If you read this paper or use it for research, please email Jim Sochacki at sochacjsATjmu.edu and please credit: http://educ.jmu.edu/~sochacjs/PSM| THANK YOU!

THE DISCRETIZED POWER SERIES METHOD AND APPLICATIONS TO THE SINE-GORDON EQUATION

JAMES H. MONEY*, JAMES SOCHACKI ${ }^{\dagger}$, AND ANTHONY TONGEN ${ }^{\dagger}$

An earlier draft of this paper is at
https://www.semanticscholar.org/paper/Discretized-Picard-\�\�\�-s-Method-Money-Sochacki/ 2e389fe2792eba83ea9fec648f355dd7d25e4c8f

Abstract

Two of the oldest techniques for analyzing and solving initial value ordinary differential equations are power series methods and Picards method. In this work these two techniques are extended to initial value partial differential equations that lead to discrete numerical methods that give a generalized Lax-Wendroff scheme. Stability conditions and error estimates are developed for these methods. It is also shown that when using power series, the algorithm developed, naturally gives the Lax-Wendroff scheme through Picard iteration and Cauchy products.

Key word. Power Series Method, stability, partial differential equations, difference methods, initial value problems

AMS subject classifications. 35G10, 65M06, 65M12, 65Z05

1. Introduction. Ever since Cauchy started developing techniques for solving initial value partial differential equations, mathematicians have tried to improve on his techniques. Picard developed the method of successive approximations as another approach for solving initial value problems. The techniques of Cauchy and Picard are still widely worked on today. Parker and Sochacki showed that through the use of auxiliary variables the power series ideas of Cauchy and the successive method of Picard give approximate solutions with an intimate relationship.

In this paper, we use these two ideas to develop discrete methods that are generalizations of Lax-Wendroff schemes. These two methods also have an intimate relationship that is based on power series and Cauchy products. The methods presented will be referred to as discrete power series methods (DPSM). These methods are based on using power series methods in time and discrete methods in space. We develop stability conditions for the methods and demonstrate accuracy of the methods on several linear and nonlinear initial value parabolic and hyperbolic partial differential equations.

[^0]One way to find the solution of an ordinary differential equation is to apply Picard's Method. Picard's Method is a method that has been widely studied since its' introduction by Emile Picard in [?]. The method was designed to prove existence of solutions of ordinary differential equations(ODEs) of the form

$$
y^{\prime}(t)=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

by defining the recurrence relation based on the fact

$$
y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s
$$

The only assumptions that are made are f and $\frac{\partial f}{\partial y}$ are continuous in some rectangle surrounding the point $\left(t_{0}, y_{0}\right)$. In particular, the recurrence relation is given by

$$
\begin{equation*}
\phi^{(0)}(t)=y_{0}, \quad \phi^{(n)}(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, \phi^{(n-1)}(s)\right) d s, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

While the recurrence relation results in a straight-forward algorithm to implement on the computer, the iterates become hard to compute after a few steps. For example, consider the ODE

$$
y^{\prime}(t)=\frac{1}{y(t)}, y(1)=1
$$

which has the solution $y(t)=\sqrt{2 t-1}$. However, the Picard iterates are

$$
\begin{aligned}
\phi^{(0)}(t) & =1 \\
\phi^{(1)}(t) & =1+\int_{1}^{t} 1 d s=1+(t-1)=t \\
\phi^{(2)}(t) & =1+\int_{1}^{t} \frac{1}{s} d s=1+\ln t \\
\phi^{(3)}(t) & =1+\int_{1}^{t} \frac{1}{1+\ln s} d s
\end{aligned},
$$

and we note the last integral is difficult to calculate. Continuing beyond the fourth iterate only results in increasing problems with calculating the integral. As a result, Picard's Method is generally not used in this form.

Parker and Sochacki, in [?], considered the same problem, but restricted the problem to an autonomous ODE with $t_{0}=0$ and f restricted to polynomial form. In this setting, the iterates result in integration consisting of polynomials. They also showed that the n-th Picard iterate is the MacLaurin polynomial of degree n for $y(t)$ if $\phi^{(n)}(t)$ is truncated to degree n at each step. This form of Picard's method is called the Power Series Method(PSM).

In [?], Parker and Sochacki showed that a large class of ODEs could be converted to polynomial form using substitutions and using a system of equations. Parker and Sochacki also showed that if $t_{0} \neq 0$, one computes the iterates as if $t_{0}=0$ and then the approximated solution to the ODE is $\phi^{(n)}\left(t+t_{0}\right)$.

In [?], Parker and Sochacki showed that the ODE based method can be applied to partial differential equations(PDEs) when the PDE is converted to an initial value problem form for PDEs. The resulting solution from PSM is the truncated power series solution from the Cauchy-Kovelsky theorem[?].

Both the ODE and PDE versions of PSM are now used to solve a number of problems including some stiff ODEs. Rudmin[?] describes how to use the PSM to solve the N-Body problem for the solar system accurately. Pruett, et. al. [?], analyzed
how to adaptively choose the timestep size and the proper number of iterates for a smaller N-Body simulation and when a singularity was present.

Carothers, et. al., in [?], have proved some remarkable properties of these polynomial systems. They constructed a method by which an ODE could be analytic but could not be converted to polynomial form. They provide a method to convert any polynomial system to a quadratic polynomial system and show how to decouple any system of ODEs into a single ODE. Extending the work of Rudmin, they derive an algebraic method to compute the coefficients of the MacLaurin expansion using Cauchy products. While this class of ODEs is dense in the analytic functions, it does not include all analytic functions.

Warne, et. al. [?], computed an error bound when using the PSM that does not involve using the n-th derivative of the function. This explicit a-priori bound was then used to adaptively choose the timestep size for several problems. They showed a way to generate the Pade approximation using the MacLaurin expansion from PSM.

The PSM has been extended to use parallel computations and adaptively choose the timesteps as the algorithm executes. In [?], the method is modified to include a generic form for ODEs and PDEs and allowed the computation in parallel for any system of equations using a generic text based input file. This method was later modified using the error bound result in [?] to choose adaptive timesteps while performing the parallel computations.

Note a preprint of this work has been referenced in [?] where Noorian and Sadr use the Discrete Picard's Method (which, we now call Discretized Power Series Method) to compute transient eddy currents in comparison with the finite element method.

To highlight the implementation of PSM for PDEs [?], consider the Sine-Gordon equation

$$
\begin{equation*}
u_{t t}=u_{x x}-\sin u, \quad u(x, 0)=p(x) u_{t}(x, 0)=q(x) \tag{1.2}
\end{equation*}
$$

The right hand side of this PDE is not in polynomial form. In particular, $\sin u$ is not polynomial. Let $v=u_{t}, z=\cos u$, and $w=\sin u$. Then, the corresponding equivalent polynomial system after substituting is

$$
\left\{\begin{array}{ll}
u_{t}=v & u(x, 0)=p(x) \tag{1.3}\\
v_{t}=u_{x x}-w & v(x, 0)=q(x) \\
w_{t}=z v & w(x, 0)=\sin p(x) \\
z_{t}=-w v & z(x, 0)=\cos p(x)
\end{array} .\right.
$$

Since the right hand side is polynomial and equivalent to the Sine-Gordon equation, one calls the Sine-Gordon equation projectively polynomial. In the examples, DPSM is applied to this polynomial system for a soliton in which the exact solution is known. In this way we can demonstrate the efficiency and accuracy of DPSM.
2. Power Series Method for PDEs. In the PDE version of Picard's Method [?], one considers

$$
\begin{cases}u_{t} & =P\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \ldots, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial x \partial y}, \ldots\right) \\ u(\cdot, 0) & =q(\cdot)\end{cases}
$$

where P and q are n variable polynomials. Parker and Sochacki's method is to compute the iterates

$$
\left\{\begin{array}{ll}
\phi^{(0)}(t) & =q(\cdot) \\
\phi^{(n+1)}(\cdot, t) & =q(\cdot)+\int_{0}^{t} P\left(\phi^{(n)}(\cdot, s)\right) d s, \quad n=0,1,2, \ldots
\end{array} .\right.
$$

We truncate the terms with t-degree higher than n at each step since these terms do not contribute to the coefficient for the t^{n+1} term in the next iteration. We denote the degree of the Picard iterate as j for $\phi^{(j)}(t)$, given this truncation that is performed. This method is summarized below in Algorithm ??.

```
Algorithm 2.1 Power Series Method for PDEs
Require: \(q\), the initial condition, and \(P\) the polynomial system
Require: \(\Delta t\) and numtimesteps
Require: degree the degree of the Picard approximation
    for i from 1 to numtimesteps do
        \(\phi^{(0)}(\cdot, t)=q(\cdot)\)
    for j from 1 to degree do
        \(\phi^{(j)}(\cdots, t)=q(\cdot)+\int_{0}^{t} P\left(\phi^{(j-1)}(\cdot, s)\right) d s\)
        Truncate \(\phi^{(j)}(\cdot, t)\) to degree \(j\) in \(t\).
        end for
        \(q(\cdot)=\phi^{(\text {degree })}(\cdot, \Delta t)\)
    end for
```

This algorithm is called the Modified Picard Method or Power Series Method (PSM). While the PSM algorithm easily computes the approximates since it only depends on calculating derivatives and integrals of the underlying polynomials, it has some limitations. In [?], the authors showed how to handle the PDE including the initial conditions. However, the method requires the initial conditions in polynomial form. While in some PDEs this is the case, many times one computes a Taylor polynomial that approximates the initial condition to high degree. This results in a substantial increase in computational time. For some problems, the initial condition is not explicitly known, but only a digitized form of the data. For example, in image processing, most of the data has already been digitized and we have to interpolate the data using polynomials in order to apply the PSM. If this is done, the resulting polynomial may not effectively approximate the derivatives of the original function. The polynomial approximation might contain large amounts of oscillations that does not represent the underlying data accurately. Finally, we would also like to be able to handle boundary conditions in a simple manner, but keep the extendibility of the PSM, which does not allow for a boundary condition.

In this paper, we consider the discrete form for the initial conditions. In a future paper, we will consider the analytic form for the initial conditions. When one does this, the error will only be in time.
3. Discretized Power Series Method. To overcome the deficiencies listed in section ??, we consider the underlying discrete data directly. We consider the initial condition $u_{0}=u_{0_{i_{1} i_{2} \ldots i_{m}}}$ where $u_{0} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{m}}$ is a matrix of m dimensions. Instead of applying the derivatives directly, we consider a set of linear operators L_{i} where $i=1,2, \ldots k$ that approximate the derivatives. Then, instead of solving the

PDE

$$
\begin{cases}u_{t} & =P\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \ldots, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial x \partial y}, \ldots\right) \\ u(\cdot, 0) & =q(\cdot)\end{cases}
$$

we replace the various derivatives by L_{i} and solve

$$
\left\{\begin{array}{ll}
u_{t} & =P\left(u, L_{1} u, L_{2} u, \ldots, L_{k} u\right) \\
u(\cdot, 0) & =u_{0_{i_{1} i_{2} \ldots i_{m}}}
\end{array} .\right.
$$

We define multiplication of two elements u and v component-wise, instead of using standard matrix multiplication. Then, we compute the iterates

$$
\begin{cases}\phi^{(0)}(t) & =u_{0} \\ \phi^{(n+1)}(t)= & u_{0}+\int_{0}^{t} P\left(\phi^{(n)}(s), L_{1} \phi^{(n)}(s), L_{2} \phi^{(n)}(s), \ldots, L_{k} \phi^{(n)}(s)\right) d s, \\ & n=0,1,2, \ldots\end{cases}
$$

The resulting method computes the discretized solution of the PDE, but is continuous in the time variable. In section ??, we illustrate the importance of requiring the operators L_{i} to be linear in order to get a similar result to the PSM. Given we are utilizing the underlying discrete data in the space variables, we call this new method the Discretized Power Series Method(DPSM). The new method is listed in Algorithm ??. Note, this method is similar to the method of lines [?], but allows for computation of the higher orders automatically.

```
Algorithm 3.1 Discretized Power Series Method
Require: \(u_{0}\), the initial condition, and \(P\) the polynomial system
Require: \(L_{1}, L_{2}, \ldots, L_{k}\), the linear approximations to the derivatives
Require: \(\Delta t\) and numtimesteps
Require: degree the degree of the Picard approximation
    for i from 1 to numtimesteps do
        \(\phi^{(0)}(\cdot, t)=u_{0}\)
        for j from 1 to degree do
            \(\phi^{(j)}(t)=u_{0}+\int_{0}^{t} P\left(\phi^{(j-1)}(s), L_{1}\left(\phi^{(j-1)}(s), \ldots, L_{k}\left(\phi^{(j-1)}(s)\right) d s\right.\right.\)
    end for
    \(u_{0}=\phi^{(\text {degree })}(\Delta t)\)
    Enforce boundary conditions on \(u_{0}\).
    end for
```

3.1. Computation of L_{i}. For the linear operator, there are many discrete operators available for $L_{i}[$ see [?, ?]]. For example, one could use finite differences, finite elements, or Galerkin methods. In this paper, the operator chosen is the finite difference (FD) operator. For example, if $u_{t}=u_{x x}$, we can choose the operator L to satisfy the central difference scheme

$$
L u_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x} .
$$

The operator L is extended easily to the two and three dimension case. In section ??, we show how the choice of the operator determines the stability condition for the
maximum time step size. In addition, the first and last terms in the one dimension case, and all the boundary terms in the two and three dimension cases will have to be handled separately. We discuss this further in section ??.

Recall, from the introduction, that a PDE $u_{t}=f\left(u, \frac{\partial u}{\partial x}, \ldots\right)$, is considered projectively polynomial if it can be rewritten as a system of equations in n-variables so that $Y^{\prime}=P\left(Y, \frac{\partial Y_{1}}{\partial x}, \ldots\right)$ where $Y=\left[Y_{1}, \ldots, Y_{N}\right]$ and P is polynomial.

For a general class of linear operators based on a linear FD scheme, we deduce that the system remains projectively polynomial, which is summarized by the lemma and theorem below.

Lemma 3.1. Consider solving via the DPSM the PDE

$$
\begin{cases}u_{t} & =M u \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

for some linear differential operator M and initial matrix u_{0}. Assume that $L(\approx M)$ is the corresponding linear FD operator. Assume L is defined by

$$
L u_{i_{1} i_{2} \ldots i_{m}}=\sum_{j_{1}, j_{2}, \ldots, j_{m}} \alpha_{j_{1}, j_{2}, \ldots, j_{m}} u_{i_{1}+j_{1}, i_{2}+j_{2}, \ldots, i_{m}+j_{m}}
$$

Then, the PDE is projectively polynomial.
Proof. This follows directly from the definition since $L u$ is the sum of degree one terms. Since the linear operator L is projectively polynomial, we see by extension, the general problem is also projectively polynomial.

Theorem 3.1. Consider solving the PDE

$$
\begin{cases}u_{t} & =P\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \ldots, \frac{\partial^{2} u}{x^{2}}, \ldots\right) \\ u(\cdot, 0) & =u_{0}(\cdots)\end{cases}
$$

by using the DPSM method of

$$
\begin{cases}u_{t} & =P\left(u, L_{1} u, L_{2} u, \ldots, L_{m} u\right) \\ u(\cdot, 0) & =u_{0_{i_{1} i_{2} \ldots i_{m}}}\end{cases}
$$

where each $L_{i}, i=1, \ldots m$ is linear as in Lemma ??. Then, the system is projectively polynomial.
Proof. From Lemma ??, we know that each L_{i} is polynomial and in fact linear. The resulting system is the composition of polynomial terms and has to be projectively polynomial.

As a result, the results of the PSM method with regards to truncating terms can be extended to DPSM. Thus, after each iterate is computed, we truncate the terms to degree n, assuming we have computed the n-th iterate.
3.2. Boundary Conditions. The boundary conditions need to be handled carefully in DPSM due to the use of higher degree iterates. When the degree of the iterate is one, normal boundary conditions are applied, similar to a FD scheme. However, since the degree one iterate is used to compute the second degree iterate, and similarly for degree three and higher, we must calculate the values at the boundary. The approach we take is to compute one sided derivatives for the FD scheme at the
boundaries. Figure ?? illustrates the problem with boundary conditions. When using a degree one iterate, the terms at point x_{1} and x_{J} need to be calculated, where J is the number of discrete data points and the linear operator has a 3 point stencil. If we do not enforce the one sided derivatives at this stage, the data at x_{1} and x_{J} is invalid for the degree two iterate, and then, x_{2} and x_{J-1} is invalid after the second iterate is computed. This continues, reducing the available data as the degree of the Picard iterate increases, unless we enforce one sided derivatives at each step. When the characteristic curves contradict this choice, we choose an alternate scheme for the computing the derivatives. In a future paper, we will consider adaptive approaches for this scheme.

Fig. 3.1: Complications due to boundary conditions. The similarly shaded regions are lost if one sided derivatives are not enforced as the degree of the iterates increase.

As a result, we enforce the linear operator to compute one sided derivatives at the edges of the domain. For example, in the one dimension example of $u_{t}=u_{x x}$ with L being the centered difference scheme, we use the end condition in one dimension to be

$$
L u_{J}=\frac{u_{J}-2 u_{J-1}+u_{J-2}}{\Delta x^{2}}
$$

and a similar term for $L u_{1}$. Now, we have all the values, and there is no ambiguity in the values at the boundary for any of the degrees of the iterates.
4. Comparison of PSM with DPSM and Finite Differences. In this section, we compare the PSM to the DPSM. While the PSM computes the power series form for the function u, the DPSM does the same computation, but with an approximation to the derivatives at each step. For example, we consider solving the following PDE

$$
u_{t}=u_{x}, \quad u(x, 0)=u_{0}(x)
$$

compared to the DPSM method of

$$
\begin{equation*}
u_{t}=L u, u(x, 0)=u_{0}(x), \tag{4.1}
\end{equation*}
$$

where L is the operator for central difference scheme. If we compute the iterates for PSM we get,

$$
\begin{aligned}
p^{(0)}(t) & =u_{0} \\
p^{(1)}(t) & =u_{0}+u_{0_{x}} t \\
p^{(2)}(t) & =u_{0}+u_{0_{x}} t+u_{0_{x x}} \frac{t^{2}}{2} \\
p^{(3)}(t) & =u_{0}+u_{0_{x}} t+u_{0_{x x}} \frac{t^{2}}{2}+u_{0_{x x x}} \frac{t^{3}}{6}
\end{aligned}
$$

while the DPSM computes

$$
\begin{aligned}
\phi^{(0)}(t) & =u_{0} \\
\phi^{(1)}(t) & =u_{0}+L\left(u_{0}\right) t \\
\phi^{(2)}(t) & =u_{0}+L\left(u_{0}\right) t+L^{2}\left(u_{0}\right) \frac{t^{2}}{2} \\
\phi^{(3)}(t) & =u_{0}+L\left(u_{0}\right) t+L^{2}\left(u_{0}\right) \frac{t^{2}}{2}+L^{3}\left(u_{0}\right) \frac{t^{3}}{6}
\end{aligned}
$$

\qquad
and we note that L^{2} would be a 5 point approximation to $u_{x x}$ and L^{3} would be a 7 point approximation to $u_{x x x}$. By choosing L to be the centered difference scheme, (??) corresponds to the approximated derivatives.

If we consider a nonlinear example, the correspondence between derivatives and the linear operator is still true. If we consider Burger's equation

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, u(x, 0)=\alpha(x)
$$

we can first project to a simpler polynomial system to ease our calculations. Let $w=\frac{u^{2}}{2}$ to get the equivalent system

$$
\left\{\begin{array}{ll}
u_{t}+w_{x}=0 & u(x, 0)=\alpha(x) \\
w_{t}+u w_{x}=0 & w(x, 0)=\frac{\alpha^{2}(x)}{2}=\beta(x)
\end{array} .\right.
$$

Consider the following integral form of this system

$$
\begin{gathered}
u(x, t)=\alpha(x)-\int_{0}^{t} w_{x}(x, \tau) d \tau \\
w(x, t)=\beta(x)-\int_{0}^{t} u(x, \tau) w_{x}(x, \tau) d \tau
\end{gathered}
$$

and the Picard iteration for this system

$$
\begin{gathered}
u^{(k+1)}(x, t)=\alpha(x)-\int_{0}^{t} w_{x}^{(k)}(x, \tau) d \tau \\
w^{(k+1)}(x, t)=\beta(x)-\int_{0}^{t} u^{(k+1)}(x, \tau) w_{x}^{(k+1)}(x, \tau) d \tau
\end{gathered}
$$

Now let L be a linear approximation for $\frac{\partial}{\partial x}$. This leads to the following discrete in space approximation

$$
u_{j}^{(k+1)}(t)=\alpha_{j}-\int_{0}^{t} L\left[w_{j}^{(k)}(\tau)\right] d \tau
$$

and

$$
w_{j}^{(k+1)}(t)=\beta_{j}-\int_{0}^{t} u_{j}^{(k+1)}(\tau) L\left[w_{j}^{(k+1)}(\tau)\right] d \tau
$$

to this iteration where j indicates $x_{j}=j \Delta x$. We let

$$
u_{j}^{(0)}=\alpha_{j} \text { and } w_{j}^{(0)}=\beta_{j} .
$$

The Picard iterates for $k=0$ are

$$
\begin{gathered}
u_{j}^{(1)}(t)=\alpha_{j}-\int_{0}^{t} L\left[w_{j}^{(0)}(\tau)\right] d \tau=\alpha_{j}-L\left[w_{j}^{(0)}\right] t \\
w_{j}^{(1)}(t)=\beta_{j}-\int_{0}^{t} u_{j}^{(0)}(\tau) L\left[w_{j}^{(0)}(\tau)\right] d \tau=\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] t .
\end{gathered}
$$

Similarly for $k=1$, we get

$$
\begin{aligned}
u_{j}^{(2)}(t)= & \alpha_{j}-\int_{0}^{t} L\left[w_{j}^{(1)}(\tau)\right] d \tau=\alpha_{j}-\int_{0}^{t} L\left[\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] \tau\right] d \tau \\
& =\alpha_{j}-L\left[w_{j}^{(0)}\right] t+L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right] \frac{t^{2}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
w_{j}^{(2)}(t)= & \beta_{j}-\int_{0}^{t} u_{j}^{(1)}(\tau) L\left[w_{j}^{(1)}(\tau)\right] d \tau \\
& \left.=\beta_{j}-\int_{0}^{t}\left(\alpha_{j}-L\left[w_{j}^{(0)}\right] \tau\right) L\left[\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] \tau\right)\right] d \tau \\
& =\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] t+\left(u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+L\left[w_{j}^{(0)}\right]^{2}\right) \frac{t^{2}}{2}
\end{aligned}
$$

Then for $k=2$ we have

$$
\begin{aligned}
u_{j}^{(3)}(t) & =\alpha_{j}-\int_{0}^{t} L\left[w_{j}^{(2)}(\tau)\right] d \tau \\
& =\alpha_{j}-\int_{0}^{t} L\left[\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] \tau+\left(u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+L\left[w_{j}^{(0)}\right]^{2}\right) \frac{\tau^{2}}{2} d \tau\right. \\
& \left.=\alpha_{j}-L\left[w_{j}^{(0)}\right] t+L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right] \frac{t^{2}}{2}-L\left[u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+\left(L\left[w_{0}^{j}\right]\right)^{2}\right)\right] \frac{t^{3}}{3!}
\end{aligned}
$$

and

$$
\begin{aligned}
& w_{j}^{(3)}(t)= \beta_{j}-\int_{0}^{t} u_{j}^{(2)}(\tau) L\left[w_{j}^{(2)}(\tau)\right] d \tau \\
&=\beta_{j}-\int_{0}^{t}\left(\alpha_{j}-L\left[w_{j}^{(0)}\right] \tau+L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right] \frac{\tau^{2}}{2}\right) * \\
& L\left[\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] \tau+\left(u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+L\left[w_{j}^{(0)}\right]^{2}\right) \frac{\tau^{2}}{2}\right] d \tau \\
&=\beta_{j}-u_{j}^{(0)} L\left[w_{j}^{(0)}\right] t+\left(u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+L\left[w_{j}^{(0)}\right]^{2}\right) \frac{t^{2}}{2} \\
& \quad-\left(u_{j}^{0} L\left[u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]+L\left[w_{j}^{(0)}\right]^{2}\right]+\right. \\
& \quad 3 L\left[w_{j}^{0}\right] L\left[u_{j}^{0} L\left[w_{j}^{0}\right]+L\left[w_{j}^{0}\right] L\left[u_{j}^{(0)} L\left[w_{j}^{(0)}\right]\right]\right) \frac{t^{3}}{3!}
\end{aligned} .
$$

And we can continue for higher values of k. However, we can now replace w_{j}^{0} with $\left(u_{j}^{0}\right)^{2} / 2$ and have

$$
\begin{aligned}
u_{j}^{(1)}(t)= & \alpha_{j}-L\left[\frac{\left(u_{j}^{0}\right)^{2}}{2}\right] t \\
u_{j}^{(2)}(t)= & \alpha_{j}-L\left[\frac{\left(u_{j}^{0}\right)^{2}}{2}\right] t+L\left[u_{j}^{(0)} L\left[\frac{\left(u_{j}^{0}\right)^{2}}{2}\right]\right] \frac{t^{2}}{2} \\
u_{j}^{(3)}(t)= & \alpha_{j}-L\left[\frac{\left(u_{j}^{0}\right)^{2}}{2}\right] t+L\left[u_{j}^{(0)} L\left[\frac{\left(u_{j}^{0}\right)^{2}}{2}\right]\right] \frac{t^{2}}{2}- \\
& \quad L\left[u_{j}^{(0)} L\left[u_{j}^{(0)} L\left[\frac{\left(u_{j}^{(0)}\right)^{2}}{2}\right]\right]+\left(L\left[\frac{\left(u_{j}^{(0)}\right)^{2}}{2}\right]\right)^{2}\right] \frac{t^{3}}{3!}
\end{aligned}
$$

We note that these iterates are the same as the PSM iterates, except with the linear approximation L applied instead of differentiating at each step. The pattern can now be extended as well for other nonlinear problems. This process also works on generating a space discretization with time Picard iteration on any equation of the form

$$
u_{t}+(f(u))_{x}=0, u(x, 0)=\alpha
$$

where f is polynomial.
The DPSM method iterates of degree one and two are related to standard FD schemes. The forward time FD scheme is related to the degree one iterate of DPSM. When the degree of DPSM is two, we get the DPSM method is equivalent to the LaxWendroff scheme when the appropriate operator is chosen. The following theorem illustrates the relations between the forward time difference scheme and the LaxWendroff scheme.

Theorem 4.1. Consider applying the Discretized Power Series Method to the equation

$$
\begin{cases}u_{t} & =M u \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

for some linear differential operator M and initial matrix u_{0}. Assume that $L \approx M$ is the corresponding linear FD operator. Then, the degree one Picard iterate is the same as the FD scheme using the operator L and the degree two Picard iterate is the Lax-Wendroff scheme, if the operator L is chosen to use a stencil with half steps.

Proof. For the degree one iterate, we compute the iterate

$$
\phi^{(1)}(t)=u_{0}+\int_{0}^{t} L u_{0} d s
$$

Evaluating, we get

$$
\phi^{(1)}(t)=u_{0}+L u_{0} t
$$

and by rearranging we get

$$
\begin{gathered}
\phi^{(1)}(t)=u_{0}+L u_{0} t \\
\frac{\phi^{(1)}(t)-u_{0}}{t}=L u_{0} \\
\frac{\phi^{(1)}(t)-\phi^{(0)}(t)}{t}=L\left[\phi^{(0)}(t)\right] .
\end{gathered}
$$

Letting $u^{n+1}=\phi^{(1)}(t)$ and $u^{n}=\phi^{(0)}(t)$ we get

$$
\frac{u^{n+1}-u^{n}}{t}=L u^{n}
$$

Now letting $t=\Delta t$, we get the desired result.
For the second degree iterate, we compute

$$
\phi^{(2)}(t)=u_{0}+\int_{0}^{t} L\left(\phi^{(1)}(t)(s)\right) d s
$$

By expanding and rearranging, we obtain:

$$
\begin{aligned}
\phi^{(2)}(t)= & u_{0}+\int_{0}^{t} L\left(u_{0}+L u_{0} s\right) d s \\
= & u_{0}+\int_{0}^{t}\left(L u_{0}+L^{2} u_{0} s\right) d s \\
& =u_{0}+L u_{0} t+L^{2} u_{0} \frac{t^{2}}{2}
\end{aligned}
$$

But, we note that the Lax-Wendroff method computes

$$
u_{0}+u_{t} t+u_{t t} \frac{t^{2}}{2}
$$

and using that $u_{t t}=L(L u)=L^{2} u$, and choosing the correct operator L with half step points for the stencil, the proof is complete.
5. Stability. In this section, we consider the stability of the DPSM as the degree of the Picard iterates increase. In general, we cannot determine a stability condition for any degree m, but the stability region increases with m for all our examples. For the first example, we consider solving the transport equation

$$
\begin{cases}u_{t} & =u_{x} \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

using the central difference scheme

$$
L u_{j}=\frac{u_{j+1}-u_{j-1}}{2 \Delta x}
$$

with one sided difference at the boundary. The first assertion we make is about the term $L^{n} u$ since this is needed to compute the Von-Neumann analysis for stability.

LEmma 5.1. For the linear operator $L u_{j}=\frac{u_{j+1}-u_{j-1}}{2 \Delta x}$, we have that

$$
L^{n} u_{j}=\frac{\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} u_{j-2 i+n}}{(2 \Delta x)^{n}}
$$

Proof. We illustrate a method that is less algebraic and relies on functionology and combinatorics for a proof. For further reference, please see [?, ?]. We define a sequence $\left(U_{n}\right)$ in $\mathbb{R}[[x]]$ by $U_{0}(x)=\sum_{j} u_{j} x^{j}$ and $U_{n}(x)=\sum_{j} L^{n}\left(u_{j}\right) x^{j}$. Since L is linear, we have the relation

$$
L^{n}\left(u_{j}\right)=\frac{L^{n-1}\left(u_{j+1}\right)-L^{n-1}\left(u_{j-1}\right)}{2 \Delta x}
$$

for $n>0$. Multiplying by x^{j} and summing over all $j \in \mathbb{Z}^{+}$we get that

$$
\begin{aligned}
U_{n}(x) & =\sum_{j}\left[\frac{L^{n-1}\left(u_{j+1}\right)-L^{n-1}\left(u_{j-1}\right)}{2 \Delta x}\right] x^{j} \\
& =\frac{1}{2 \Delta x}\left[\frac{U_{n-1}(x)}{x}-x U_{n-1}(x)\right] \\
& =\frac{1}{2 \Delta x} \frac{1-x^{2}}{x} U_{n-1}(x)
\end{aligned}
$$

Hence, we have $U_{n}(x)=\left(\frac{1}{2 \Delta x} \frac{1-x^{2}}{x}\right)^{n} U_{0}(x)$. Thus, we have

$$
\begin{aligned}
L^{n}\left(u_{j}\right) & =\left[x^{j}\right]\left(\frac{1}{2 \Delta x} \frac{1-x^{2}}{x}\right)^{n} U_{0}(x) \\
& =\left(\frac{1}{2 \Delta x}\right)^{n}\left[x^{j+n}\right]\left(1-x^{2}\right)^{n} U_{0}(x)
\end{aligned}
$$

where $\left[x^{j}\right]$ denotes the j-th coefficient of the expansion immediately to the right. If we apply the binomial theorem to the right hand side we see that

$$
\begin{aligned}
L^{n}\left(u_{j}\right) & =\left(\frac{1}{2 \Delta x}\right)^{n} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} u_{(j+n)-(2 i)} \\
& =\left(\frac{1}{2 \Delta x}\right)^{n} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} u_{j-2 i+n}
\end{aligned}
$$

which completes the proof.
or

$$
u_{j}^{m, 1}=u_{0_{j}}+\sum_{n=1}^{m} L^{n} u_{0_{j}} \frac{\nu^{n}}{n!}
$$

By applying theorem ??, we obtain

$$
u_{j}^{m, 1}=u_{0_{j}}+\sum_{n=1}^{m} \frac{\nu^{n}}{n!}\left[\sum_{l=0}^{n}(-1)^{l}\binom{n}{l} u_{j-2 l+n}\right]
$$

Then, letting $u_{j}^{m, p}=\lambda^{p} e^{i j k \Delta x}$ we get

$$
\lambda=1+\sum_{n=1}^{m} \frac{\nu^{n}}{n!}\left[\sum_{l=0}^{n}(-1)^{l}\binom{n}{l} e^{i(n-2 l)}\right]
$$

and this completes the proof.
Now, let us consider the case of the first four iterates to illustrate the change in the stability condition as the degree increases:

Theorem 5.2. The stability condition for the first four iterates of

$$
\begin{cases}u_{t} & =u_{x} \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

using the central difference scheme are

Degree	Stability Condition
1	unstable
2	unstable
3	$\nu \leq \frac{\sqrt{3}}{2}$
4	$\nu \leq \sqrt{2}$

for $\nu=\frac{\Delta t}{2 \Delta x}$.
Proof. While the result for the $m=1$ case can be obtained by the usual means for the FD scheme, we wish to illustrate an alternate method that makes the computation slightly easier and more straightforward. We consider the stability polynomial

$$
\lambda=1+\nu\left[e^{i j \Delta x}-e^{-i j \Delta x}\right]
$$

for degree one or

$$
\lambda=1+2 i \nu \sin \theta
$$

where $\theta=j \Delta x$. We have

$$
|\lambda|=\lambda \bar{\lambda}=1+4 \nu^{2} \sin ^{2} \theta
$$

showing the scheme is unstable. To complete our formal analysis, define

$$
f(\nu, \theta):=1+4 \nu^{2} \sin ^{2} \theta
$$

Then, we fix ν and find the minimum with respect to θ by differentiating:

$$
f_{\theta}=8 \nu^{2} \sin \theta \cos \theta=0
$$

Hence, we have $\theta=0, \pi, \pi / 2,-\pi / 2$. Filling in those values, we obtain the set of polynomials

$$
\begin{gathered}
f(\nu, 0)=f(\nu, \pi)=1 \\
f(\nu, \pi / 2)=f(\nu,-\pi / 2)=1+4 \nu^{2}
\end{gathered}
$$

and we want both these to be less than one for $\nu \geq 0$, i.e.:

$$
\begin{cases}1 & \leq 1 \\ 1+4 \nu^{2} & \leq 1\end{cases}
$$

However, no choice of ν satisfies all these requirements and we conclude that the degree one polynomial is unstable.

Now, we complete a similar analysis on degree two and get the same result. But for degree $m=3$, we have

$$
\lambda=1+2 i \nu \sin \theta+\nu^{2}(\cos 2 \theta-1)+\frac{\nu^{3}}{3} i[\sin (3 \theta)-3 \sin \theta]
$$

We define

$$
f(\nu, \theta):=|\lambda|^{2}
$$

and compute $\frac{\partial f}{\partial \theta}(\nu, \theta)=0$ and get the real solutions are

$$
\theta=0,-\frac{\pi}{2}, \frac{\pi}{2}
$$

Therefore, we have the polynomial conditions

$$
\left\{\begin{array}{l}
f(\nu, 0)=f(\nu, \pi)=1 \leq 1 \\
f(\nu,-\pi / 2)=f(\nu, \pi / 2)=1-\frac{4}{3} \nu^{4}+\frac{16}{9} \nu^{6} \leq 1
\end{array}\right.
$$

which is satisfied when $\nu \leq \frac{\sqrt{3}}{2}$. The bound for the DPSM iterate of degree four is similar to derive and the calculations result in $\nu \leq \sqrt{2}$.

In the case of the degree three and four iterates, the physical constraint of the CFL condition is violated. Thus, we need not choose any higher degree iterate than three for the DPSM. As a result, we will use a degree three iterate with $\nu \leq 1$ for computations.

For the heat equation in one dimension, a similar analysis can be completed and is listed below.

Theorem 5.3. The stability condition for the first four iterates of

$$
\begin{cases}u_{t} & =u_{x x} \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

using the central difference scheme are

Degree	Stability Condition
1	$\nu \leq 0.5$
2	$\nu \leq \frac{\sqrt[3]{4+\sqrt{17}}}{4}-\frac{1}{4 \sqrt[3]{4+\sqrt{17}}}+\frac{1}{4} \approx 0.6281863317$
3	$\nu \leq \frac{1}{12} \sqrt[3]{172+36 \sqrt{29}}-\frac{5}{3 \sqrt[3]{172+36 \sqrt{29}}}+\frac{1}{3} \approx 0.6963233909$
4	

for $\nu=\frac{\Delta t}{(\Delta x)^{2}}$.
A similar analysis will work for the two dimension datasets. We consider the process of applying the heat equation in two dimensions and we get a corresponding analysis for stability from the theorem below.

Theorem 5.4. The stability condition for the first four iterates for solving

$$
\begin{cases}u_{t} & =u_{x x}+u_{y y} \\ u(\cdot, 0) & =u_{0}\end{cases}
$$

via DPSM using the central difference scheme is

Degree	Stability Condition	
1	$\nu \leq 0.25$	
2	$\nu \leq \frac{1}{2}\left[\frac{\sqrt[3]{4+\sqrt{17}}}{4}-\frac{1}{4 \sqrt[3]{4+\sqrt{17}}}+\frac{1}{4}\right] \approx 0.3140931658$	
3	$\nu \leq \frac{1}{2}\left[\frac{\sqrt[3]{172+36 \sqrt{29}}}{12}-\frac{5}{3 \sqrt[3]{172+36 \sqrt{29}}}+\frac{1}{3}\right] \approx 0.3481616954$	
4		$\nu \leq 0.25$

for $\nu_{x}=\nu_{y}=\nu=\frac{\Delta t}{(\Delta x)^{2}}$.
Proof. We can handle the two dimension case similar to the one dimensional case.

Here we need to form $f\left(\nu_{x}, \nu_{y}, \theta, \omega\right)=\lambda$ and then solve

$$
\left\{\begin{array}{l}
f_{\theta}\left(\nu_{x}, \nu_{y}, \theta, \omega\right)=0 \\
f_{\omega}\left(\nu_{x}, \nu_{y}, \theta, \omega\right)=0
\end{array}\right.
$$

For the degree two iterate, we get

$$
\begin{cases}\theta=0 & \omega=0 \\ \theta=0 & \omega=\pi \\ \theta=\pi & \omega=0 \\ \theta=\pi & \omega=\pi\end{cases}
$$

Then we compute $f(\nu, \nu, \cdot, \cdot)$ for each value of θ and ω and we get

$$
\left\{\begin{array}{l}
-1 \leq 1 \leq 1 \\
-1 \leq 1-4 \nu+8 \nu^{2} \leq 1 \\
-1 \leq-1 \leq 1-4 \nu+8 \nu^{2} \leq 1 \\
-1 \leq 1-8 \nu \leq 1
\end{array}\right.
$$

Solving for all cases and combining the answer we get that $\nu \leq 1 / 4$. We can apply the same analysis and compute the result for degree three and four.

We note here, that we can allow $\nu_{x} \neq \nu_{y}$ by writing $\nu_{y}=c \nu_{x}$ for some constant c and apply the same analysis above and get a similar result when the space grid is not square.
6. Numerical Implementation and Examples. All the examples are implemented in Matlab. In order to implement the DPSM, an object class for computing the iterates was developed that utilizes matrix coefficients. This object class implements all the basic mathematical operations and includes an integral operator over the time domain. The linear operators are implemented as pluggable modules for the DPSM routine which makes the method versatile when considering different types of PDEs and testing different operators used for each derivative. All the floating point arithmetic is computed in double precision.

The first example we consider is

$$
u_{t}=u_{x}, \quad u(x, 0)=\sin x
$$

We use the centered difference operator for the first derivative, which is $L u_{j}=$ $\frac{u_{j+1}-u_{j-1}}{2 \Delta x}$. We chose $\Delta x=0.01$, and ran the method for a total of 400 time steps using a degree three iterate with $\Delta t=\Delta x$, the maximum value allowed by the CFL condition. The result is shown in Figure ?? for times $t=0,2,4$. We note that while the first two iterates are unstable, using the degree three or four iterate results in a stable method. We show the result in the figure for degree four.

The second example is the heat equation in one dimension. We used the centered difference scheme $L u_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{(\Delta x)^{2}}$. The degree four iterate is used again for computation and the result is shown in Figure ??. We note the computational cost of computing using the higher degree iterate allows us to compute the final result in less time steps.

The third example we present is the inviscid form of Burger's equation, which is

$$
\begin{equation*}
u_{t}=-u u_{x}, u(0, x)=f(x) . \tag{6.1}
\end{equation*}
$$

Fig. 6.1: Degree four iterate for solving $u_{t}=u_{x}$ using a centered difference scheme.

Fig. 6.2: Degree 4 iterate for solving $u_{t}=u_{x x}$ using a centered difference scheme.

We choose $f(x)=-3 / \pi \tan ^{-1} x+2.5$. We see the computed result up to the start of the shock formation in Figure ??(a) using DPSM. In (b), the same result is computed using the Lax-Wendroff scheme. However, the stability condition is $\mathcal{O}\left(\Delta t /(\Delta x)^{2}\right)$ for Lax-Wendroff, but the third degree DPSM only requires $\Delta t / \Delta x \leq$ 0.25 . The time step for using Lax-Wendroff is 0.0025 , while DPSM uses a time step of 0.005 . To compute a solution to $t=5.25$, Lax-Wendroff required 21000 time steps, while PSM order three gave the same answer with only 420 time steps. The computational savings in time and computing, even with computing the higher degree iterates, is substantial.

The fourth example we present is an image smoothing example. Using the fourth degree iterate for solving $u_{t}=\triangle u$ with the noisy initial image in Figure ??(a), we compute the result in less time. The intermediate and final results are shown in Figure ??(b) and (c). Here, we chose the maximum value for $\nu=\Delta t /(\Delta x)^{2}$ in Theorem ??

We demonstrate DPSM on the Sine-Gordon equation ??, projected as ?? presented earlier for computing the solution.

We use the soliton solution $u=4 \arctan \left(e^{\gamma(x-v t)}\right)$. In the example presented $\gamma=-\frac{2 \sqrt{3}}{3}$ and $v=0.5$. The initial conditions for this soliton solution are

Fig. 6.3: Degree 3 iterate for solving $u_{t}=-u u_{x}$ in the present of a shock. (a) is computed via DPSM. (b) is the same result using Lax-Wendroff

Fig. 6.4: Degree 3 iterate for solving $u_{t}=\Delta u$ in 2D using a centered difference scheme. Image (a) is the initial noisy image. Image (b) is the result after 5 iterations. Image (c) is the result after 10 iterations.

$$
u(x, 0)=p(x)=4 \arctan \left(e^{\gamma x}\right), u_{t}(x, 0)=q(x)=-4 \frac{\gamma v e^{\gamma x}}{1+\left(e^{\gamma x}\right)^{2}}
$$

The boundary conditions are

$$
u(0, t)=A(t)=4 \arctan \left(e^{-\gamma v t}\right), u(R, t)=B(t)=0
$$

where R is chosen large enough to make this boundary condition close to true. (In the example presented $R=50$.) We note that

$$
A^{\prime}(t)=-4 \gamma v \frac{e^{-\gamma v t}}{1+\left(e^{-\gamma v t}\right)^{2}}
$$

If we let $a=e^{-\gamma v t}$ and $b=\left(1+\left(e^{-\gamma v t}\right)^{2}\right)^{-1}$ then A, a, b solves the initial value polynomial system of ODEs

$$
A^{\prime}(t)=-4 \gamma v a b ; A(0)=\pi, a^{\prime}(t)=-\gamma v a ; a(0)=1, b^{\prime}(t)=-2 \gamma v a^{2} b^{2} ; b(0)=\frac{1}{2}
$$

We use PSM for ODEs on this system to get the boundary condition $u(0, t)=A(t)$.
The discretization $u(x, t)=u\left(x_{j}, t\right)=U_{j}(t), v(x, t)=v\left(x_{j}, t\right)=V_{j}(t), w(x, t)=$ $w\left(x_{j}, t\right)=W_{j}(t), z(x, t)=z\left(x_{j}, t\right)=Z_{j}(t)$ for $j=1,2, \ldots, J$ with $x_{j}=j \Delta x$ together with

$$
\frac{U_{j+1}(t)-2 U_{j}(t)+U_{j-1}(t)}{\Delta x^{2}}
$$

to discretize $u_{x x}$ gives us the following system of initial value ODEs for DPSM. Applying all of this to the above system of IV PDEs with boundary conditions gives

$$
\begin{aligned}
& U_{j}^{\prime}(t)=V_{j}(t) ; U_{j}(0)=p\left(x_{j}\right)=p_{j} \\
& V_{j}^{\prime}(t)=\frac{U_{j+1}(t)-2 U_{j}(t)+U_{j-1}(t)}{\Delta x^{2}}-W_{j}(t) ; V_{j}(0)=q\left(x_{j}\right)=q_{j} \\
& W_{j}^{\prime}(t)=Z_{j}(t) V_{j}(t) ; W_{j}(0)=\sin p\left(x_{j}\right)=\sin p_{j} \\
& Z_{j}^{\prime}(t)=-W_{j}(t) V_{j}(t) ; Z_{j}(0)=\cos p\left(x_{j}\right)=\cos p_{j}
\end{aligned}
$$

for $j=1, \ldots, J$. We incorporate $U_{0}(t)=A(t)$ and $U_{J+1}(t)=B(t)=0$. We then assume

$$
U_{j}=\sum_{i=0}^{K} U_{j}^{[i]} t^{i}, \quad V_{j}=\sum_{i=0}^{K} V_{j}^{[i]} t^{i}, W_{j}=\sum_{i=0}^{K} W_{j}^{[i]} t^{i}, Z_{j}=\sum_{i=0}^{K} Z_{j}^{[i]} t^{i}
$$

for $j=1, \ldots, J$ for some counting number K. We then have a $K^{t h}$ order Lax-Wendroff approximation for u.

In Figure ?? (a)-(f) the exact solution (with circles in the figure) together with a $K=4$ approximation to the exact solution using $\Delta x=2^{-4}, \Delta t=2^{-4}$ is shown as a solid line. In Table ?? we present the L_{1} error for Figure ??. It is interesting to note that with $K=2$ the scheme is unstable.

Time	0	$8 \Delta t$	$16 \Delta t$	$32 \Delta t$	$64 \Delta t$	$128 \Delta t$
		0.5 s	1 s	2 s	4 s	8 s
Error	0	0.0021	0.0034	0.0058	0.0106	0.0204
Relative Error	0	$3.51 \mathrm{E}-04$	$5.37 \mathrm{E}-04$	$9.18 \mathrm{E}-04$	0.0017	0.0032

Table 6.1. Absolute and relative error at various time steps compared with the exact solution for the Sine-Gordon equation using the soliton solution.

A DPSM numerical solution to

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}-\sin u \tag{6.2}\\
u(x, 0)=e^{-0.1(x-75)^{2}}, \quad u_{t}(x, 0)=0
\end{array}\right.
$$

with boundary conditions $u(0, t)=0$ and $u(200, t)=0$ is shown at several time steps in Figure ?? using $\Delta x=2^{-4}$ and $h=\Delta t=2^{-4}$. The initial condition is off center

Fig. 6.5: Comparison of Sine Gordon exact solution using initial condition in (a) with order four DPSM result for $\Delta t=0.5,1,2,4,8$ in (b)-(f). Note the exact solution and compute DPSM solution match for all time steps.
so that one can observe the reflection off the $x=0$ boundary. This initial condition is similar to what is employed in the paper by Mohebbi, et. al [?].

Both Bratsos [?] and Mohebbi, et. al. [?] provide solutions to the Sine-Gordon equation using finite differences at higher orders, but we achieve similar and superior results quickly using the DPSM without the added manual calculations even with using higher orders.
7. Concluding Remarks. We developed the Discretized Power Series Method using PSM with finite difference schemes. We showed the relation of this new method

Fig. 6.6: Various timestep solutions for Sine-Gordon using DPSM based on equation ??.
with existing schemes and computed stability results. We showed for our examples the stability region increases as the degree of the Picard iterate increases in one and two dimensions. The results of this method easily generalizes to any dimension. Finally, we show excellent results using the soliton solution of the Sine-Gordon equation and a non-symmetric solution with DPSM. Future work includes further analysis on stability in the general parabolic form and applications to problems with singularities. We will also consider other formulations for the adapting of the boundary conditions for higher degree iterates and an analytic approach for using DPSM.

[^0]: *National and Homeland Security, Idaho National Laboratory, Idaho Falls, ID 83415(james.money@inl.gov)
 ${ }^{\dagger}$ Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA 22801(sochacjs@jmu.edu,tongenal@jmu.edu)

