
Discretized Picard’s Method

James H. Money James S. Sochacki

March 19, 2007

Abstract

Using the Modified Picard Method of Parker and Sochacki [1, 2], we
derive a hybrid scheme using the analytical Picard method with approxi-
mations to the differential operators. This new method, called Discretized
Picard’s Method, uses approximations in the space dimensions to compute
derivatives but utilizes a continuous approximation in the time dimension.
We illustrate the method using finite difference schemes on linear and non-
linear PDEs. We derive the stability condition for several examples and
show the stability region is increasing up to the CFL condition. Finally,
we demonstrate results in one and two dimensions for this method.

1 Introduction

One way to find the solution of an ordinary differential equation is to apply
Picard’s Method. Picard’s Method is a method that has been widely studied
since its’ introduction by Emile Picard in [3]. The method was designed to prove
existence of solutions of ordinary differential equations(ODEs) of the form{

y′(t) = f(t, y)
y(t0) = y0

by defining the recurrence relation based on the fact

y(t) = y0 +
∫ t

t0

f(s, y(s)) ds.

The only assumptions that are made are f and ∂f
∂y are continuous in some

rectangle surrounding the point (t0, y0). In particular, the recurrence relation
is given by {

φ(0)(t) = y0

φ(n)(t) = y0 +
∫ t

t0
f(s, φ(n−1)(s)) ds, n = 1, 2, . . .

. (1)

While the recurrence relation results in a straight-forward algorithm to imple-
ment on the computer, the iterates become hard to compute after a few steps.

1

For example, consider the ODE{
y′(t) = 1/y(t)
y(1) = 1

,

which has the solution y(t) =
√

2t− 1. However, the Picard iterates are

φ(0)(t) = 1
φ(1)(t) = 1 +

∫ t

1
1 ds = 1 + (t− 1) = t

φ(2)(t) = 1 +
∫ t

1
1/s ds = 1 + ln t

φ(3)(t) = 1 +
∫ t

1
1/(1 + ln s) ds

,

and we note the last integral is difficult to calculate. Continuing beyond the
fourth iterate only results in increasing problems with calculating the integral.
As a result, Picard’s Method is generally not used in this form.

Parker and Sochacki, in [1], considered the same problem, but restricted the
problem to an autonomous ODE with t0 = 0 and f restricted to polynomial
form. In this setting, the iterates result in integration consisting of polynomials.
They also showed that the n-th Picard iterate is the MacLaurin polynomial of
degree n for y(t) if φ(n)(t) is truncated to degree n at each step. This form of
Picard’s method is called the Modified Picard Method(MPM).

In [1], Parker and Sochacki showed that a large class of ODEs could be con-
verted to polynomial form using substitutions and using a system of equations.
While this class of ODEs is dense in the analytic functions, it does not include
all analytic functions. They also showed one can approximate the solution by a
polynomial system and the resulting error bound when using these approxima-
tions. Parker and Sochacki also showed that if t0 6= 0, one computes the iterates
as if t0 = 0 and then the approximated solution to the ODE is φ(n)(t + t0).

In [2], Parker and Sochacki showed that the ODE based method can be
applied to partial differential equations(PDEs) when the PDE is converted to
an initial value problem form for PDEs. The resulting solution from MPM is
the truncated power series solution from the Cauchy-Kovelsky theorem[4].

Both the ODE and PDE versions of MPM are now used to solve a number of
problems including some stiff ODEs. Rudmin[5] describes how to use the MPM
to solve the N-Body problem for the solar system accurately. Pruett, et. al. [6],
analyzed how to adaptively choose the timestep size and the proper number of
iterates for a smaller N-Body simulation and when a singularity was present.

Carothers, et. al., in [7], have proved some remarkable properties of these
polynomial systems. They constructed a method by which an ODE could be
analytic but could not be converted to polynomial form. They provide a method
to convert any polynomial system to a quadratic polynomial system and show
how to decouple any system of ODEs into a single ODE. Extending the work
of Rudmin, they derive an algebraic method to compute the coefficients of the
MacLaurin expansion using Cauchy products.

Warne, et. al. [8], computed an error bound when using the MPM that
does not involve using the n-th derivative of the function. This explicit a-priori

2

bound was then used to adaptively choose the timestep size for several problems.
They showed a way to generate the Pade approximation using the MacLaurin
expansion from MPM.

The MPM has been extended to use parallel computations and adaptively
choose the timesteps as the algorithm executes. In [9], the method is modified
to include a generic form for ODEs and PDEs and allowed the computation in
parallel for any system of equations using a generic text based input file. This
method was later modified using the error bound result in [8] to choose adaptive
timesteps while performing the parallel computations.

To illustrate the MPM, consider solving the ODE{
y′(t) = y2(t)
y(0) = 1

, (2)

where the solution to (2) is given by y(t) = 1/(1 − t). The Modified Picard
iterates are

φ(0)(t) = 1

φ(1)(t) = 1 +
∫ t

0

12 ds = 1 + t

φ(2)(t) = 1 +
∫ t

0

(1 + s)2 ds = 1 + t + t2 + t3/3.

We truncate to degree two since this is the second iterate and proceed as before,
calculating

φ(3)(t) = 1 +
∫ t

0

(1 + s + s2)2 ds = 1 + t + t2 + t3 + . . .

φ(4)(t) = 1 +
∫ t

0

(1 + s + s2 + s3)2 ds = 1 + t + t2 + t3 + t4 + . . .

To compare this to the MacLaurin expansion, we get, in fact, that

y(t) = 1/(1− t) = 1 + t + t2 + t3 + t4 + . . . ,

which matches precisely at each degree to the modified Picard iterates.
To highlight the implementation of MPM for PDEs [2], consider the Sine-

Gordon equation
utt = uxx + sinu

u(x, 0) = cos x

ut(x, 0) = 0
.

The right hand side of this PDE is not in polynomial form. In particular, sinu is
not polynomial. Let z = ut, v = cos u, and w = sin u. Then, the corresponding

3

system after substituting is
ut = z u(x, 0) = cos x

zt = uxx + w z(x, 0) = 0
vt = −wz v(x, 0) = cos (cos x)
wt = vz w(x, 0) = sin (cos x)

.

Since the right hand side is polynomial and equivalent to the Sine-Gordon equa-
tion, we call the Sine-Gordon equation projectively polynomial. The MPM
is applied on the polynomial system.

2 Modified Picard Method for PDEs

In the PDE version of Picard’s Method[2], one considers{
ut = P (u, ∂u

∂x , ∂u
∂y , . . . , ∂2u

∂x2 , ∂2u
∂x∂y , . . .)

u(·, 0) = q(·)
,

where P and q are n variable polynomials. Parker and Sochacki’s method is to
compute the iterates{

φ(0)(t) = q(·)
φ(n+1)(·, t) = q(·) +

∫ t

0
P (φ(n)(·, s)) ds, n = 0, 1, 2, . . .

.

We truncate the terms with t-degree higher than n at each step since these terms
do not contribute to the coefficient for the tn+1 term in the next iteration. We
denote the degree of the Picard iterate as j for φ(j)(t), given this truncation that
is performed. This method is summarized below in Algorithm 1.

Algorithm 1 Modified Picard Method for PDEs
Require: q, the initial condition, and P the polynomial system
Require: ∆t and numtimesteps
Require: degree the degree of the Picard approximation

for i from 1 to numtimesteps do
φ(0)(·, t) = q(·)
for j from 1 to degree do

φ(j)(· · · , t) = q(·) +
∫ t

0
P (φ(j−1)(·, s)) ds

Truncate φ(j)(·, t) to degree j in t.
end for
q(·) = φ(degree)(·,∆t)

end for

This algorithm is called the Modified Picard Method(MPM). While the
MPM algorithm easily computes the approximates since it only depends on
calculating derivatives and integrals of the underlying polynomials, it has some

4

limitations. In [2], the authors showed how to handle the PDE including the
initial conditions. However, the method requires the initial conditions in poly-
nomial form. While in some PDEs this is the case, many times one computes a
Taylor polynomial that approximates the initial condition to high degree. This
results in a substantial increase in computational time. For some problems, the
initial condition is not explicitly known, but only a digitized form of the data.
For example, in image processing, most of the data has already been digitized
and we have to interpolate the data using polynomials in order to apply the
MPM. If this is done, the resulting polynomial may not effectively approximate
the derivatives of the original function. The polynomial approximation might
contain large amounts of oscillations that does not represent the underlying data
accurately. Finally, we would also like to be able to handle boundary conditions
in a simple manner, but keep the extensibility of the MPM, which does not
allow for a boundary condition.

3 Discretized Picard’s Method

To overcome the deficiencies listed in section 2, we consider the underlying
discrete data directly. We consider the initial condition u0 = u0i1i2...im

where
u0 ∈ Rn1×n2×···×nm is a matrix of m dimensions. Instead of applying the
derivatives directly, we consider a set of linear operators Li where i = 1, 2, . . . k
that approximate the derivatives. Then, instead of solving the PDE{

ut = P (u, ∂u
∂x , ∂u

∂y , . . . , ∂2u
∂x2 , ∂2u

∂x∂y , . . .)
u(·, 0) = q(·)

,

we replace the various derivatives by Li and solve{
ut = P (u, L1u, L2u, . . . , Lku)
u(·, 0) = u0i1i2...im

.

We define multiplication of two elements u and v component-wise, instead of
using standard matrix multiplication. Then, we compute the iterates{

φ(0)(t) = u0

φ(n+1)(t) = u0 +
∫ t

0
P (φ(n)(s), L1φ

(n)(s), L2φ
(n)(s), . . . , Lkφ(n)(s)) ds, n = 0, 1, 2, . . .

.

The resulting method computes the discretized solution of the PDE, but is
continuous in the time variable. In section 4, we illustrate the importance of
requiring the operators Li to be linear in order to get a similar result to the
MPM. Given we are utilizing the underlying discrete data in the space variables,
we call this new method the Discretized Picard Method(DPM). The new
method is listed in Algorithm 2.

5

Algorithm 2 Discretized Picard Method
Require: u0, the initial condition, and P the polynomial system
Require: L1, L2, . . . , Lk, the linear approximations to the derivatives
Require: ∆t and numtimesteps
Require: degree the degree of the Picard approximation

for i from 1 to numtimesteps do
φ(0)(·, t) = u0

for j from 1 to degree do
φ(j)(t) = u0 +

∫ t

0
P (φ(j−1)(s), L1(φ(j−1)(s), . . . , Lk(φ(j−1)(s)) ds

end for
u0 = φ(degree)(∆t)
Enforce boundary conditions on u0.

end for

3.1 Computation of Li

For the linear operator, there are many discrete operators available for Li[see [10,
11]]. For example, one could use finite differences, finite elements, or Galerkin
methods. In this paper, the operator chosen is the finite difference(FD) operator.
For example, if ut = uxx, we can choose the operator L to satisfy the central
difference scheme

Luj =
uj+1 − 2uj + uj−1

∆x
.

The operator L is extended easily to the two and three dimension case. In sec-
tion 5, we show how the choice of the operator determines the stability condition
for the maximum timestep size. In addition, the first and last terms in the one
dimension case, and all the boundary terms in the two and three dimension
cases will have to be handled separately. We discuss this further in section 3.2.

Recall, from the introduction, that a PDE ut = f(u, ∂u
∂x , . . .), is consid-

ered projectively polynomial if it can be rewritten as a system of equations
in n-variables so that Y ′ = P (Y, ∂Y1

∂x , . . .) where Y = [Y1, . . . , YN] and P is
polynomial.

For a general class of linear operators based on a linear finite difference(FD)
scheme, we deduce that the system remains projectively polynomial, which is
summarized by the lemma and theorem below.

Lemma 3.1 Consider solving via the DPM the PDE{
ut = Mu

u(·, 0) = u0

for some linear differential operator M and initial matrix u0. Assume that
L ≈ M is the corresponding linear finite difference operator. Assume L is
defined by

Lui1i2...im =
∑

j1,j2,...,jm

αj1,j2,...,jmui1+j1,i2+j2,...,im+jm .

6

Then, the PDE is projectively polynomial.

Proof. This follows directly from the definition since Lu is the sum of degree
one terms.

Since the linear operator L is projectively polynomial, we see by extension,
the general problem is also projectively polynomial.

Theorem 3.1 Consider solving the PDE{
ut = P (u, ∂u

∂x , ∂u
∂y , . . . , ∂2u

x2 , . . .)
u(·, 0) = u0(· · ·)

by using the DPM method of{
ut = P (u, L1u, L2u, . . . , Lmu)
u(·, 0) = u0i1i2...im

where each Li, i = 1, . . . m is linear as in Lemma 3.1. Then, the system is
projectively polynomial.

Proof. From Lemma 3.1, we know that each Li is polynomial and in fact linear.
The resulting system is the composition of polynomial terms and has to be
projectively polynomial.

As a result, the results of the MPM method with regards to truncating terms
can be extended to DPM. Thus, after each iterate is computed, we truncate the
terms to degree n, assuming we have computed the n-th iterate.

3.2 Boundary Conditions

The boundary conditions need to be handled carefully in DPM due to the use of
higher degree iterates. When the degree of the iterate is one, normal boundary
conditions are applied, similar to a FD scheme. However, since the degree one
iterate is used to compute the second degree iterate, and similarly for degree
three and higher, we must calculate the values at the boundary. The approach
we take is to compute one sided derivatives for the FD scheme at the boundaries.
Figure 1 illustrates the problem with boundary conditions. When using a degree
one iterate, the terms at point x1 and xJ need to be calculated, where J is the
number of discrete data points and the linear operator has a 3 point stencil. If
we do not enforce the one sided derivatives at this stage, the data at x1 and xJ

is invalid for the degree two iterate, and then, x2 and xJ−1 is invalid after the
second iterate is computed. This continues, reducing the available data as the
degree of the Picard iterate increases, unless we enforce one sided derivatives at
each step.

As a result, we enforce the linear operator to compute one sided derivatives
at the edges of the domain. For example, in the one dimension example of

7

Figure 1: Boundary Conditions The similarly shaded regions are lost if one sided
derivatives are not enforced as the degree of the iterates increase.

ut = uxx with L being the centered difference scheme, we use the end condition
in one dimension to be

LuJ =
uJ − 2uJ−1 + uJ−2

∆x2

and a similar term for Lu1. Now, we have all the values, and there is no
ambiguity in the values at the boundary for any of the degrees of the iterates.

4 Comparison of MPM with DPM and Finite
Differences

In this section, we compare the MPM to the DPM. While the MPM computes
the power series form for the function u, the DPM does the same computation,
but with an approximation to the derivatives at each step. For example, we
consider solving the following PDE{

ut = ux

u(x, 0) = u0(x)

compared to the DPM method of{
ut = Lu

u(x, 0) = u0(x)
, (3)

where L is the operator for central difference scheme. If we compute the iterates
for MPM we get,

p(0)(t) = u0

p(1)(t) = u0 + u0xt
p(2)(t) = u0 + u0xt + u0xxt2/2
p(3)(t) = u0 + u0xt + u0xxt2/2 + u0xxxt3/6

.

,

8

while the DPM computes

φ(0)(t) = u0

φ(1)(t) = u0 + L(u0)t
φ(2)(t) = u0 + L(u0)t + L2(u0)t2/2
φ(3)(t) = u0 + L(u0)t + L2(u0)t2/2 + L3(u0)t3/6

.

and we note that L2 would be a 5 point approximation to uxx and L3 would be
a 7 point approximation to uxxx. By choosing L to be the centered difference
scheme, (3) corresponds to the approximated derivatives.

If we consider a nonlinear example, the correspondence between derivatives
and the linear operator is still true. If we consider Burger’s equation{

ut + (u2

2)x = 0
u(x, 0) = α(x)

,

we can first project to a simpler polynomial system to ease our calculations. Let
w = u2

2 to get the equivalent system{
ut + wx = 0 u(x, 0) = α(x)

wt + uwx = 0 w(x, 0) = α2(x)
2 = β(x)

.

Consider the following integral form of this system

u(x, t) = α(x)−
∫ t

0

wx(x, τ)dτ

w(x, t) = β(x)−
∫ t

0

u(x, τ)wx(x, τ)dτ

and the Picard iteration for this system

u(k+1)(x, t) = α(x)−
∫ t

0

w(k)
x (x, τ)dτ

w(k+1)(x, t) = β(x)−
∫ t

0

u(k+1)(x, τ)w(k+1)
x (x, τ)dτ.

Now let L be a linear approximation for ∂
∂x . This leads to the following discrete

in space approximation

u
(k+1)
j (t) = αj −

∫ t

0

L[w(k)
j (τ)]dτ

and

w
(k+1)
j (t) = βj −

∫ t

0

u
(k+1)
j (τ)L[w(k+1)

j (τ)]dτ

to this iteration where j indicates xj = j∆x. We let

9

u
(0)
j = αj and w

(0)
j = βj .

The Picard iterates for k = 0 are

u
(1)
j (t) = αj −

∫ t

0

L[w(0)
j (τ)]dτ = αj − L[w(0)

j]t

w
(1)
j (t) = βj −

∫ t

0

u
(0)
j (τ)L[w(0)

j (τ)]dτ = βj − u
(0)
j L[w(0)

j]t.

Similarly for k = 1, we get

u
(2)
j (t) = αj −

∫ t

0
L[w(1)

j (τ)]dτ = αj −
∫ t

0
L[βj − u

(0)
j L[w(0)

j]τ]dτ

= αj − L[w(0)
j]t + L[u(0)

j L[w(0)
j]] t2

2

and

w
(2)
j (t) = βj −

∫ t

0
u

(1)
j (τ)L[w(1)

j (τ)]dτ = βj −
∫ t

0
(αj − L[w(0)

j]τ)L[βj − u
(0)
j L[w(0)

j]τ)]dτ

= βj − u
(0)
j L[w(0)

j]t + (u(0)
j L[u(0)

j L[w(0)
j]] + L[w(0)

j]2) t2

2

.

Then for k = 2 we have

u
(3)
j (t) = αj −

∫ t

0
L[w(2)

j (τ)]dτ

= αj −
∫ t

0
L[βj − u

(0)
j L[w(0)

j]τ + (u(0)
j L[u(0)

j L[w(0)
j]] + L[w(0)

j]2) τ2

2 dτ

= αj − L[w(0)
j]t + L[u(0)

j L[w(0)
j]] t2

2 − L[u(0)
j L[u(0)

j L[w(0)
j]] + (L[wj

0])
2)] t3

3!

and

w
(3)
j (t) = βj −

∫ t

0
u

(2)
j (τ)L[w(2)

j (τ)]dτ = βj −
∫ t

0
(αj − L[w(0)

j]τ + L[u(0)
j L[w(0)

j]] τ2

2)∗
L[βj − u

(0)
j L[w(0)

j]τ + (u(0)
j L[u(0)

j L[w(0)
j]] + L[w(0)

j]2) τ2

2]dτ

= βj − u
(0)
j L[w(0)

j]t + (u(0)
j L[u(0)

j L[w(0)
j]] + L[w(0)

j]2) t2

2

−(u0
jL[u(0)

j L[u(0)
j L[w(0)

j]] + L[w(0)
j]2]+

3L[w0
j]L[u0

jL[w0
j] + L[w0

j]L[u(0)
j L[w(0)

j]]) t3

3!

.

And we can continue for higher values of k. However, we can now replace w0
j

with (u0
j)

2/2 and have

u
(1)
j (t) = αj − L[(u

0
j)2

2]t

u
(2)
j (t) = αj − L[(u

0
j)2

2]t + L[u(0)
j L[(u

0
j)2

2]] t2

2

u
(3)
j (t) = αj − L[(u

0
j)2

2]t + L[u(0)
j L[(u

0
j)2

2]] t2

2 − L[u(0)
j L[u(0)

j L[
(u

(0)
j)2

2]] + (L[
(u

(0)
j)2

2])2] t3

3!

.

We note that these iterates are the same as the MPM iterates, except with
the linear approximation L applied instead of differentiating at each step. The
pattern can now be extended as well for other nonlinear problems. This process
also works on generating a space discretization with time Picard iteration on
any equation of the form {

ut + (f(u))x = 0
u(x, 0) = α

10

where f is polynomial.
The DPM method iterates of degree one and two are related to standard FD

schemes. The forward time FD scheme is related to the degree one iterate of
DPM. When the degree of DPM is two, we get the DPM method is equivalent
to the Lax-Wendroff scheme when the appropriate operator is chosen. The
following theorem illustrates the relations between the forward time difference
scheme and the Lax-Wendroff scheme.

Theorem 4.1 Consider applying the Discretized Picard Method to the equation{
ut = Mu

u(·, 0) = u0

for some linear differential operator M and initial matrix u0. Assume that
L ≈ M is the corresponding linear finite difference operator. Then, the degree
one Picard iterate is the same as the finite difference scheme using the operator
L and the degree two Picard iterate is the Lax-Wendroff scheme, if the operator
L is chosen to use a stencil with half steps.

Proof. For the degree one iterate, we compute the iterate

φ(1)(t) = u0 +
∫ t

0

Lu0 ds

Evaluating, we get
φ(1)(t) = u0 + Lu0t

and by rearranging we get

φ(1)(t) = u0 + Lu0t

φ(1)(t)− u0

t
= Lu0

φ(1)(t)− φ(0)(t)
t

= L[φ(0)(t)].

Letting un+1 = φ(1)(t) and un = φ(1)(t) we get

un+1 − un

t
= Lun

Now letting t = ∆t, we get the desired result.
For the second degree iterate, we compute

φ(2)(t) = u0 +
∫ t

0

L(φ(1)(t)(s)) ds

11

By expanding and rearranging, we obtain:

φ(2)(t) = u0 +
∫ t

0
L(u0 + Lu0s) ds

= u0 +
∫ t

0
Lu0 + L2u0s ds

= u0 + Lu0t + L2u0t
2/2

But, we note that the Lax Wendroff method computes

u0 + utt + uttt
2/2

and using that utt = L(Lu) = L2u, and choosing the correct operator L with
half step points for the stencil, the proof is complete.

5 Stability

In this section, we consider the stability of the DPM as the degree of the Picard
iterates increase. In general, we cannot determine a stability condition for any
degree m, but the stability region increases with m for all our examples. For
the first example, we consider solving the transport equation{

ut = ux

u(·, 0) = u0

using the central difference scheme

Luj =
uj+1 − uj−1

2∆x

with one sided difference at the boundary and in one dimension. The first
assertion we make is about the term Lnu, since this is needed to compute the
Von-Neumann analysis for stability.

Lemma 5.1 For the linear operator Luj = uj+1−uj−1
2∆x , we have that

Lnuj =
∑n

i=0 (−1)i (
n
i

)
uj−2i+n

(2∆x)n

Proof. We illustrate a method that is less algebraic and relies on functionology
and combinatorics for a proof. For further reference, please see [12, 13]. We
define a sequence (Un) in R[[x]] by U0(x) =

∑
j ujx

j and Un(x) =
∑

j Ln(uj)xj .
Since L is linear, we have the relation

Ln(uj) =
Ln−1(uj+1)− Ln−1(uj−1)

2∆x

12

for n > 0. Multiplying by xj and summing over all j ∈ Z+ we get that

Un(x) =
∑

j

[
Ln−1(uj+1)−Ln−1(uj−1)

2∆x

]
xj

= 1
2∆x

[
Un−1(x)

x − xUn−1(x)
]

= 1
2∆x

1−x2

x Un−1(x)

Hence, we have Un(x) =
(

1
2∆x

1−x2

x

)n

U0(x). Thus, we have

Ln(uj) = [xj]
(

1
2∆x

1−x2

x

)n

U0(x)

=
(

1
2∆x

)n [xj+n](1− x2)nU0(x)

where [xj] denotes the j-th coefficient of the expansion immediately to the right.
If we apply the binomial theorem to the right hand side we see that

Ln(uj) =
(

1
2∆x

)n ∑n
i=0

(
n
i

)
(−1)iu(j+n)−(2i)

=
(

1
2∆x

)n ∑n
i=0

(
n
i

)
(−1)iuj−2i+n

which completes the proof.

Now, given we have each term explicitly, we can now compute the stability
polynomial for any degree of our Picard iterate.

Theorem 5.1 The Picard iterates of degree m for{
ut = ux

u(·, 0) = u0

using the central scheme result in the stability polynomial

λ = 1 +
m∑

n=1

[
νn

n!

n∑
l=1

(−1)l

(
n

l

)
ei(n−2l)

]

where ν = ∆t
2∆x .

Proof. From the Picard iterates, we compute the degree m iterate to be

φ(m)(t) = u0 + Lu0t + L2u0t
2/2! + . . . Lmu0t

m/m!

Let um = φ(m)(t). Then, applying the formula above, we get

um
j = u0j + Lu0j t + · · ·+ Lmu0j t

m/m!

If t = ∆t and ν = ∆t
2∆x , we obtain

um,1
j = u0j + νLu0j + ν2/2!L2u0j + · · ·+ νm/m!Lmu0j

13

or

um,1
j = u0j +

m∑
n=1

Lnu0j ν
n/n!

By applying theorem 5.1, we obtain

um,1
j = u0j

+
m∑

n=1

νn

n!

[
n∑

l=0

(−1)l

(
n

l

)
uj−2l+n

]

Then, letting um,p
j = λpeijk∆x we get

λ = 1 +
m∑

n=1

νn

n!

[
n∑

l=0

(−1)l

(
n

l

)
ei(n−2l)

]

and this completes the proof.

Now, let us consider the case of the first four iterates to illustrate the change
in the stability condition as the degree increases:

Theorem 5.2 The stability condition for the first four iterates of{
ut = ux

u(·, 0) = u0

using the central difference scheme are

Degree Stability Condition
1 unstable
2 unstable
3 ν ≤

√
3

2

4 ν ≤
√

2

for ν = ∆t
2∆x .

Proof. While the result for the m = 1 case can be obtained by the usual
means for FD scheme, we wish to illustrate an alternate method that makes the
computation slightly easier and more straightforward. We consider the stability
polynomial

λ = 1 + ν
[
eij∆x − e−ij∆x

]
for degree one or

λ = 1 + 2iν sin θ

where θ = j∆x. We have

|λ| = λλ = 1 + 4ν2 sin2 θ

14

showing the scheme is unstable. To complete our formal analysis, define

f(ν, θ) := 1 + 4ν2 sin2 θ

Then, we fix ν and find the minimum with respect to θ by differentiating:

fθ = 8ν2 sin θ cos θ = 0

Hence, we have θ = 0, π, π/2,−π/2. Filling in those values, we obtain the set
of polynomials

f(ν, 0) = f(ν, π) = 1

f(ν, π/2) = f(ν,−π/2) = 1 + 4ν2

and we want both these to be less than one for ν ≥ 0, i.e.:{
1 ≤ 1
1 + 4ν2 ≤ 1

However, no choice of ν satisfies all these requirements and we conclude that
the degree one polynomial is unstable.

Now, we complete a similar analysis on degree two and get the same result.
But for degree m = 3, we have

λ = 1 + 2iν sin θ + ν2(cos 2θ − 1) +
ν3

3
i [sin (3θ)− 3 sin θ]

We define
f(ν, θ) := |λ|2

and compute ∂f
∂θ (ν, θ) = 0 and get the real solutions are

θ = 0,−π

2
,
π

2
.

Thus, we have the polynomial conditions{
f(ν, 0) = f(ν, π) = 1 ≤ 1
f(ν,−π/2) = f(ν, π/2) = 1− 4/3ν4 + 16/9ν6 ≤ 1

which is satisfied when ν ≤
√

3
2 . The bound for the DPM iterate of degree four

is similar to derive and the calculations result in ν ≤
√

2.

In the case of the degree three and four iterates, the CFL condition is vio-
lated. Thus, we need not choose any higher degree iterate than three for the
DPM. As a result, we use a degree three iterate with ν ≤ 1.

For the heat equation in one dimension, a similar analysis can be completed
and is listed below.

15

Theorem 5.3 The stability condition for the first four iterates of{
ut = uxx

u(·, 0) = u0

using the central difference scheme are

Degree Stability Condition
1 ν ≤ 0.5
2 ν ≤ 0.5

3 ν ≤
3
√

4+
√

17
4 − 1

4
3
√

4+
√

17
+ 1

4 ≈ 0.6281863317

4 ν ≤ 1
12

3
√

172 + 36
√

29− 5

3
3
√

172+36
√

29
+ 1

3 ≈ 0.6963233909

for ν = ∆t
(∆x)2

.

A similar analysis will work for the two dimension datasets. We consider
the process of applying the heat equation in two dimensions and we get a cor-
responding analysis for stability from the theorem below.

Theorem 5.4 The stability condition for the first four iterates for solving{
ut = uxx + uyy

u(·, 0) = u0

via DPM using the central difference scheme is

Degree Stability Condition
1 ν ≤ 0.25
2 ν ≤ 0.25

3 ν ≤ 1
2

[
3
√

4+
√

17
4 − 1

4
3
√

4+
√

17
+ 1

4

]
≈ 0.3140931658

4 ν ≤ 1
2

[
3
√

172+36
√

29
12 − 5

3
3
√

172+36
√

29
+ 1

3

]
≈ 0.3481616954

for νx = νy = ν = ∆t
(∆x)2

.

Proof. We can handle the two dimension case similar to the one dimensional
case. Here we need to form f(νx, νy, θ, ω) = λ and then solve{

fθ(νx, νy, θ, ω) = 0
fω(νx, νy, θ, ω) = 0

For the degree two iterate, we get
θ = 0 ω = 0
θ = 0 ω = π

θ = π ω = 0
θ = π ω = π

16

Then we compute f(ν, ν, ·, ·) for each value of θ and ω and we get
−1 ≤ 1 ≤ 1
−1 ≤ 1− 4ν + 8ν2 ≤ 1
−1 ≤ −1 ≤ 1− 4ν + 8ν2 ≤ 1
−1 ≤ 1− 8ν ≤ 1

Solving for all cases and combining the answer we get that ν ≤ 1/4. We can
apply the same analysis and compute the result for degree three and four.

We note here, that we can let νx 6= νy by writing νy = cνx for some constant
c and apply the same analysis above and get a similar result when the space
grid is not square.

6 Numerical Implementation and Examples

All the examples are implemented in Matlab using a 2Ghz Pentium IV. In
order to implement the DPM, an object class for computing the iterates was
developed that utilizes matrix coefficients. This object class implements all
the basic mathematical operations and includes an integral operator over the
time domain. The linear operators are implemented as pluggable modules for
the DPM routine which makes the method versatile when considering different
types of PDEs and testing different operators used for each derivative. All the
floating point arithmetic is computed in double precision.

The first example we consider is{
ut = ux

u(x, 0) = sin x
.

We use the centered difference operator for the first derivative, which is Luj =
uj+1−uj−1

2∆x . We chose ∆x = 0.01, and ran the method for a total of 200 iterations
using a degree three iterate with ∆t = ∆x, the maximum value allowed by the
CFL condition. The result is shown in Figure 2 for times t = 0, 2, 4. We note
that while the first two iterates are unstable, using the degree three iterate
results in a stable method.

The second example is the heat equation in one dimension. We used the
centered difference scheme Luj = uj+1−2uj+uj−1

(∆x)2 . The degree four iterate is
used again for computation and the result is shown in Figure 3. We note the
computational cost of computing using the higher degree iterate allows us to
compute the final result in less timesteps.

The third example we present is the inviscid form of Burger’s equation, which
is {

ut = −uux

u(0, x) = f(x)
. (4)

17

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(a)

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(b)

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(c)

DPM
True solution

DPM
True solutionu0

Figure 2: Degree 4 iterate for solving ut = ux using a centered difference scheme.

We choose f(x) = −3/π tan−1 x+1.5. We see the computed result up to the
start of the shock formation in Figure 4(a) using DPM. In (b), the same result
is computed using the Lax-Wendroff scheme. However, the stability condition
is O(∆t/(∆x)2) for Lax-Wendroff, but the third degree DPM only requires
∆t/∆x ≤ 0.25. As a result, 21000 iterates must be computed for the Lax-
Wendroff versus 420 for the DPM method. The computational savings, even
with computing the higher degree iterates, is substantial.

The final example we present is an image smoothing example. Using the
fourth degree iterate for solving ut = ∆u with the noisy initial image in Fig-
ure 5(a), we compute the result in less time. The intermediate and final results
are shown in Figure 5(b) and (c). Here, we chose the maximum value for
ν = ∆t/(∆x)2 in Theorem 5.4.

18

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
t=0
t=0.35
t=0.70
t=1.4

Figure 3: Degree 4 iterate for solving ut = uxx using a centered difference
scheme.

7 Concluding Remarks

We developed the Discretized Picard’s Method using the MPM and finite differ-
ence schemes. We showed the relation of this new method with existing schemes
and computed stability results. We showed for our examples the stability region
increases as the degree of the Picard iterate increases in one and two dimen-
sions. The results of this method easily generalizes to any dimension. Future
work includes further analysis on stability in the general parabolic form and
applications to problems with singularities.

References

[1] J. S. Sochacki, G. E. Parker, Implementing the Picard iteration, Neural,
Parallel, and Scientific Computation 4 (1996) 97–112.

[2] J. S. Sochacki, G. E. Parker, A Picard-Maclaurin theorem for initial value
PDE’s, Abstract and Applied Analysis 5 (1) (2000) 47–63.

19

−10 −5 0 5 10
1

1.5

2

2.5

3

3.5

4
(a)

−10 −5 0 5 10
1

1.5

2

2.5

3

3.5

4
(b)

t=0
t=0.525
(420 steps)

t=0
t=0.525
(21000 steps)

Figure 4: Degree 3 iterate for solving ut = −uux in the present of a shock. (a)
is computed via DPM. (b) is the same result using Lax-Wendroff

[3] E. Picard, Traite D’Analyse, Vol. 3, Gauthier-Villars, 1922-1928.

[4] L. Evans, Partial Differential Equations, American Mathematical Society,
1998, pp. 221–233.

[5] J. Rudmin, Application of the Parker-Sochacki method to celestial mechan-
ics, Tech. rep., James Madison University (1998).

[6] C. D. Pruett, J. W. Rudmin, J. M. Lacy, An adaptive N-body algorithm
of optimal order, Journal of Computational Physics 187 (2003) 298–317.

[7] D. C. Carothers, G. E. Parker, J. S. Sochacki, P. G. Warne, Some proper-
ties of solutions of polynomial systems of differential equations, Electronic
Journal of Differential Equations 2005 (40) (2005) 1–17.

[8] P. G. Warne, D. A. P. Warne, J. S. Sochacki, G. E. Parker, D. C. Carothers,
Explicit a-priori error bounds and adaptive error control for approximation
of nonlinear initial value differential systems, Computers and Mathematics
with Applications.

[9] J. Money, A general ODE and PDE solver using Picard’s method, MAA
Sectional Meetings, 1998.

[10] K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential
Equations, Cambridge University Press, 1994.

[11] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2000.

20

(a) (b) (c)

Figure 5: Degree 3 iterate for solving ut = ∆u in 2D using a centered difference
scheme. Image (a) is the initial noisy image. Image (b) is the result after 5
iterations. Image (c) is the result after 10 iterations.

[12] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Press, 1997.

[13] H. S. Wilf, generatingfunctionology, 2nd Edition, Academic Press, 1994.

21

