̃(x)

M
←→

f̂(s+ 1)

s+ 1
.

So, to find the asymptotic form of an average order:

find its Dirichlet series f̂(s) in closed form,

identify the position and form of the singularities in
f̂(s)

s
,

sum the inverse transforms of the singular parts.

Direct PNT – p. 15/28



Average Order Asymptotics

The average order of an arithmetic function is f̃(x) =
1

x

∑

1≤n≤x

f(n).

Then xf̃(x) =
1

2πi

∫ ε+i∞

ε−i∞

f̂(s)xs−1 ds,

and xf̃(x)
M
←→

f̂(s)

s
and f̃(x)

M
←→

f̂(s+ 1)

s+ 1
.

So, to find the asymptotic form of an average order:

find its Dirichlet series f̂(s) in closed form,

identify the position and form of the singularities in
f̂(s)

s
,

sum the inverse transforms of the singular parts.

Direct PNT – p. 15/28



Riemann and Prime Zeta-Functions

The Riemann zeta-function is the Dirichlet series of f(n) = 1:

ζ(s) =
∞∑

n=1

1

ns
=
∏

p

1

1− p−s
.

ζ(s) only singularity ∼
1

s− 1
at s = 1, and ζ(s) 6= 0 for <(s) ≥ 1.

The prime zeta-function is the Dirichlet series of

f(n) =





1, n prime,

0, otherwise,
: P (s) =

∑

p

1

ps
.
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The Prime Zeta-Function

Now

log ζ(s) =
∑

p

log

(
1

1− p−s

)
=

∑

p

∞∑

m=1

1

mpms

=
∞∑

m=1

1

m
P (ms).

Using the Möbius inversion formula,

P (s) =
∞∑

n=1

µ(n)

n
log ζ(ns),

where µ(n) =





0, n contains a square factor,

(−1)m, n a product of m distinct primes.
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The Prime Number Theorem

Let

f(n) =





1, n prime,

0, otherwise,

Then

f̂(s) = P (s) and xf̃(x) = π(x).

So

π(x)
M
←→

P (s)

s
.

The rightmost singularity of
P (s)

s
is

1

s
log

1

s− 1
at s− 1, whose inverse

transform is li(x).
So π(x) ∼ li(x).
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Riemann’s Form of π(x)

Recall P (s) =

∞∑

n=1

µ(n)

n
log ζ(ns).

Singularity in ζ(s) at s = 1 means singularities in
P (s)

s
at s =

1

n
, µ(n) 6= 0.

At these points, singularities take the form
µ(n)

ns
log

1

ns− 1
, whose inverse

transforms are µ(n)
li(x1/n)

n
.

So

π(x) ∼ li(x) +
∞∑

n=2

µ(n)

n
li
(
x1/n

)
= R(x).
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“Exact” Form of π(x)

Recall P (s) =

∞∑

n=1

µ(n)

n
log ζ(ns).

Zero of ζ(s) at s = ρm means a singularity in P (s)/s at s = ρm of the form
1

s
log

(
s

ρm
− 1

)
, whose inverse is −li(xρm).

As for Riemann’s form, singularity in ζ(s) at s = ρm also means
singularities in P (s) at s = ρm/n, µ(n) 6= 0. These singularities are of the

form
µ(n)

ns
log

(
ns

ρm
− 1

)
, whose inverses are −µ(n)li

(
xρm/n

)/
n.

The contributions of all singularities related to s = ρm contribute −R(xρm)

to π(x), and so

π(x) = lim
k→∞

Rk(x) where Rk(x) = R(x)−
k∑

m=−k

R(xρm).
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Number of Distinct Primes

Define ω(n) to be the number of distinct primes in the prime
decomposition of n, and Ω(n) to be the total number of primes.

If n = pα1

1 pα2

2 . . . pαk

k (pi’s some primes), then ω(n) = k and
Ω(n) = α1 + α2 + · · ·+ αk.

It is well known (e.g. Hardy & Wright) that ω̃(n) = ln(lnn) +B1 + o(1),

where B1 = γ +
∑

p

{
ln

(
1−

1

p

)
+

1

p

}
= 0.26149 72128 47642 . . .,

and Ω̃(n) = ω̃(n) +
∑

p

1

p(p− 1)
= ω̃(n) +B2 −B1,

where B2 = 1.03465 38818 97438 . . ..
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Asymptotics for ω

We can show that

ω̂(s) = ζ(s)P (s), and ω̃(x)
M
←→

ζ(s+ 1)

(s+ 1)
P (s+ 1).

Expanding around the rightmost singularity at the origin,

1

s
log

1

s
+

1

s

∞∑

m=2

µ(m)

m
ln ζ(m) +

γ − 1

s+ 1
log

1

s
+O(1).

Inversion gives

ω̃(x) ∼ ln(lnx) + γ +
∞∑

m=2

µ(m)

m
ln ζ(m) + (γ − 1)

li(x)
x

.

Previously ω̃(n) ∼ ln(lnn) + γ +
∑

p

{
ln

(
1−

1

p

)
+

1

p

}
.
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Asymptotics for Ω

Similarly,

Ω̂(s)− ω̂(s) = ζ(s)
∞∑

k=2

P (ks),

Ω̃(x)− ω̃(x)
M
←→

ζ(s+ 1)

s+ 1

∞∑

k=2

P (k(s+ 1)),

Ω̃(x) ∼ ω̃(x) +
∞∑

k=2

P (k).

(
Old Ω̃(n) = ω̃(n) +

∑

p

1

p(p− 1)

)
.
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Results for ω and Ω
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Asymptotic Errors for ω and Ω
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Conclusion

We have developed a generalization of Ikehara’s theorem that relates the
asymptotic behavior of the average order of an arithmetic function to the
singularities in its Dirichlet series.

We have used this technique to prove the prime number theorem directly,
without recourse to ψ(x), derived both the Riemann and “exact” forms of
π(x), and found a correction to the classical ω, Ω average order
asymptotics.
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Further work:

Apply technique to other arithmetic functions whose Dirichlet
functions are known in closed form. Will the results improve the
classical results?

Reformulation of the twin prime conjecture:

π2(x) is the number of twin primes between 1 and x, and is x times
the average order of t(n), where t(n) = p(n)p(n− 2)

Can we use results for p to find the Dirichlet series for t, find the
form of the rightmost singularity of t̂, and find a result relating this

to the conjectured asymptotic π2(x) ∼
2Cx

(log x)2
, where

C =
∏

p≥3

p(p− 2)

(p− 1)2
?
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An Integral Proof That π < 355/113

∫ 1

0

x4(1− x)4

1 + x2
dx =

22

7
− π, which shows π <

22

7
(Dalzell 1971, Mahler).

In fact Im,n =

∫ 1

0

xm(1− x)n

1 + x2
dx = a+ bπ + c ln(2), (Backhouse 1995),

ab < 0, and if 2m− n(mod 4) ≡ 0, then c = 0.

Unfortunately, no integers m,n lead to Im,n involving other continued
fractions for π.

However, ∫ 1

0

x8(1− x)8(25 + 816x2)

3164(1 + x2)
dx =

355

113
− π,

which proves π < 355/113.
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