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13 Abstract. Two of the oldest techniques for analyzing and solving initial value ordinary differ-
14 ential equations are power series methods and Picards method. In this work these two techniques

15 are extended to initial value partial differential equations that lead to discrete numerical methods
16 that give a generalized Lax-Wendroff scheme. Stability conditions and error estimates are developed
17  for these methods. It is also shown that when using power series, the algorithm developed, naturally
18  gives the Lax-Wendroff scheme through Picard iteration and Cauchy products.

19 Key word. Power Series Method, stability, partial differential equations, difference methods,
20  initial value problems

21 AMS subject classifications. 35G10, 65M06, 65M12, 65705

22 1. Introduction. Ever since Cauchy started developing techniques for solving
23 initial value partial differential equations, mathematicians have tried to improve on
24 his techniques. Picard developed the method of successive approximations as another
25 approach for solving initial value problems. The techniques of Cauchy and Picard
26 are still widely worked on today. Parker and Sochacki showed that through the use
27 of auxiliary variables the power series ideas of Cauchy and the successive method of
28 Picard give approximate solutions with an intimate relationship.

29 In this paper, we use these two ideas to develop discrete methods that are general-
30 izations of Lax-Wendroff schemes. These two methods also have an intimate relation-
31 ship that is based on power series and Cauchy products. The methods presented will
32 be referred to as discrete power series methods (DPSM). These methods are based
33 on using power series methods in time and discrete methods in space. We develop
34 stability conditions for the methods and demonstrate accuracy of the methods on
35 several linear and nonlinear initial value parabolic and hyperbolic partial differential
36 equations.
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2 JAMES H. MONEY, JAMES SOCHACKI, AND ANTHONY TONGEN

One way to find the solution of an ordinary differential equation is to apply
Picard’s Method. Picard’s Method is a method that has been widely studied since
its’ introduction by Emile Picard in [?]. The method was designed to prove existence
of solutions of ordinary differential equations(ODEs) of the form

y'(t) = f(t,y), y(to) =wo

by defining the recurrence relation based on the fact
t
o0) =+ [ Gs,us)) ds.
to

The only assumptions that are made are f and %5 are continuous in some rectangle
surrounding the point (o, yo). In particular, the recurrence relation is given by

t
(1.1) 6Ot =y, 6 =yo+ [ F(s,6" V(s))ds, n=1,2,....
to

While the recurrence relation results in a straight-forward algorithm to implement on
the computer, the iterates become hard to compute after a few steps. For example,

consider the ODE )
"t)=—=, y(1) =1,
y'(t) e y(1)

which has the solution y(¢) = v/2t — 1. However, the Picard iterates are

¢O(t) =1

o) =1+ [{1ds=1+(t—1)=t
o (t) :1+f1t%ds=1—|—lnt ’
o) =1+ [ s ds

and we note the last integral is difficult to calculate. Continuing beyond the fourth
iterate only results in increasing problems with calculating the integral. As a result,
Picard’s Method is generally not used in this form.

Parker and Sochacki, in [?], considered the same problem, but restricted the
problem to an autonomous ODE with ty = 0 and f restricted to polynomial form.
In this setting, the iterates result in integration consisting of polynomials. They also
showed that the n-th Picard iterate is the MacLaurin polynomial of degree n for y(¢)
if (™ (t) is truncated to degree n at each step. This form of Picard’s method is called
the Power Series Method(PSM).

In [?], Parker and Sochacki showed that a large class of ODEs could be converted
to polynomial form using substitutions and using a system of equations. Parker and
Sochacki also showed that if ¢ty # 0, one computes the iterates as if tg = 0 and then
the approximated solution to the ODE is ¢ (t + t;).

In [?], Parker and Sochacki showed that the ODE based method can be applied
to partial differential equations(PDEs) when the PDE is converted to an initial value
problem form for PDEs. The resulting solution from PSM is the truncated power
series solution from the Cauchy-Kovelsky theorem][?].

Both the ODE and PDE versions of PSM are now used to solve a number of
problems including some stiff ODEs. Rudmin[?] describes how to use the PSM to
solve the N-Body problem for the solar system accurately. Pruett, et. al. [?], analyzed
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DISCRETIZED POWER SERIES METHOD AND SINE-GORDON EQUATION 3

how to adaptively choose the timestep size and the proper number of iterates for a
smaller N-Body simulation and when a singularity was present.

Carothers, et. al., in [?], have proved some remarkable properties of these poly-
nomial systems. They constructed a method by which an ODE could be analytic
but could not be converted to polynomial form. They provide a method to convert
any polynomial system to a quadratic polynomial system and show how to decouple
any system of ODEs into a single ODE. Extending the work of Rudmin, they derive
an algebraic method to compute the coefficients of the MacLaurin expansion using
Cauchy products. While this class of ODEs is dense in the analytic functions, it does
not include all analytic functions.

Warne, et. al. [?], computed an error bound when using the PSM that does not
involve using the n-th derivative of the function. This explicit a-priori bound was
then used to adaptively choose the timestep size for several problems. They showed a
way to generate the Pade approximation using the MacLaurin expansion from PSM.

The PSM has been extended to use parallel computations and adaptively choose
the timesteps as the algorithm executes. In [?], the method is modified to include
a generic form for ODEs and PDEs and allowed the computation in parallel for any
system of equations using a generic text based input file. This method was later mod-
ified using the error bound result in [?] to choose adaptive timesteps while performing
the parallel computations.

Note a preprint of this work has been referenced in [?] where Noorian and Sadr use
the Discrete Picard’s Method (which, we now call Discretized Power Series Method)
to compute transient eddy currents in comparison with the finite element method.

To highlight the implementation of PSM for PDEs [?], consider the Sine-Gordon
equation

(1.2) Upp = Ugy — sinu, u(z,0) = p(z) u(z,0) = q(x).
The right hand side of this PDE is not in polynomial form. In particular, sinu

is not polynomial. Let v = u;, 2 = cosu, and w = sinwu. Then, the corresponding
equivalent polynomial system after substituting is

up = v u(z,0) = p(x)

Ve = Uz —w  0(z,0) = g(x)
(1.3) wy = 2V w(z,0) =sinp(z)

Zp = —wv z(x,0) = cos p(x)

Since the right hand side is polynomial and equivalent to the Sine-Gordon equa-
tion, one calls the Sine-Gordon equation projectively polynomial. In the examples,
DPSM is applied to this polynomial system for a soliton in which the exact solution
is known. In this way we can demonstrate the efficiency and accuracy of DPSM.

2. Power Series Method for PDEs. In the PDE version of Picard’s Method
[?], one considers

u(-,O) Q()

— Ou Ou %u  8%*u
{ut _P(u787m’87y""’W’8T6y"")
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4 JAMES H. MONEY, JAMES SOCHACKI, AND ANTHONY TONGEN

where P and ¢ are m variable polynomials. Parker and Sochacki’s method is to
compute the iterates

¢(t) =q(")
) =al)+ fy PO () ds n=0.1,2,.

We truncate the terms with ¢-degree higher than n at each step since these terms do
not contribute to the coefficient for the t"*! term in the next iteration. We denote the
degree of the Picard iterate as j for ¢U)(t), given this truncation that is performed.
This method is summarized below in Algorithm ?7.

Algorithm 2.1 Power Series Method for PDEs

Require: g, the initial condition, and P the polynomial system
Require: At and numtimesteps
Require: degree the degree of the Picard approximation
for ifrom 1 to numtimesteps do
¢(O)('ﬂt) = Q()
for j from 1 to degree do
OO (- 1) = q() + fy P(6U (., s)) ds
Truncate ¢U)(-,t) to degree j in t.
end for
q(-) = ¢ldeomec) (-, At)

end for

This algorithm is called the Modified Picard Method or Power Series Method
(PSM). While the PSM algorithm easily computes the approximates since it only
depends on calculating derivatives and integrals of the underlying polynomials, it has
some limitations. In [?], the authors showed how to handle the PDE including the
initial conditions. However, the method requires the initial conditions in polynomial
form. While in some PDEs this is the case, many times one computes a Taylor
polynomial that approximates the initial condition to high degree. This results in a
substantial increase in computational time. For some problems, the initial condition
is not explicitly known, but only a digitized form of the data. For example, in image
processing, most of the data has already been digitized and we have to interpolate
the data using polynomials in order to apply the PSM. If this is done, the resulting
polynomial may not effectively approximate the derivatives of the original function.
The polynomial approximation might contain large amounts of oscillations that does
not represent the underlying data accurately. Finally, we would also like to be able
to handle boundary conditions in a simple manner, but keep the extendibility of the
PSM, which does not allow for a boundary condition.

In this paper, we consider the discrete form for the initial conditions. In a future
paper, we will consider the analytic form for the initial conditions. When one does
this, the error will only be in time.

3. Discretized Power Series Method. To overcome the deficiencies listed in
section ?7?, we consider the underlying discrete data directly. We consider the initial
condition ug = wo,,,, ,  Where ug € R™M*"2XX%m is a matrix of m dimensions.
Instead of applying the derivatives directly, we consider a set of linear operators L;
where ¢ = 1,2,...k that approximate the derivatives. Then, instead of solving the
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DISCRETIZED POWER SERIES METHOD AND SINE-GORDON EQUATION 5

PDE

_ du Jdu 8*u  9%u
{Ut _P(u’%’Biy’""iam277816y7"‘)

q(*) ’

we replace the various derivatives by L; and solve

S
-

o
=

Il

{’U,t = P(u, Llu, Lgu, “ee ,Lku)

u('v 0) = U0 iy iy,

We define multiplication of two elements u and v component-wise, instead of using
standard matrix multiplication. Then, we compute the iterates

o) =wup
PPI(t) =g+ [3 P(¢™(s), L™ (), Lag™ (s), ..., Lyp™ (s)) ds, .
n=0,1,2,...

The resulting method computes the discretized solution of the PDE, but is continuous
in the time variable. In section 7?7, we illustrate the importance of requiring the
operators L; to be linear in order to get a similar result to the PSM. Given we
are utilizing the underlying discrete data in the space variables, we call this new
method the Discretized Power Series Method(DPSM). The new method is listed
in Algorithm ??. Note, this method is similar to the method of lines [?], but allows
for computation of the higher orders automatically.

Algorithm 3.1 Discretized Power Series Method

Require: ug, the initial condition, and P the polynomial system
Require: Lq,Ls,..., Lk, the linear approximations to the derivatives
Require: At and numtimesteps
Require: degree the degree of the Picard approximation
for ifrom 1 to numtimesteps do
¢(O)('a t) = Uo
for j from 1 to degree do
SO () = uo + fy P(UD(s), L (¢ ~D(s),..., Li(¢U~(s)) ds
end for
uy = ¢(degree)(At)
Enforce boundary conditions on ug.
end for

3.1. Computation of L;. For the linear operator, there are many discrete op-
erators available for L;[see [?, ?]]. For example, one could use finite differences, finite
elements, or Galerkin methods. In this paper, the operator chosen is the finite dif-
ference (FD) operator. For example, if u; = u,,, we can choose the operator L to
satisfy the central difference scheme

Uj1 — 2uj + Uj1
Ax ’

LUj =

The operator L is extended easily to the two and three dimension case. In section 77,
we show how the choice of the operator determines the stability condition for the
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6 JAMES H. MONEY, JAMES SOCHACKI, AND ANTHONY TONGEN

maximum time step size. In addition, the first and last terms in the one dimension
case, and all the boundary terms in the two and three dimension cases will have to
be handled separately. We discuss this further in section ?77.

Recall, from the introduction, that a PDE u; = f(u, g—;‘, ...), is considered pro-
jectively polynomial if it can be rewritten as a system of equations in n-variables so
that Y/ = P(Y, 22, ...) where Y = [¥1,...,Yy] and P is polynomial.

For a general class of linear operators based on a linear FD scheme, we deduce
that the system remains projectively polynomial, which is summarized by the lemma
and theorem below.

LemMA 3.1. Consider solving via the DPSM the PDE

Uy =Mu
u(-,0) =ug

for some linear differential operator M and initial matriz ug. Assume that L (= M)
is the corresponding linear FD operator. Assume L is defined by

Lui1i2...im = E QG goyennsfim Wit +41 iz 472, i+ Jim -
J15J25e5Jm

Then, the PDE is projectively polynomial.

Proof. This follows directly from the definition since Lu is the sum of degree one
terms. Since the linear operator L is projectively polynomial, we see by extension,
the general problem is also projectively polynomial.

THEOREM 3.1. Consider solving the PDE

2
Ut :P(u7%,g—z,...7i—2",...)
U(',O) :UO("')

by using the DPSM method of

Uy = P(u, Lyu, Lou, ..., Lyu)
u(,0) =wug

i142..im

where each L;, i = 1,...m is linear as in Lemma ?7. Then, the system is projectively
polynomial.

Proof. From Lemma 7?7, we know that each L; is polynomial and in fact linear. The
resulting system is the composition of polynomial terms and has to be projectively
polynomial.

As a result, the results of the PSM method with regards to truncating terms can
be extended to DPSM. Thus, after each iterate is computed, we truncate the terms
to degree n, assuming we have computed the n-th iterate.

3.2. Boundary Conditions. The boundary conditions need to be handled care-
fully in DPSM due to the use of higher degree iterates. When the degree of the iterate
is one, normal boundary conditions are applied, similar to a FD scheme. However,
since the degree one iterate is used to compute the second degree iterate, and sim-
ilarly for degree three and higher, we must calculate the values at the boundary.
The approach we take is to compute one sided derivatives for the FD scheme at the
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boundaries. Figure 77 illustrates the problem with boundary conditions. When using
a degree one iterate, the terms at point x; and z; need to be calculated, where J is
the number of discrete data points and the linear operator has a 3 point stencil. If
we do not enforce the one sided derivatives at this stage, the data at x; and = is
invalid for the degree two iterate, and then, zo and x;_; is invalid after the second
iterate is computed. This continues, reducing the available data as the degree of the
Picard iterate increases, unless we enforce one sided derivatives at each step. When
the characteristic curves contradict this choice, we choose an alternate scheme for the
computing the derivatives. In a future paper, we will consider adaptive approaches
for this scheme.

Fig. 3.1: Complications due to boundary conditions. The similarly shaded regions
are lost if one sided derivatives are not enforced as the degree of the iterates increase.

As a result, we enforce the linear operator to compute one sided derivatives at
the edges of the domain. For example, in the one dimension example of u; = u,, with
L being the centered difference scheme, we use the end condition in one dimension to

be
Uy —2uj—1+uj—2

Ax?
and a similar term for Lu;. Now, we have all the values, and there is no ambiguity
in the values at the boundary for any of the degrees of the iterates.

4. Comparison of PSM with DPSM and Finite Differences. In this sec-
tion, we compare the PSM to the DPSM. While the PSM computes the power series
form for the function u, the DPSM does the same computation, but with an approxi-
mation to the derivatives at each step. For example, we consider solving the following
PDE

LUJ:

up = Uy, u(x,0) = up(x)
compared to the DPSM method of
(4.1) uy = Lu, u(z,0) = ug(x),

where L is the operator for central difference scheme. If we compute the iterates for
PSM we get,

p(o) (t) = ug

p(l)(t) =wup +ug, t

p(2) (t) = Ug + g, t+ U0, ﬁ 5
PO () =wuo+uo, t+uo,, 5 +uo,, &
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219 while the DPSM computes

(z)(o) t) = Uug
) = ug + L(UO)t
220 dP(t) =g+ L(ug)t + L*(uo) %
3
(725(3) t) = UQ -+ L(Uo) t+ LQ(U()) % -+ LB(UO) %

221 and we note that L? would be a 5 point approximation to s, and L3 would be a 7

222 point approximation to u,,,. By choosing L to be the centered difference scheme,
223 (?77?) corresponds to the approximated derivatives.
224 If we consider a nonlinear example, the correspondence between derivatives and
225 the linear operator is still true. If we consider Burger’s equation

u2
226 ur + (—=)z =0, u(x,0) = a(z),

2

227 we can first project to a simpler polynomial system to ease our calculations. Let
2
228w = % to get the equivalent system

u+w, =0  u(z,0)=alx)
229 ?(2) .
wy +uw, =0 w(z,0) = 5~ = B(x)

230 Consider the following integral form of this system

231 u(z,t) = a(x) —/0 wy(x, 7)dT

232
t
233 w(z,t) = B(x) —/ u(z, 7wy (x, T)dT
0
234 and the Picard iteration for this system
t
235 uF D (2, 1) = afx) —/ w® (z, 7)dr
0
236
¢
237 w* ) (2,1) = B(x) 7/ u Y (2, TYwED (2, 7)dr
0

238 Now let L be a linear approximation for %. This leads to the following discrete in

239 space approximation

240 ug-kﬂ)(t) =a; — /Ot L[w§k)(7)]d7

241 and

= W =6 - [ D () L ()l
0

243 to this iteration where j indicates z; = jAz. We let

244 ugo) = a; and w§0) = B;.
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DISCRETIZED POWER SERIES METHOD AND SINE-GORDON EQUATION 9

The Picard iterates for kK = 0 are

ug‘l)(t) =q; _/OtL[ ](0)( 7)ldT = o — Lw; o )}

Similarly for k = 1, we get

u(-z)(t) = fot O (\dr = aj — fo O)L[ (O)]T]dT

f%fL[ w+LH”M<%b

and

= B — f(ay — Lw™)r)L[8; — ul® Liw@)]dr
_ ﬁj - u;,o)L[wj(,O)]t + (uEO)L[UEO)L[ (0)]] + L[ (O)] ) ;

u;3)(t) = fo (2 )]dr .
0 0 0 0 0 0 -
= aj IK L[Oﬁj - u§ )Lo[w§. >]TO+ (1 )L[u(%))L[wé 4l +0L[w§ Pygar
= a; — L)t + L Lw )8 — L\ L L)) + (Lwd)) )]s
and

WP () = 8 = fyuf? (D)Ll (r)dr
=8 Jy(a; = Luw{)r + Lu

2
e R St
:5j_uj L[wj ]t—l—(u L[uj L[wj ]]+L[wj ]2)%

(Ll Ll “”L[ @W}+-thmﬁ2}%

And we can continue for higher values of k. However, we can now replace wg-) with
(u9)?/2 and have

i(t) = a; - L[ )
1$W>= - L+ L LI
(1) =a - L[N+ L 1[5 -
L OO

We note that these iterates are the same as the PSM iterates, except with the
linear approximation L applied instead of differentiating at each step. The pattern
can now be extended as well for other nonlinear problems. This process also works
on generating a space discretization with time Picard iteration on any equation of the
form

ur + (f(w)e =0, u(z,0) =
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10 JAMES H. MONEY, JAMES SOCHACKI, AND ANTHONY TONGEN

where f is polynomial.

The DPSM method iterates of degree one and two are related to standard FD
schemes. The forward time FD scheme is related to the degree one iterate of DPSM.
When the degree of DPSM is two, we get the DPSM method is equivalent to the Lax-
Wendroff scheme when the appropriate operator is chosen. The following theorem
illustrates the relations between the forward time difference scheme and the Lax-
Wendroff scheme.

THEOREM 4.1. Consider applying the Discretized Power Series Method to the
equation

U = Mu
u(+,0) =ug

for some linear differential operator M and initial matriz ug. Assume that L ~ M
is the corresponding linear FD operator. Then, the degree one Picard iterate is the
same as the FD scheme using the operator L and the degree two Picard iterate is the
Laz-Wendroff scheme, if the operator L is chosen to use a stencil with half steps.

Proof. For the degree one iterate, we compute the iterate

t
M () = ug —|—/ Lugds
0
Evaluating, we get
e (t) = ug + Lugt

and by rearranging we get
¢ (t) = ug + Lugt

M) (4 —
7(]5 (tz uo:Luo

o0 -0 _,

t 6O )
Letting u" ' = ¢ (t) and u™ = ¢ (t) we get
n+l _ . n
e
t

Now letting t = At, we get the desired result.
For the second degree iterate, we compute

t
B0 =+ [ L) ds
0
By expanding and rearranging, we obtain:
t
PP () =wug+ / L(ug + Lug s) ds
0
t
= ug + / (Luo + L2ug s) ds
0

2

t
:u0+Lu0t+L2u0§
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DISCRETIZED POWER SERIES METHOD AND SINE-GORDON EQUATION 11

But, we note that the Lax-Wendroff method computes

2
u0+utt+utt5

and using that u; = L(Lu) = L?u, and choosing the correct operator L with half
step points for the stencil, the proof is complete.

5. Stability. In this section, we consider the stability of the DPSM as the degree
of the Picard iterates increase. In general, we cannot determine a stability condition
for any degree m, but the stability region increases with m for all our examples. For
the first example, we consider solving the transport equation

Ut = Uy
u(-,0) =wug

using the central difference scheme

Uiyl — Uj—1
Lu; = 2L -1
J 2Azx
with one sided difference at the boundary. The first assertion we make is about the
term L™u since this is needed to compute the Von-Neumann analysis for stability.

LEMMA 5.1. For the linear operator Luj = “H59=%  we have that

Dico (1) (TiL)uj*QiJrn

(2Az)"
Proof. We illustrate a method that is less algebraic and relies on functionology and
combinatorics for a proof. For further reference, please see [?, ?]. We define a sequence
(Un) in R[[z]] by Up(z) = >, u;z? and Uy, (z) = > L"™(uj)x?. Since L is linear, we
have the relation

n _
LUj—

L (1) = L Huy-1)
2Ax
for n > 0. Multiplying by 27 and summing over all j € Z we get that

L™(uj) =

= 7L [U”*Tl(”) - xUnfl(f)]

2
1 l;z n—l(x)

2Az
Hence, we have Uy, (z) = (ﬁ 1;"’”2) Up(z). Thus, we have

L") =[] (55 Uolo)

= (3a3) " [&7T](1 — 22)"Up(x)

where [27] denotes the j-th coefficient of the expansion immediately to the right. If
we apply the binomial theorem to the right hand side we see that

L™(u;) = (ﬁ): ZZ:O (?)(_1)%u(j+n)7(2i)
= (2ix) > izo (?)(71)2“j—2i+n

which completes the proof.
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12 JAMES H. MONEY, JAMES SOCHACKI, AND ANTHONY TONGEN

Now, given we have each term explicitly, we can now compute the stability poly-
nomial for any degree of our Picard iterate.

THEOREM b.1. The Picard iterates of degree m for

using the central scheme result in the stability polynomial
V" = i(n—21)
e (7)e
=1
At
2Azx”

Proof. From the Picard iterates, we compute the degree m iterate to be

where v =

t? "
m:

Let u™ = ¢(™)(t). Then, applying the formula above, we get

tm
u?:u0j+Lu0jt+~-~+Lmuojm
Ift=Atand v = 2Am’ we obtain
m,1 V2 2 v m
(O :uoj—l—Z/Luoj—I—?L uoj—l—---—i—mL U,
or

n

m v
m,l _ n
Uj = Uoj + E L qu TL'

n=1

By applying theorem 7?7, we obtain

m
m,1 _ UOJ E

Then, letting uj"* = NPeIRAT e get

S (e

=

:\T
| — |
M:
=
3
N————
g
<
S]
+
3
—_

and this completes the proof.
Now, let us consider the case of the first four iterates to illustrate the change in
the stability condition as the degree increases:

THEOREM 5.2. The stability condition for the first four iterates of

Ut = Uy
u(-,0) = ug

using the central difference scheme are
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Degree | Stability Condition

1 unstable
331 2 unstable

3 v < ?

4 v<V2
332 forv = 2AA—tx.

Proof. While the result for the m = 1 case can be obtained by the usual means for
the FD scheme, we wish to illustrate an alternate method that makes the computation
slightly easier and more straightforward. We consider the stability polynomial

A=1+v [eijAa: o efijAz]
333 for degree one or
334 A=1+42ivsind

where 0 = jAz. We have
336 AN =M\ =1+4v2sin?0

w W
w w
ot

showing the scheme is unstable. To complete our formal analysis, define
f(v,0) =1+ 42sin? 0

Then, we fix v and find the minimum with respect to 6 by differentiating:
fo =8%sinfcosf =0

337 Hence, we have § = 0,7, 7/2,—n/2. Filling in those values, we obtain the set of
338 polynomials

339 f,0)=fr,m)=1
340
341 fv,m)2) = f(v,—7/2) = 1 + 4/

342 and we want both these to be less than one for v > 0, i.e.:

, 1 <1
343
1+42 <1

344 However, no choice of v satisfies all these requirements and we conclude that the
345 degree one polynomial is unstable.
Now, we complete a similar analysis on degree two and get the same result. But
for degree m = 3, we have

3

A =14 2ivsing + v*(cos 20 — 1) + %z [sin (36) — 3sin 6]
We define
F(v.0) =[P
and compute g—g(u, f) = 0 and get the real solutions are
T
0=0——,—.
272
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Therefore, we have the polynomial conditions

fw,0) = flv,m) =1<1
flv,—m/2) = fr,7/2) =1— 301+ 156 <1

which is satisfied when v < § The bound for the DPSM iterate of degree four is
similar to derive and the calculations result in v < v/2.

In the case of the degree three and four iterates, the physical constraint of the
CFL condition is violated. Thus, we need not choose any higher degree iterate than
three for the DPSM. As a result, we will use a degree three iterate with v < 1 for
computations.

For the heat equation in one dimension, a similar analysis can be completed and
is listed below.

THEOREM 5.3. The stability condition for the first four iterates of

Ut = Ugg
u(-,0) =ug

using the central difference scheme are

Degree Stability Condition
1 v <0.5
2 v <0.5
3
< Vv 1 ~0.628186331
3 v < 1 4{/4+\/ﬁ+4 0.6281863317
< Ly V29 - —5 __ +1lx0.
4 v< 15 \/172 + 36v2 5213075 + 5 ~ 0.6963233909
forv = (L@f)Z .

A similar analysis will work for the two dimension datasets. We consider the
process of applying the heat equation in two dimensions and we get a corresponding
analysis for stability from the theorem below.

THEOREM 5.4. The stability condition for the first four iterates for solving

Ut = Ugg T Uyy
u(-,0) =ug

via DPSM using the central difference scheme is

Degree Stability Condition
1 v <0.25
2 v <0.25
3

3 < l|Mavir 1| ~0.3140931658

V=2 4 4¥/a+v/17 HE

3

< 1| A/172436v29 5 1| ~ 0.3481616954
4 V=2 12 34/172+36v/29 Nk 0348161695
forvy, =vy,=v= (AA;)Z.

Proof. We can handle the two dimension case similar to the one dimensional case.
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Here we need to form f(v,,vy,0,w) = A and then solve

fG(Va:a Vy79aw) =0
foVa,vy,0,w) =0

For the degree two iterate, we get

=0 w=0
0=0 w=m
=7 w=0

=1 w=m
Then we compute f(v,v,-,-) for each value of § and w and we get

—1<1<1
—1<1—4v+82<1
—1<-1<1—-4v+82%2<1
-1<1-8v<1

Solving for all cases and combining the answer we get that v < 1/4. We can apply
the same analysis and compute the result for degree three and four.

We note here, that we can allow v, # v, by writing v, = cv, for some constant
c and apply the same analysis above and get a similar result when the space grid is
not square.

6. Numerical Implementation and Examples. All the examples are imple-
mented in Matlab. In order to implement the DPSM, an object class for computing
the iterates was developed that utilizes matrix coefficients. This object class imple-
ments all the basic mathematical operations and includes an integral operator over
the time domain. The linear operators are implemented as pluggable modules for the
DPSM routine which makes the method versatile when considering different types of
PDEs and testing different operators used for each derivative. All the floating point
arithmetic is computed in double precision.

The first example we consider is

up = Uy, u(x,0)=sinz.

We use the centered difference operator for the first derivative, which is Lu; =
u”;%zj‘l. We chose Az = 0.01, and ran the method for a total of 400 time steps
using a degree three iterate with At = Az, the maximum value allowed by the CFL
condition. The result is shown in Figure ?? for times ¢t = 0,2,4. We note that while
the first two iterates are unstable, using the degree three or four iterate results in a
stable method. We show the result in the figure for degree four.

The second example is the heat equation in one dimension. We used the centered
difference scheme Lu; = % The degree four iterate is used again for
computation and the result is shown in Figure ?7. We note the computational cost
of computing using the higher degree iterate allows us to compute the final result in
less time steps.

The third example we present is the inviscid form of Burger’s equation, which is

(6.1) up = —uug, u(0,z) = f(z).
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Fig. 6.1: Degree four iterate for solving u; = u, using a centered difference scheme.

10

~ =0
ot VACEER - — —1t=0.35
T t=0.70
7 N -
A N - - =14 ||

Fig. 6.2: Degree 4 iterate for solving u; = u,, using a centered difference scheme.

We choose f(r) = —3/mtan~!x + 2.5. We see the computed result up to the
start of the shock formation in Figure ??(a) using DPSM. In (b), the same result
is computed using the Lax-Wendroff scheme. However, the stability condition is
O(At/(Ax)?) for Lax-Wendroff, but the third degree DPSM only requires At/Az <
0.25. The time step for using Lax-Wendroff is 0.0025, while DPSM uses a time step
of 0.005. To compute a solution to t = 5.25, Lax-Wendroff required 21000 time
steps, while PSM order three gave the same answer with only 420 time steps. The
computational savings in time and computing, even with computing the higher degree
iterates, is substantial.

The fourth example we present is an image smoothing example. Using the fourth
degree iterate for solving u; = Awu with the noisy initial image in Figure ?7(a), we
compute the result in less time. The intermediate and final results are shown in
Figure ?7(b) and (c). Here, we chose the maximum value for v = At/(Az)? in
Theorem ?77.

We demonstrate DPSM on the Sine-Gordon equation 7?7, projected as 77 pre-
sented earlier for computing the solution.

We use the soliton solution u = 4arctan(e¥(®=v%),
v = 7% and v = 0.5. The initial conditions for this soliton solution are

In the example presented
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35 35

25 25F

—— =0
20525
(420 steps)

15+ =0
_t=0.525
(21000 steps)

1 1
-10 -5 0 5 10 -10 -5 0 5 10

Fig. 6.3: Degree 3 iterate for solving u; = —uu, in the present of a shock. (a) is
computed via DPSM. (b) is the same result using Lax-Wendroff

(b)

Fig. 6.4: Degree 3 iterate for solving u; = Aw in 2D using a centered difference scheme.
Image (a) is the initial noisy image. Image (b) is the result after 5 iterations. Image
(c) is the result after 10 iterations.

422 u(z,0) = p(z) = 4arctan(e?®), us(x,0) = q(x) = —4ﬂ :
) K ) 1 + (e,yz)z

423 The boundary conditions are

424 u(0,t) = A(t) = 4arctan(e” "), u(R,t) = B(t) =0

425 where R is chosen large enough to make this boundary condition close to true. (In
426 the example presented R = 50.) We note that

e—’yvt

427 At) = —dyp——— -
(t) (e pp—
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If welet @ = e and b = (1 + (e77)*)~! then A,a,b solves the initial value
polynomial system of ODEs

1
A'(t) = —4yvab; A0) = 7, d'(t) = —yva; a(0) = 1, V' (t) = —2ywva®b?; b(0) = 3
We use PSM for ODEs on this system to get the boundary condition u(0,t) = A(¢).

The discretization u(x,t) = u(z;,t) = U;(t),v(z,t) = v(z;,t) = V;(t),w(z,t) =
w(zxj, t) = W;(t), z(x,t) = z(x;,t) = Z;(t) for j = 1,2,...,J with z; = jAx together

with
Ujs1(t) —2U;() + U1 (t)
Ax?

to discretize u,, gives us the following system of initial value ODEs for DPSM. Ap-
plying all of this to the above system of IV PDEs with boundary conditions gives

Uj(t) = Vj(t); U;(0) = p(z;) = p;

Uin(t) - 22;(5) +Uia®) W;(t); V;5(0) = g(x;) = g;

Wi(t) = Z;(t)V;(t); W;(0) = sinp(x;) = sinp;
Z5(t) = =W;(t)Vj(t); Z;(0) = cosp(x;) = cosp;

Vi) =

for j = 1,...,J. We incorporate Uy(t) = A(t) and U1 (t) = B(t) = 0. We then assume

K K K K
_ (@] 44 o (@] 44 o [i] 4 L [i] 4
Uj_Eth,V]_EVjt,Wj_Eth,Z]_Eth
1=0 =0 =0 =0

for j = 1,..., J for some counting number K. We then have a K*" order Lax-Wendroff
approximation for u.

In Figure ?? (a)-(f) the exact solution (with circles in the figure) together with a
K = 4 approximation to the exact solution using Az = 274, At = 27 is shown as a
solid line. In Table 7?7 we present the L; error for Figure 7?7. It is interesting to note
that with K = 2 the scheme is unstable.

Time 0 8AL 16At 32At 64At | 128At

0.5s 1s 2s 4s 8s
Error 0 0.0021 0.0034 0.0058 0.0106 | 0.0204
Relative Error | 0 | 3.51E-04 | 5.37E-04 | 9.18E-04 | 0.0017 | 0.0032

Table 6.1. Absolute and relative error at various time steps compared with the exact
solution for the Sine-Gordon equation using the soliton solution.

A DPSM numerical solution to

(6.2) {utt = Uy, — Sinu

w(z,0) = e 01E@E=T" g (2.0) =0

with boundary conditions u(0,¢) = 0 and «(200,¢) = 0 is shown at several time steps
in Figure ?? using Az = 274 and h = At = 27%. The initial condition is off center
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Initial Condition t = 0 Solutions at t=8 At=05

Solutions at t=16 At=10

—5— Bact —5—Baxt
DPSM Order 4 DPSM Order 4

Solutions at t =64 A t=4.0 Solul

Fig. 6.5: Comparison of Sine Gordon exact solution using initial condition in (a) with
order four DPSM result for At = 0.5, 1, 2, 4, 8 in (b)-(f). Note the exact solution
and compute DPSM solution match for all time steps.

so that one can observe the reflection off the x = 0 boundary. This initial condition
is similar to what is employed in the paper by Mohebbi, et. al [?].

Both Bratsos [?] and Mohebbi, et. al. [?] provide solutions to the Sine-Gordon
equation using finite differences at higher orders, but we achieve similar and superior
results quickly using the DPSM without the added manual calculations even with
using higher orders.

7. Concluding Remarks. We developed the Discretized Power Series Method
using PSM with finite difference schemes. We showed the relation of this new method
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Initial Condition (t = 0, Solution at t =32h = 2.0 Solution at t = 64h = 4.0
1 0.6 0
0.4 0.2
505 > =]
02 -0.4
0 0 -0.6
0 100 200 0 100 200 0 100 200
X X X
Solution att = 128h = 8.0 Solution at t = 256h = 16.0 Solution at t = 512h = 32.0
0.2 0.4
0
0.2
s 0 > -0.2 >
0
02 -0.4
0.6 0.2
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X X X
Solution at t = 1024h = 64.0 Solution at t = 2048h = 128.0 Solution at t = 2560h = 160.0
0.2 0.2
0.2
> 0 =} 0 > 0
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Fig. 6.6: Various timestep solutions for Sine-Gordon using DPSM based on equation
79

with existing schemes and computed stability results. We showed for our examples the
stability region increases as the degree of the Picard iterate increases in one and two
dimensions. The results of this method easily generalizes to any dimension. Finally,
we show excellent results using the soliton solution of the Sine-Gordon equation and a
non-symmetric solution with DPSM. Future work includes further analysis on stability
in the general parabolic form and applications to problems with singularities. We will
also consider other formulations for the adapting of the boundary conditions for higher
degree iterates and an analytic approach for using DPSM.
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