
Computer Physics Communications 182 (2011) 1187–1198
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Parallel implementation of an adaptive and parameter-free N-body integrator ✩

C. David Pruett a,∗, William H. Ingham b, Ralph D. Herman b

a Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA 22807, United States
b Department of Physics & Astronomy, James Madison University, Harrisonburg, VA 22807, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2010
Received in revised form 3 January 2011
Accepted 4 January 2011
Available online 21 January 2011

Keywords:
N-body problem
Initial-value problem
Power series
Maclaurin series
Ordinary differential equations
Parallel computation

Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with
an asymptotic operation count of O (M2N2). The algorithm’s structure lends itself readily to data
parallelization, which we document and demonstrate here in the integration of point-mass systems
subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body
integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover,
it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at
least a handful of bodies.

Program summary

Program title: PNB.f90
Catalogue identifier: AEIK_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 3052
No. of bytes in distributed program, including test data, etc.: 68 600
Distribution format: tar.gz
Programming language: Fortran 90 and OpenMPI
Computer: All shared or distributed memory parallel processors
Operating system: Unix/Linux
Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly
vectorized.
RAM: Dependent upon N
Classification: 4.3, 4.12, 6.5
Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to
Newtonian gravitation.
Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree.
Running time: 5.1 s for the demo program supplied with the package.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Of historical and enduring practical interest, the problem of
N-body gravity occupies a unique place at the heart of classical
physics. N-body integrators seek to accurately capture the trajec-
tories of individual bodies and hence solve Newton’s equations

✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author. Tel.: +1 540 568 6227.
E-mail addresses: pruettcd@jmu.edu (C.D. Pruett), inghamwh@jmu.edu

(W.H. Ingham), hermanrd@jmu.edu (R.D. Herman).
URL: http://www.math.jmu.edu/~dpruett (C.D. Pruett).
0010-4655/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2011.01.014
of motion without approximation (except those inherent in the
numerical scheme itself). Because the computational effort scales
as N2, studies of large-N systems demand efficient parallel imple-
mentation.

Parker and Sochacki [1] outlined a novel approach to solving
systems of ODEs that was based ostensibly upon (modified) Pi-
card iteration. One can view the Parker–Sochacki approach as a
power-series solution technique that expands the state variables
of the system as Maclaurin polynomials of arbitrarily high degree,
provided that the generator of the system is itself of polynomial
form. The key breakthrough in their approach was the recognition
that virtually all non-stochastic ODEs can be re-cast with poly-
nomial generators. The merits of this methodology are simplicity,
extraordinary accuracy, and wide-ranging applicability. The Parker–

http://dx.doi.org/10.1016/j.cpc.2011.01.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:pruettcd@jmu.edu
mailto:inghamwh@jmu.edu
mailto:hermanrd@jmu.edu
http://www.math.jmu.edu/~dpruett
http://dx.doi.org/10.1016/j.cpc.2011.01.014

1188 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
Sochacki method has recently been applied by Stewart and Blair
[2] to the integration of spiking neural networks.

In 2003, Pruett et al. [3] adapted the Parker–Sochacki tech-
nique to the N-body problem. At the time, they were unaware that
Fehlberg [4] had used an analogous approach for the three-body
problem as early as 1964 and that Broucke [5] had extended the
method to the N-body problem in 1971. Nevertheless, Pruett et al.
extended earlier work by rendering the algorithm doubly adaptive
(that is, adaptive in both time increment and polynomial order).
Moreover, they optimized the scheme for minimum computational
effort to render the algorithm parameter-free.

Numerical experiments with the doubly-adaptive variant of the
N-body algorithm addressed what was then an open question:
What is the optimal order of a numerical integrator for the N-
body problem [6,7]? These experiments revealed that optimal or-
der is higher than previously suggested and is inherently dynamic,
dependent upon the number of bodies N , the specified global er-
ror tolerance ε , and the instantaneous configuration of the bodies,
higher order being advantageous during close encounters.

The N-body algorithm previously reported [3] is robust and
accurate. However, with a per-step operation count of O (N2M2),
where M is the order, it is not particularly efficient despite the
relatively large time step characteristic of high-order methods. This
shortcoming is offset by a simple structure that lends itself readily
to data parallelism. Here we document and demonstrate a parallel
implementation of the algorithm. To improve notation and to cor-
rect some typographic errors in the previous paper, we summarize
both the original serial algorithm and its parallelization.

The resulting N-body integrator is robust, doubly adaptive (i.e.,
in time and order), and parameter-free. Moreover, it exhibits lin-
ear speedup on distributed parallel processors, provided that each
processor has at least a handful of bodies.

The method is demonstrated in the integration of N-body sys-
tems of point masses subject to Newtonian gravitation. The poten-
tial range of applications of the methodology, however, is broad.
For example, particle methods for fluid-flow simulation are struc-
turally similar to N-body algorithms.

2. Governing equations

In [3], the N-body problem is formulated as an autonomous
system of ordinary differential equations for time t > t0, namely

dXij

dt
= V ij (1)

dV ij

dt
=

∑
k �= j

Mk(Xik − Xij)S3
jk (2)

dS jk

dt
= −S3

jk

3∑
i=1

(Xik − Xij)(V ik − V ij) (j �= k) (3)

where Xij and V ij are the ith components (i = 1,2,3) of position
and velocity, respectively, of body j (j = 1,2, . . . , N), Mk ≡ Gμk ,
μk is the mass of body k (k = 1,2, . . . , N), and G is the univer-
sal gravitational constant. The system is cast with its generator in
polynomial form. This unusual convention, which is central to the
Parker–Sochacki method, is facilitated by defining the inverse sep-
aration distance between the centers of bodies j and k as follows:

S jk ≡ 1/r jk (j �= k), where r jk ≡
√∑3

i=1(Xij − Xik)
2. Note that the

generator of Eq. (3) is polynomial of degree five. The governing
equations are completed by specifying initial conditions Xij(t0) and
V ij(t0).
3. Baseline algorithm

The polynomial form of system Eqs. (1)–(3) admits power-
series solution techniques. Furthermore, because the system is au-
tonomous, the time origin can be shifted to zero (t0 = 0) following
each integration step without loss of generality. As a result, solu-
tion components can be approximated by Maclaurin polynomials
in time t . For example, let xij(t) be the numerical approximant
of the exact solution Xij(t), and let xijm denote the mth-order
coefficient of the Mth-order Maclaurin polynomial approximation
for Xij . That is, Xij(t) ≈ xij(t) ≡ ∑M

m=0 xijmtm . Let similar conven-
tions hold for the approximants vij , s jk , and powers of s jk .

Now suppose the Maclaurin-polynomial coefficients are known
for terms through order m − 1. By integrating the Maclaurin poly-
nomial approximation of Eq. (1) with respect to t , for example, the
mth-order coefficient of position is obtained as

xijm = 1

m
vi, j,m−1 (4)

Similarly, and by using Cauchy products to evaluate quadratic non-
linearities and repeated Cauchy products for higher-order non-
linearities, the following recursion relationships hold among suc-
cessive Maclaurin coefficients:

vijm = 1

m

∑
k �= j

Mk

m−1∑
q=0

(xikq − xijq)
(
s3)

j,k,m−1−q (5)

s jkm = − 1

m

m−1∑
q=0

(
s3)

jkqa j,k,m−1−q (k �= j) (6)

(
s2)

jkm =
m∑

q=0

s jkqs j,k,m−q (k �= j) (7)

(
s3)

jkm =
m∑

q=0

(
s2)

jkqs j,k,m−q (k �= j) (8)

a jkm ≡
m∑

q=0

3∑
i=1

(xijq − xikq)(vi, j,m−q − vi,k,m−q) (k �= j) (9)

The quantity a jkm is defined as a computational convenience. For
Eqs. (4)–(9), the coordinate index ranges i = 1,2,3, and the body
indices j and k both range from 1 to N; e.g., j = 1,2, . . . , N .

The essence of the baseline algorithm consists of three proce-
dures inside a time-advancement loop:

(1) The zero-order quantities xij0 and vij0 are simply the ini-
tial positions and velocities. The zero-order inverse separa-
tions s jk0 follow from the initial positions xij0. That is, s jk0 ≡
1/r jk(0). Then the quantities (s2) jk0, (s3) jk0, and a jk0 follow
from Eqs. (7)–(9) for m = 0.

(2) The quantities xijm , vijm , s jkm (s2) jkm , (s3) jkm , and a jkm
are defined recursively by looping through Eqs. (4)–(9) for
m = 1,2, . . . , M . This process yields the Maclaurin coefficients
for position and velocity, namely x jm = [x1 jm, x2 jm, x3 jm] and
v jm = [v1 jm, v2 jm, v3 jm], m = 0,1, . . . , M .

(3) The system state is advanced in time by �t merely by evalu-
ating the Maclaurin polynomials of position and velocity. For
example, the position and velocity updates are:

x j(�t) = x j0 + x j1�t + x j2�t2 + · · · + x jM�tM (10)

v j(�t) = v j0 + v j1�t + v j2�t2 + · · · + v jM�tM (11)

where j = 1,2, . . . , N . Polynomial evaluations are accom-
plished efficiently by Horner’s method in O (MN) operations.

C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198 1189
Because the method is a one-step method and the generator
is autonomous, initial conditions can be reset after each step,
in which case Eqs. (10) and (11) are valid for all time steps.

The baseline algorithm is summarized below:

input N
input initial positions xi j(0) (i = 1,2,3), (j = 1,2, . . . , N)

input initial velocities vi j(0) (i = 1,2,3), (j = 1,2, . . . , N)

set parameters: integration time T , order M, time increment �t
set initial conditions: xi j0 = xij(0), vi j0 = vij(0)

t ← 0
Do until (t > T)
| Establish inverse separations s jk0 from xij0

| Establish (s2) jk0 , (s3) jk0 , and a jk0 from Eqs. (7)–(9)
| Recursively, for m = 1,2, . . . , M
| | Compute coefficients xi jm, vi jm, s jkm, etc., from Eqs. (4)–(9)
| Update x j(�t) and v j(�t) by Eqs. (10)–(11)
| t ← t + �t
| Output: running time t, positions x j(�t), velocities v j(�t)
| Reset initial conditions: xi j0 ← xij(�t), vi j0 ← vij(�t)

Note that order M of the baseline algorithm is arbitrary.

4. Adaptive stepping

Let �tl be the variable interval of step l for a time integration
of total duration T , and let ε be the global relative error tolerance.
Then the allowable per-step relative error εl is given by

εl = ε�tl

T
(12)

For an integration scheme of order m, under reasonable assump-
tions it can be shown that the global relative error tolerance is
maintained provided the estimated per-step relative error el is
bounded by εl , in which case

el ≈ vmax(l)

vs
�tm+1

l � εl (13)

The estimation el is based upon the first neglected term of
the Maclaurin polynomial approximation of velocity. Here vs ≡
max j ‖v j0(0)‖2 is a velocity scale based upon the Euclidean veloc-
ity of the initial condition, and vmax(l) ≡ max j ‖v j,m+1(tl)‖2 is a
norm for the (m + 1)-order Maclaurin coefficient at the lth step.
Combining Eqs. (12) and (13) leads to the following bound on the
time step:

�tl �
[

εvs

T vmax(l)

]1/m

(14)

5. Optimization

Suppose W+ , W− , W× , and W÷ denote the number of addi-
tions, subtractions, multiplications, and divisions, respectively, per
time step in the algorithm. These floating-point operations can be
counted precisely and the dominant terms identified. For example,

W+(M, N) = 5

4
N(N − 1)(M + 1)(M + 2) + 3

2
N2M(M + 1)

+ 1

2
N(N − 1)M + 6N(M − 1) + 4N2

≈ 11

4
M2N2 (15)

Similarly,
W−(M, N) ≈ 6M2N2 (16)

W×(M, N) ≈ 17

4
M2N2 (17)

W÷(M, N) ≈ MN (18)

The weighted per-step operation count is

W (M, N) = w+W+(M, N) + w−W−(M, N) + w×W×(M, N)

+ w÷W÷(M, N) (19)

where weights w+ , w− , etc., reflect the respective relative costs on
the given platform of the four basic arithmetic operations. For ex-
ample, if the basic operations share the same weight (unity), then
the asymptotic workload is W (M, N) ≈ 13M2 N2. Given the per-
step workload Eq. (19), the computational cost per unit time for
an integration step of size �t can be defined as follows:

P (M, N,�t) = W (M, N)

�t
(20)

where W (M, N) is the exact weighted operation count from
Eq. (19). Numerical experimentation with the time-adaptive, fixed-
order, N-body integrator (Fig. 4 of [3]) has shown P (M, N,�t) to
be a rapidly decreasing function of M for small M . P (M, N,�t) at-
tains a minimum at a relatively large value of M (roughly 12 and
20 for single- and double-precision calculations, respectively) and
then increases gradually. This behavior permits a simple-minded
but effective search for the global minimum of P . With the mod-
ifications to the baseline algorithm outlined below, the enhanced
algorithm adapts both �tl and M at each time step l (including
the first) to minimize computational effort:

1. Immediately prior to the loop for m = 1,2, . . . , M in the base-
line algorithm insert:

Set reference cost P0 to an outrageously large value

2. Immediately after coefficient computation within loop for m =
1,2, . . . , M insert:

Evaluate �tl for order (m − 1) via Eq. (14)
Evaluate cost P1 ← P (m, N,�tl) via Eq. (20)
If (P1 > P0) then

M ← m
Exit

End if
Reset reference cost: P0 ← P1

The additional computational cost incurred by the optimization is
negligible relative to other time-advancement costs.

Finally, by defining ε ≈ u, where u is the machine unit round-
off error of the computational platform, the algorithm is rendered
parameter-free.

A demanding test of the doubly adaptive algorithm is the time
evolution of a “swarm” of gravitating particles. To this end, a 96-
particle system was considered. Initial positions are shown in
Fig. 1. Each particle was assigned randomized Cartesian position
and velocity components, each initialized to a random number uni-
formly distributed on [−2,2]. For clarity in the figure, vertical (z)
position coordinates are shifted by two units so that all particles
are plotted with positive stems.

Fig. 2 demonstrates the doubly adaptive behavior of the opti-
mized algorithm during the integration of the particle swarm de-
fined immediately above, for an integration time 0 � t � 0.5. Note
that optimal order varies from 15 to 23 while optimal time step
varies by more than three orders of magnitude. The total number
of time steps is 2211. Small steps correspond to near-collisions. For
this calculation, ε = 10−13.

1190 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
Fig. 1. Initial positions of 96-particle “swarm”, with vertical coordinate shifted by two for clarity.

Fig. 2. Behavior of doubly adaptive algorithm for 96-particle system: (a) adaptation of time increment �t , and (b) simultaneous adaptation of Maclaurin order M .
6. Parallel implementation

A parallel version of the algorithm has been implemented in
Fortran 90 with explicit message passing via the Message Pass-
ing Interface (MPI) protocol. The parallel algorithm is summarized
in pseudocode below, where q is the processor id, and message-
passing commands are indicated in boldface. First, we summarize
the algorithm’s basic functions.

Let p be the number of processors; that is, q = 1,2, . . . , p. The
present N-body algorithm lends itself to data-parallel structure, as
shown in Fig. 3, illustrated for p = 4. In principle, each processor
is responsible for updating the positions and velocities of a subset
of the total number of bodies, and the data are distributed accord-
ingly. Specifically, for fixed m, quantities xijm and vijm are N × 3
matrices. In contrast s jkm , (s2) jkm , (s3) jkm , and a jkm are N × N ma-
trices. All matrices are “strip-mined” by distributing strips to each
of the p processors as shown in the figure.

There are two modes of operation, each designed to ensure
computational efficiency via optimal load balancing. In the first
mode, any number of processors p � N is allowed provided
 Fig. 3. Data-parallel structure of parallelized N-body algorithm, shown for p = 4.

C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198 1191
N mod p = 0, in which case each processor is responsible for ex-
actly N/p bodies. For example, if N = 32 and p = 4, processors
1, 2, 3, and 4, are responsible for bodies 1 to 8, 9 to 16, 17 to
24, and 25 to 32, respectively. For the first mode of operation, the
computational workload is essentially perfectly balanced.

The algorithm defaults to its second mode of operation if p is
not an integer divisor of N . In this case, processors 1 to p − 1 are
each assigned b = � N

p 	 bodies, and processor p is assigned the re-
mainder of bodies N − b(p − 1). (Here, �z	 is the ceiling function
that returns the closest integer greater than or equal to z.) For ex-
ample, if N = 32 and p = 5, then b = 7, in which case processors
1–4 are each responsible for 7 bodies, and processor 5 is responsi-
ble for 4 bodies.

For the second mode of operation, if the number of proces-
sors p � N is not further restricted, then, in some instances, the
remainder N − b(p − 1) can be negative. Thus, the constraint
b(p − 1) < N is enforced. Because b = � N

P 	 =
 N+(p−1)
p �, where

z� is the floor function, the constraint equation can be expressed

 N+(p−1)

p �(p − 1) < N . Finally, we note that
 N+(p−1)
p �(p − 1) �

N+(p−1)
p (p − 1), which yields the working constraint inequality

N+(p−1)
p (p − 1) < N , whose solution is p <

√
N + 1. By numer-

ical experimentation, we have found it permissible to relax the
constraint ever so slightly by taking p � �√N	 + 1. Therefore, if
N = 32, for example, the maximum number of processors allowed
is p = 7.

For either mode of operation, let

b =
⌈

N

p

⌉
(21)

and, for each processor q = 1,2, . . . , p, define

j0(q) ≡ (q − 1)b + 1 = k0(q)

j1(q) ≡ min(qb, N) = k1(q) (22)

Then processor q is accountable for computing the position coeffi-
cients xi, j= j0(q): j1(q),m and the velocity coefficients vi, j= j0(q): j1(q),m ,
i = 1,2,3 and m = 1, . . . , M . Needed for these calculations on pro-
cessor q are s j,k=k0(q):k1(q),m for all bodies j and all previous m, and
similarly for s2, s3, and a.

During an integration step, each processor independently ad-
vances from, say, order m − 1 to m all Maclaurin polynomials be-
longing to its subset of bodies. Before the computation can proceed
to the next higher order, all processors must share data because of
the dependency of the Cauchy products for order m + 1 on the
Maclaurin coefficients of position and velocity for all bodies and
all previous orders. At this stage, the processors distribute their in-
dividual contributions via MPI’s ALLGATHER operation. Specifically,
each processor gathers 6N data values comprised of the Maclaurin-
series components of degree m for the position coordinates (xijm ,
i = 1,2,3) and analogous values for the three velocity components
(vijm , i = 1,2,3). Thus, to build the Maclaurin series to its full or-
der M , 6MN data values must be gathered by all processors per
time step. The additional ALLGATHER that lies outside the inner
(m) loop in the algorithm below does not contribute to the asymp-
totic communications count.

If p divides evenly into N , the computational workload is al-
most perfectly balanced, with the exception of one node, whose
job it is to perform the additional evaluations such as P (m, N,�tl)

necessary for optimization. The additional effort, however, which
primarily involves integer operations and few at that, is minuscule
relative to the major computational burden, so there is little or
nothing to be gained by attempting to parallelize the optimization
process. For mode-two operation, the workload of the pth pro-
cessor is less than that of the other processors. Thus, in principle
there would be a slight computational advantage to assigning the
pth processor the task of optimization. However, in our current
implementation, the head node (processor 1) assumes all extra
tasks, including I/O and optimization.

Here is the complete parameter-free, parallel algorithm:

(q=all) query system for p and process id
(q=1) input and (q=all) broadcast N
(q=1) input and (q=all) broadcast maximum order M
(q=all) compute b from Eq. (21)
(q=all) evaluate j0(q) = k0(q) and j1(q) = k1(q) via Eq. (22)
(q=all) allocate memory based on N, M, p, and b
(q=1) input integration time T
(q=1) initialize running time t ← 0
(q=1) initialize Terminate1 ← FALSE and (q=all) broadcast
(q=1) input and (q=all) broadcast masses M j
(q=1) input and (q=all) broadcast initial data xij0 = xij(0),

vi j0 = vij(0)

(q=all) time advancement: do until (Terminate1)

| (q=1 only) initialize P0 ← 1030 (set outrageously large)
| compute inverse separations s j,k=k0:k1,0 from xij0 , j = 1, . . . , N
| compute (s2) j,k=k0:k1,0 , (s3) j,k=k0:k1,0 , a j,k=k0:k1,0
| via Eqs. (7)–(9)
| recursively, for m = 1,2, . . . , M
| | compute coefficients xi, j= j0: j1,m from Eq. (4)
| | allgather xijm, current m
| | compute coefficients vi, j= j0: j1,m from Eq. (5)
| | allgather vijm, current m
| | compute coefficients s j,k=k0:k1,m from Eq. (6)
| | compute coefficients (s)2

j,k=k0:k1,m from Eq. (7)

| | compute coefficients (s)3
j,k=k0:k1,m from Eq. (8)

| | compute coefficients a j,k=k0:k1,m from Eq. (9)
| | set Terminate2 ← FALSE
| | (q=1 only) compute �t via Eq. (14)
| | (q=1 only) compute relative cost P1 ← P (N,m,�t)
| | via Eq. (20)
| | (q=1 only) if (P1 > P0) set Terminate2 ← TRUE
| | broadcast Terminate2 from q=1
| | if (Terminate2) exit m loop
| | P0 ← P1
| (q=1 only) t ← t + �t
| (q=1 only) if (t > T) Terminate1 ← TRUE
| broadcast �t and Terminate1 from q=1
| update x j= j0: j1 (�t) and v j= j0: j1 (�t) by Eqs. (10)–(11)
| allgather x j(�t) → xij0 and v j(�t) → vij0 (reset ICs)
| (q=1 only) output: running time t, positions xi j0 , velocities vi j0
| if (Terminate1) exit time advancement loop

(q=all) stop

Recall that the asymptotic operational workload per step
W (M, N) ≈ 13M2N2 if adds and subtracts, multiplies and di-
vides are assumed to share the same weight. It follows that the
asymptotic per-processor operation and communication costs per
integration step are:

per-processor operation count, W p ≈ 13M2N2

p
per-processor communication cost, C p ≈ 6MN

computation/communication ratio, R = W p

C p
≈ 13MN

6p
(23)

Because of latency and bandwidth issues, data transfers between
CPUs of distributed-memory systems are typically much slower
than floating-point operations, frequently by one or two orders of

1192 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
magnitude. Consequently, parallel performance will be suboptimal
unless the ratio R of computational operations to communication
transfers is large (i.e., R � 1). For the sake of illustration, suppose
there are at least five bodies per processor (p � N/5). Then, for the
current algorithm R � 65M

6 ≈ 11M , based on Eq. (23) above. Thus,
a high-order (M � 1) algorithm may benefit from a naturally high
computation to communication ratio and should perform well in a
distributed-memory environment. For the current implementation,
as shown in the previous section, optimal order M for a 64-bit
calculation is typically about 20. Hence, for the current algorithm,
with a least a handful of bodies per processor, R > 200, which
should yield good parallel performance even in environments with
relatively slow communication channels. The results of the next
section confirm this expectation.

It should be acknowledged that the baseline serial algorithm
enjoys a factor of two in computational efficiency over the par-
allel N-body algorithm. This stems from the fact that the former
exploits symmetry with respect to the first two indices for the
quantities s jkm , (s2) jkm , (s3) jkm , and a jkm , which the latter cannot
do without violating nodal memory independence on distributed-
memory platforms.

Finally, we note that, whenever N � 36, mode-two operation
guarantees at least a handful of bodies per processor (for all but
the last processor), and thus ensures efficient parallel implementa-
tion.

7. Results

In Pruett et al. [3], a serial version of the present doubly adap-
tive N-body algorithm was presented and tested in comparisons
with Bulirsch–Stoer methodology. Although the serial algorithm
was not as efficient as the Bulirsch–Stoer method, it had the ad-
vantage of being parameter-free. Moreover, because of the sim-
plicity of the underlying algorithm, the methodology is readily
amenable to a data-parallel implementation, which was detailed in
previous sections. Here we validate and demonstrate a Fortran90/
MPI implementation of the parallelized N-body algorithm.

Although the baseline serial algorithm is elegant in its sim-
plicity, parallelization adds considerable complexity. Hence, it was
essential that, prior to any performance testing, the parallel al-
gorithm be thoroughly validated for correctness. This was accom-
plished by comparing its results with verified results obtained for
identical initial data from the serial algorithm. Several verifica-
tion test cases were considered. In each case, serial and parallel
results were essentially identical. Because parallel algorithms are
non-deterministic in general, exact agreement between serial and
parallel computations is not guaranteed, nor is perfect replicabil-
ity of parallel results. Occasional small differences in the last one
or two significant digits are a consequence of non-deterministic
round-off error propagation stemming from the non-associativity
of numerical addition.

To demonstrate the attributes of the current algorithm, we
consider three test cases, the first two of which are benign and
the third of which challenges any integration scheme, including
Bulirsch–Stoer.

7.1. A binary-star simulation

We first consider a simple two-body system for which an ex-
act solution is known. In particular, we consider a “binary-star”
scenario with a periodic solution. Initial conditions are prescribed
so that two stars revolve in circular orbits about the system’s
stationary center of mass (CM). The stars remain collinear with
and on opposite sides of the CM. Initial data are provided in Ta-
ble 1. With G = 1, the orbital radii are r1 = 2 and r2 = 1, re-
spectively, and both orbits have period 6π . The exact position
Table 1
Initial data for binary-star integration.

j μ j x1 j(0) x2 j(0) x3 j(0) v1 j(0) v2 j(0) v3 j(0)

1 1 −2 0 0 0 −2/3 0
2 2 1 0 0 0 1/3 0

Fig. 4. Comparison of global accuracy for reference (RK4) and current (PNB) inte-
gration schemes for binary-star system with known analytic solution. For commen-
surate absolute error of 10−9, RK4 and PNB schemes require one million and 600
time steps, respectively.

vectors for bodies 1 and 2 are x1(t) = [−2 cos(ωt),−2 sin(ωt),0]
and x2(t) = [cos(ωt), sin(ωt),0], respectively, with ω = 1/3. The
duration of the integration is 0 � t � 5000, which corresponds to
265.25 orbital periods.

The computing platform was a small shared-memory symmet-
ric multi-processor belonging to the Department of Mathematics
and Statistics at James Madison University. Specifically, the plat-
form consists of a single quad-core Intel E5320 Xeon processor
running at 1.86 GHz with 16 GB of RAM. The operating system
was 64-bit Ubuntu Linux, and the compiler was gfortran with de-
fault options.

Fig. 4 presents global error at termination of the calculation
for two integration schemes: the current algorithm and a classic
workhorse, the fourth-order Runge–Kutta (RK4) method. Whereas
the present algorithm exploits a polynomial form of the system
generator, the RK4 implementation involves a standard form of the
generator (that is, one involving roots and reciprocals). For this
benign problem, RK4 performs well with a fixed time step. How-
ever, more than one million time steps are needed to reduce global
absolute error to 10−9. Significant reduction of error beyond this
level is prohibited by the accumulation of round-off errors.

Somewhat surprisingly, RK4 exhibits fifth-order convergence to
the exact solution for this problem, as shown in Fig. 4, presumably
picking up one order of accuracy because of the periodicity of the
solution. (Similarly, low-order integration schemes such as com-
posite rectangle rule yield spectral accuracy for periodic problems.)
In contrast, the current parameter-free scheme achieves global ac-
curacy roughly commensurate with the best RK4 result in 600 time
steps.

For the present algorithm, the maximum order M of the com-
putation is hard-coded at 28. For this periodic problem, the opti-
mization process pegs the scheme at its maximum order, where it
remains throughout. Neither scheme benefits from adaptive step-
ping for the binary-star case, which is dynamically stationary. This
is in distinct contrast to the situation observed for the other two

C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198 1193
Fig. 5. Time increment �t vs. Maclaurin polynomial order M for binary-star problem
with current algorithm. Global error tolerance is 10u for all data points, with double
precision machine unit roundoff error u = 2.2 × 10−15.

test cases, for which the optimizer dynamically and dramatically
adjusts both M and �t as shown in Fig. 2.

Whereas the computational time for the RK4 method is about
1.7 seconds, that of the current algorithm is 0.22 seconds. However,
the RK4 scheme has been granted several advantages. First, the
fixed time intervals are of the form �t = 2−n , where 1 � n � 10 is
an integer. Such representations can be expressed exactly in binary.
Thus, no round-off error accumulates in the time t itself for the
RK4 method. As implied above, for the present adaptive scheme,
the time step is essentially constant for the binary-star problem;
however, it varies ever so slightly. Thus, over long-term evolution
modest error accrues in the time, which slightly contaminates the
value of the “exact” solution. Without this advantage, the mini-
mum global error attainable by the RK4 scheme was found to be
approximately 10−8.

Second, the binary-star problem is spatially two-dimensional,
which the RK4 method exploits. The present N-body algorithm, on
the other hand, is spatially three-dimensional, and no attempt is
made to take advantage of the reduced dimension of the test case.
Thus the current method incurs a factor of 3/2 penalty in workload
relative to the reference methodology.

Third, the present scheme is run in parallel mode, with a single
body assigned to each processor. This represents an extraordinarily
inefficient use of the parallel algorithm, which invokes multiple
MPI commands and incurs processor-to-processor communication
costs unnecessary for systems of small N .

For small N , a fairer comparison pits RK4 methodology against
the baseline serial algorithm from which the current parallel algo-
rithm was derived. To that end, the serial algorithm without adap-
tation or optimization is implemented with a constant time step
and M = 28. With 800 steps during the integration interval, the
baseline algorithm achieves global error of 10−10 in 0.126 seconds
of execution time. After accounting for the workload discrepancy
associated with whether two or three spatial dimensions are in-
volved, the baseline algorithm is more than twenty times faster
than RK4, and the parallel algorithm is more than ten times faster,
for commensurate accuracies.

The vast difference in the time increment of the two meth-
ods underscores the principal advantage of high-order methods,
namely that, for commensurate accuracy, they permit larger time
steps than do low-order ones. The advantages of very high or-
der are illustrated in Fig. 5, which shows the variation in �t with
Maclaurin order M for the present algorithm implemented on the
binary-star problem. As M is varied from 4 to 28, the time step al-
lowed for a pre-specified global accuracy increases by some 4.5 or-
ders of magnitude. Slightly more than half of that gain (in powers
of ten) occurs between fourth and eighth order. As stated previ-
Table 2
Extrema of relative errors in total energy (|�E/E|) and angular momentum
(|�L/L|), and computation time T , as functions of integration time step �t , for
hybrid symplectic scheme of Chambers.

�t [days] |�E/E| |�L/L| T [s]

20 3.13 × 10−7 2.18 × 10−13 11.0
10 3.82 × 10−8 1.35 × 10−13 16.4

5 4.70 × 10−9 2.24 × 10−13 27.5
2 9.61 × 10−10 1.97 × 10−11 58.4
1 1.05 × 10−10 3.74 × 10−11 111.8
0.5 1.07 × 10−10 2.19 × 10−10 222.7

Table 3
Extrema of relative errors in total energy (|�E/E|) and angular momentum
(|�L/L|), and computation time T , as functions of relative velocity error tolerance
ε for present serial algorithm.

ε |�E/E| |�L/L| T [s]

10−3 2.63 × 10−7 3.30 × 10−8 766.0
10−6 1.56 × 10−10 1.56 × 10−11 1077.8
10−9 1.78 × 10−12 3.06 × 10−12 1443.9

ously, for this problem, RK4 methodology behaves as a fifth-order
method. As such, it might be expected to require a time incre-
ment approximately 3.5 orders (∼3000 times) smaller than that
of the current method with M = 28, for commensurate accuracies.
Indeed, Fig. 4 confirms this expectation.

7.2. Evolution of the solar system

Of particular concern for N-body integrators is energy conser-
vation over long-term integration. In the absence of non-elastic
collisions, total energy should be exactly conserved. Modern in-
tegrators are designed to be symplectic. For Hamiltonian systems,
symplectic integrators preserve structure in phase space, and as
a consequence, they conserve energy to high order. [8,9]. Thus,
symplectic integrators represent the current state of the art in sim-
ulating orbital dynamics.

Here we consider both short-term (50,000 years) and long-term
(three million years) evolutions of the solar system. The first serves
simply to benchmark the efficiency of the current algorithm rela-
tive to a symplectic integrator. The second firmly establishes the
fidelity of the present algorithm.

7.2.1. Short-term evolution of the solar system
Representative of the class of symplectic integrators is the hy-

brid symplectic code MERCURY6 of Chambers [10], which cou-
ples a second-order, fixed-step symplectic integrator with adap-
tive Bulirsch–Stoer methodology. Typically, low-order integrators
are unreliable for close encounters. Hence, MERCURY6 switches to
Bulirsch–Stoer to negotiate near collisions. The hybrid scheme is
both extremely fast and quite robust. Here we compare results ob-
tained from MERCURY6 and the present method for a solar-system
evolution of 50,000 years.

For consistency with the precursor to the present paper [3],
initial data are taken from Ephemerides of Minor Planets for Epoch
1997, December 18.0 (Julian Date). Cartesian position coordinates
(x1, x2, x3) are given in astronomical units [AU] referenced from
the sun, which is located initially at the origin. The computational
platform case is the same as that of the two-body “binary-star”
simulation described in Section 7.1.

Both codes were compiled with the same compiler and com-
piler options, including aggressive optimization. Tables 2 and 3
quantify the accuracy and efficiency of MERCURY6 and the base-
line serial scheme of the present method, respectively. For this be-
nign test problem, the adaptive Bulirsch–Stoer option of the hybrid
symplectic integrator is not invoked. Thus MERCURY6 functions as

1194 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
a fixed-step integrator of second order. In this mode, MERCURY6 is
extraordinarily efficient. Accuracy is controlled simply by specify-
ing the time step �t in days. Even with a relatively large time step
of 20 days, MERCURY6 requires just 11 seconds of compute time
for the full 50,000-year calculation, impressively preserving total
energy (E) to seven significant digits and angular momentum (L)
to thirteen, as indicated by their relative errors |�E/E| and |�L/L|,
respectively.

Preservation of energy to ten significant digits, however, re-
quires a time step that is 20 times smaller and a computation time
that is ten times larger (111.8 seconds, line 5 of Table 2). Round-off
error apparently prevents the method from achieving higher accu-
racies by further reduction of the time step.

In contrast, for the present algorithm, global accuracy is con-
trolled by adjusting the error tolerance ε , which constrains global
error in velocity. Thus, one would expect energy to be conserved
to roughly six places whenever ε = 10−3. This is confirmed by the
first line in Table 3. At low to moderate accuracies, the present
serial algorithm cannot compete in efficiency with the symplectic
integrator. At the lowest accuracy (|�E/E| ≈ 10−7), the symplec-
tic integrator completes the simulation 70 times faster than the
current serial algorithm. However, the advantage of the symplectic
method diminishes somewhat when higher accuracy is demanded.
For example, for |�E/E| ≈ 10−10, the relative efficiency advantage
of the symplectic method is reduced below ten. Moreover, for a
modest 33% increase in computational cost, the present method,
as shown in line 3 of Table 3 is able to further drive down |�E/E|
by two orders of magnitude, which the second-order symplectic
method is unable to do, presumably due to the accumulation of
round-off error. Furthermore, were the symplectic integrator able
to attain this level of precision, its compute time would be very
nearly equivalent to that of the present method.

To summarize, the present method was designed for extraordi-
nary accuracy. At low accuracies, it is not competitive with current
state-of-the-art methods. At very high accuracy, it is.

The efficiency disadvantage of the current method is further
atoned for by two significant advantages. First, the adaptive at-
tributes of the present method render it well-suited for non-
benign N-body systems that involve close encounters. Thus, there
is no need for hybrid methodology. Second, as a corollary to the
first advantage, the algorithm is compact and thus readily paral-
lelized.

7.2.2. Long-term evolution of the solar system
Long-term evolution of the solar system remains of continu-

ing interest, particularly in regard to its stability. To this end, we
demonstrate the current algorithm by evolving the solar system
forward in time for a nominal three million years.

The solar-system simulation presented here was inspired by
the three-million year integration by Quinn et al. [11]. Their in-
tegration involved high-order (up to 12th) symmetric, multistep
integrators. Although the authors have drawn inspiration from this
source, for a number of reasons, we have not tried to replicate
their work. Among these, Quinn et al. model several high-order
corrections that are beyond the scope of this paper (but not the
capability of the algorithm). These include relativistic effects, the
effect of the finite quadrupole moment of the Earth–Moon system,
and tidal-friction effects on the Moon’s orbit.

Specifically, the sun and nine planets (including Pluto) are con-
sidered (N = 10) as point masses. As before, initial conditions are
taken from Ephemerides of the Minor Planets for 1997, December
18.0. For the interpretation of graphical results to follow, the first
two cartesian coordinates are in the nominal plane of the eclip-
tic, and the third coordinate is normal to the ecliptic. The natural
time unit [NTU] is the mean Earth year (365.25689833 days) di-
Fig. 6. Energy conservation by present scheme for 10,000 NTU solar-system evolu-
tion. Legend: (a) aggregate kinetic energy (KE, narrow solid line); aggregate poten-
tial energy (PE, dashed line); aggregate total energy (TE, thick solid line). (b) Scheme
conserves total energy (TE) throughout integration to more than 13 significant dig-
its.

vided by 2π . The physical duration of the integration is 20 million
NTUs, or roughly 3.18 million Earth years.

Once again, the computational platform is that described above
in Section 7.1. Because serial and parallel performance both im-
prove by a factor of approximately three with aggressive opti-
mization, the -O3 compiler option was set. The computation was
conducted using the present parameter-free parallel algorithm on
two processors (p = 2); that is, with five bodies per processor.

The current scheme is not explicitly designed to be symplec-
tic; nevertheless, its high-order accuracy renders the scheme ef-
fectively symplectic. Fig. 6 presents aggregate kinetic energy (KE),
aggregate potential energy (PE), and aggregate total energy (TE) for
a preliminary integration of 10,000 NTUs using the parameter-free,
parallel algorithm. Total energy is conserved to more than 13 sig-
nificant digits. We note that the relationship of the time averages
of KE and PE is as expected from the virial theorem. We further
note that the variations in KE and PE on a 74.2 NTU (11.8-year)
cycle are due primarily to the motion of Jupiter.

For this long-duration integration, one algorithmic concession
was made. The relative global error tolerance was relaxed by sev-
eral orders of magnitude under the assumption that several digits
of accuracy would unavoidably be lost due to the accumulation
of round-off errors. Specifically, the error tolerance was reset to
10−9, and the algorithm did not run in its completely parameter-
free mode. During the computation, which nevertheless invoked
doubly adaptive optimization, the Maclaurin order varied from 6
to 24, with the usual range between 13 and 22. The total number
of time steps was just over 239 million, or approximately 75 steps
per Earth year on average, or a bit under 5 days per average step.
The integration required 30.4 hours of clock time.

C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198 1195
Table 4
Extrema of signed relative errors in total energy (E), total linear momentum (Pi),
and total angular momentum (Li).

Signed rel. err. Time [NTUs]

min(�E/E) −5.024 × 10−10 1.820 × 107

max(�E/E) +1.007 × 10−9 1.439 × 107

min(�P1/P1) −2.134 × 10−12 1.858 × 107

max(�P1/P1) +1.600 × 10−12 9.415 × 106

min(�P2/P2) −4.198 × 10−13 2.813 × 106

max(�P2/P2) +1.259 × 10−12 1.783 × 107

min(�P3/P3) −4.543 × 10−13 1.713 × 107

max(�P3/P3) +1.060 × 10−12 4.194 × 106

min(�L1/L1) −4.341 × 10−10 1.448 × 108

max(�L1/L1) +4.403 × 10−10 1.729 × 108

min(�L2/L2) −4.446 × 10−10 6.291 × 106

max(�L2/L2) +2.497 × 10−9 1.944 × 107

min(�L3/L3) −4.027 × 10−10 1.184 × 107

max(�L3/L3) +1.406 × 10−9 1.878 × 107

Because the system is isolated, all components of aggregate
linear momentum and aggregate angular momentum should be
conserved. Table 4 presents the minimum and maximum relative
errors incurred in all conserved quantities over the course of the
integration, as well as the time [NTUs] at which each extremum
occurred. The error extrema do not congregate at the end of the
integration, which suggests that the dominant contributions to er-
ror are random rather than systematic. The largest relative error
incurred for any conserved quantity was approximately 2.5×10−9.

Orbital eccentricities vary over time, as do nominal radii and
precession rates of perihelia. The planets with the largest eccen-
tricities are Mercury, Mars, and Pluto, whose time-averaged pre-
cession rates are 572.4, 1628, and −34.88 arcseconds per century,
respectively, as reported by the JPL Solar System Dynamics web-
site (in Table 2a of “Keplerian Elements for Approximate Positions
of the Major Planets” by E. M. Standish; http://ssd.jpl.nasa.gov/txt/
p_elem_t2.txt). Of Mercury’s precession rate, 43 arcseconds per
century are attributable to relativistic effects. The remaining
529.4 arcseconds per century are due to the gravitational influ-
ences of the remaining planets, which are modeled here. (The
calculated relativistic contributions to the precession rates for Mars
and Pluto are much smaller: less than 2.0 and 0.1 arcseconds per
century, respectively.)

We now summarize how well the present algorithm repli-
cates time-averaged precession rates published by JPL. To this
end, our calculated planetary positions were examined carefully
during three 10,000-year “epochs” at the beginning, middle, and
end, respectively, of the 3.18 million-year integration. During these
epochs, orbital positions were output at every time step, and the
data were probed to locate the perihelia of Mercury, Mars, and
Pluto as functions of time, from which the precession rates were
subsequently extracted.

Because the initial state of the system was not free of linear
momentum, the entire system experienced significant drift. Thus,
the initial step in data post-processing was to convert absolute
positions to sun-relative positions. Subsequent determination of
the position of planetary perihelia was numerically challenging,
especially for Mercury. Because of the relatively large time steps
taken by the high-order method, Mercury’s position, for example,
was recorded fewer than twenty times per orbit. However, dur-
ing each epoch, Mercury completed more than 41,000 orbits. Of
the relatively large number of position reports for each planet,
a few hundred were determined numerically to closely approxi-
mate perihelion positions. Points representing perihelion positions
are plotted in the nominal plane of the ecliptic in Figs. 7, 8, and 9.
In sun-relative coordinates, the sun’s position is fixed at the origin.
Symbols identify perihelion positions near the beginning (squares)
Fig. 7. Precession of perihelion during epochs 1, 2, and 3 for planet Mercury. Legend:
dots (perihelion data); squares (location of perihelion near beginning of epoch);
× (location of perihelion near end of epoch).

Fig. 8. Precession of perihelion during epochs 1, 2, and 3 for planet Mars. Legend:
dots (perihelion data); squares (location of perihelion near beginning of epoch);
× (location of perihelion near end of epoch).

and ending (×) of each epoch, respectively. The relative positions
of the symbols indicate that Mercury and Mars precess counter-
clockwise. Pluto, in contrast, precesses clockwise. (This difference
is attributable to the fact that Mercury and Mars orbit nearer the
Sun than the massive planets Jupiter and Saturn, whereas Pluto’s
orbit is larger.) The mean precession rate for the epoch is simply
the measure of the angle formed by solar rays through these two
marked points, divided by the time that has elapsed between the
two perihelion positions. Precession rates thus extracted numeri-
cally are presented in Table 5.

http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt
http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt

1196 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
Fig. 9. Precession of perihelion during epochs 1, 2, and 3 for Pluto. Legend: dots
(perihelion data); squares (location of perihelion near beginning of epoch); × (lo-
cation of perihelion near end of epoch).

Table 5
Numerically calculated perihelion precession rates in arcseconds per century for
Mercury, Mars, and Pluto. Legend: E1 (epoch 1, etc.); E1–2 (epochs 1–2, etc.); [t0, t1]
(time interval of integration in NTUs).

t0 t1 Rate [s/Cy] P. revolutions

Mercury
E1 349.54 62,577.65 518.49 0
E2 10,000,362.40 10,062,319.64 484.06 0
E3 19,937,308.84 19,998,402.03 645.97 0
E1–2 349.54 10,000,362.40 520.47 6
E2–3 10,000,362.40 19,937,308.84 524.12 6
E1–3 349.54 19,937,308.84 522.54 12

Mars
E1 35.84 62,776.27 1463.37 0
E2 10,000,211.07 10,062,727.14 1726.29 0
E3 19,937,204.19 19,999,873.29 1050.46 0
E1–2 35.84 10,000,211.07 1637.65 20
E2–3 10,000,211.07 19,937,204.19 1605.36 19
E1–3 35.84 19,937,204.19 1621.49 39

Pluto
E1 1506.12 62,244.02 −41.72 0
E2 10,000,800.85 10,042,919.15 −37.61 0
E3 19,938,270.11 19,992,687.61 −7.55 0
E1–2 1506.12 10,000,800.85 −48.27 0
E2–3 10,000,800.85 19,938,270.11 −28.32 0
E1–3 1506.12 19,938,270.11 −37.29 0

Table 5 reveals that precession rates are subject to considerable
variability on the time scale of a 10,000-year epoch. In contrast,
precession rates for the inner planets are relatively stable for time
scales on the order of one-million years, as shown in the table by
lines E1–2, E2–3, and E1–3, which report mean precession rates
during the first “half,” second “half,” and “full” duration of the
integration, respectively. Note that the numerically derived mean
precession rate of Mars for the full duration of the integration is
1621.5 arcseconds per century, a value within 1/2 percent of the
JPL value. The corresponding value for Mercury’s precession rate,
522.54 arcseconds per century, is somewhat over one percent off
the JPL value (excluding the general-relativistic contribution which
was not part of our study). Pluto’s numerically derived precession
Fig. 10. Execution time in seconds vs. number of bodies N .

rate is of the correct sign and within seven percent of the JPL
value. Note that Pluto’s perihelion did not complete even one full
revolution during the 3.18-million year integration; a much longer
integration time would be necessary to obtain a good approxima-
tion for the true long-term-average for Pluto’s precession rate.

These results strongly suggest that the method is suitable for
long-term solar-system integrations.

7.3. Core–halo instability

Having validated the parallel N-body algorithm with two vener-
able and relatively gentle problems, we now assess its performance
on a tougher problem: the integration of “swarms” of particles
such as that described in Section 5. Although such systems are
easy to specify, they present extreme challenges for N-body inte-
grators. Such systems exhibit “core-halo instability,” in which grav-
itational forces occasionally gang up to eject a particle. Over time,
as particles “boil off,” the remaining system contracts in size. As it
contracts, mean density increases, and close encounters increase
in frequency. Numerical workhorses such as RK4 fail miserably
because the time step needed to maintain tight error tolerances
becomes so small that round-off errors overwhelm the calculation.
Even a state-of-the-art integrator like Bulirsch–Stoer struggles, as
indicated by a high percentage of failed steps [3].

For greater physical realism than that of the system considered
in Section 5, the particle swarms we now examine are spherical
and the initial velocity distributions are Maxwellian.

Fig. 10 shows the execution time of the fully optimized paral-
lel algorithm for particle swarms that vary in number from N = 16
to N = 480. In all cases, the integration interval is t ∈ [0,0.5]. Ex-
ecution time depends upon many factors: number of particles N ,
particle density, specific initial conditions, and optimal Maclaurin
polynomial order M and time increment �tl at each time level l.
To remove two degrees of freedom, the particle density and the
energy density are kept constant as the number of particles N
is increased. Specifically, for each given value of N , a swarm ra-
dius and a velocity scale is predetermined by numerical experi-
mentation such that the solution is non-singular during the finite
integration interval. Equivalently, swarm radius and N establish
particle density. Density and energy density are then both kept
constant as N is varied by appropriately adjusting the spherical ra-
dius and “temperature” (velocity scale) of the particle swarm. This
procedure tends also to somewhat stabilize the optimal order M .

C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198 1197
Fig. 11. Execution time in seconds and speedup S(p) vs. number of processors p for 96-body system (upper plots) and 480-body system (lower plots). Legend: idealized
linear speedup vs. p relative to process time for serial algorithm (solid line); idealized linear speedup vs. p relative to process time for parallel algorithm with p = 1 (dashed
line); actual speedup (symbols).
Despite the considerable variability that remains due to random-
ized initial conditions, particle systems standardized in this way
show predictable behavior. Execution times increase in close rela-
tionship to the asymptotic operation count, which scales as N2, as
shown in Fig. 10.

Finally, Fig. 11 demonstrates parallel performance. The com-
putational platform used for parallel benchmarking is the Cedar
Linux Cluster at the University of Virginia, which consists of sev-
eral hundred nodes, each with 2 GB of RAM and two AMD Opteron
CPUs each running at 2 GHz. Interconnections are by gigabit Ether-
net with 60–110 MB/s bandwidth and 50–200 μsecs latency. Rou-
tine requests are limited to 128 concurrent CPUs. The compiler is
pgf90 with default options (no aggressive optimization). Specifi-
cally, Fig. 11 presents execution times and speedup vs. p for two
N-body systems: the 96-particle system described in Section 5,
and a spherical 480-particle system with a Maxwellian velocity
distribution as described above. For integration of the former sys-
tem, the global error tolerance is set at ε = 10−13. For integrating
the larger system, the algorithm is run in parameter-free mode,
where ε = 10u, and u, determined during execution, is the ma-
chine unit round-off error. For a double-precision calculation on
the specific operational platform, u = 2.2 × 10−15.

Here, speedup S(p) is defined as the ratio of execution time of
the serial algorithm to the execution time of the parallel algorithm
on p processors. For comparison, ideal (linear) speedup, namely
S(p) = p, is also shown.

Because the parallel algorithm cannot efficiently exploit sym-
metries (as discussed in the previous section), its computational
workload is twice that of the baseline serial algorithm. Hence, ideal
scalability for the parallel algorithm is S(p) = p
2 . For reference, this

linear relationship is also provided in the figure. On this system
and with these compiler options, scalability is linear but some-
what less than ideal for p � 120. Mildly superlinear performance
is sometimes observed and attributed to cache issues; each node
has 1024 K cache.

As expected, parallel performance degrades when the distribu-
tion of work becomes too fine-grained; that is, when the num-
ber of bodies per processor is fewer than a handful. However,
so long as p � N/5 (as suggested previously), the current paral-
lel algorithm enjoys linear scalability for the range of values of
N considered. We anticipate linear scalability with p for arbitrar-
ily large N-body systems so long as the “handful” rule is obeyed.
This optimistic projection is based on the following argument. If, at
minimum granularity, p = N/5, then p is removed as a parameter,
and R (see Eq. (23)) is independent of N .

8. How to use

Advantages of the current algorithm include practical simplicity,
high accuracy, and linear scaling with increasing N . A disadvan-
tage is that it is memory intensive because of large polynomial
order M . However, processor memory continues to grow even as
chip speeds have plateaued. Hence, algorithms that favor memory
use to diminish operation counts may be riding a wave for the
foreseeable future.

The current algorithm is compact; implemented in Fortran 90
and MPI, it runs to only 723 lines. Moreover, in its parameter-free
mode, the present algorithm is extraordinarily easily to use. For
all practical purposes, the only input values are the problem data

1198 C.D. Pruett et al. / Computer Physics Communications 182 (2011) 1187–1198
itself: the number of bodies; the masses, initial positions, and ini-
tial velocities of those bodies; and the integration interval. What
follows below is the header of a typical input data file:

32 3 /number of bodies (n); number of bodies output (nout)
28 /maximum Maclaurin polynomial order (mo)
0.E+0, 0.5D0, -.025 /time interval [a,b] and print interval (dtout)
-1.0E-14, .F. /global error tolerance (epsilon); diagnostics trigger
1.000000 -0.451781 -0.668711 2.130823 -0.390649 0.170636 -0.139339
1.000000 0.139627 2.417780 -0.184771 0.059581 0.064517 0.278170

The program is compiled and executed with commands mpif90
and mpirun, respectively.

The first algorithmic step during parallel execution is performed
by the MPI command MPI_init. Among other functions, the com-
mand establishes the number of processors p as specified in the
mpirun command-line option and assigns integer identifiers 0 to
p − 1 to each processor.

After initialization, input data, in the format above, are read.
Lines 1 and 2 are read first. Line 1 specifies the number of bod-
ies N . Line 2 specifies the maximum allowed size M of the Maclau-
rin polynomial approximations. The three integers N , M , and p
determine per-processor memory requirements. Memory is then
allocated dynamically for all processors.

The integration time interval is defined in line 3; the global
relative error tolerance is established in line 4. Wherever nega-
tive values are encountered as input data, default values are used.
For example, the default value for the error tolerance is ε = 10u.
A positive print interval (dtout in line 3) ensures regular out-
put intervals in time. Otherwise results are output at the natural
(adaptive) time intervals. In either case, the time step is adap-
tive and the parameter effects only the regularity of the output.
If desired, setting the diagnostics trigger to ‘true’ in line 4 invokes
diagnostics routines that compute total energy and linear and an-
gular momenta, from which, for example, the data in Fig. 6 and
Table 4 were obtained. Each line following the four header lines
specifies the mass, initial position coordinates, and initial velocity
coordinates, respectively, of a body.

Although the algorithm appears to retain a few free parameters,
this is largely illusion. By following the “handful of bodies per pro-
cessor” guideline, the parameter p can be eliminated. If desired,
M (Fortran variable mo) can be hard coded to some maximum.
Based on our experience with double-precision calculations, this
maximum should be somewhat less than 30. These steps, along
with selecting the defaults for nout, ε , and dtout, render the algo-
rithm essentially parameter-free, as advertised.

Unless otherwise specified by nout, an output file containing
the time history of position and velocity is generated for each of
the N bodies. These files are numbered sequentially starting with
particle0001.

9. Conclusions

The current parallel and adaptive algorithm is appropriate for
highly accurate integration of relatively large N-body systems.
Moreover, the parallel algorithm, which has been demonstrated for
systems of up to several hundred bodies, enjoys essentially lin-
ear speedup so long as there are at least a handful of bodies per
processor. Finally, the methodology is readily applied to any de-
terministic system whose generator can be written in polynomial
form. To date, we know of no deterministic system that cannot be
cast as polynomial.

Acknowledgements

The first two authors are grateful to the University of Virginia
(UVA) and Virginia Tech for underwriting their participation in
the High Performance Parallel Computing Bootcamp, held at UVA,
August 7–10 and 13–16, 2007. Special thanks is due M. Rosen
and A. Grimshaw of UVA for extending the invitation to partici-
pate and for sponsoring off-site access to UVA’s high-performance
clusters. Without the expert guidance of the staff of UVA’s Infor-
mation Technology & Communications Division, this work could
not have been satisfactorily completed. The authors are particularly
indebted to J.E. Chambers of the Carnegie Institution of Washing-
ton for granting access to his hybrid symplectic integrator MER-
CURY6 and for gracious assistance in its use. Some computations
were conducted on a parallel platform at James Madison Univer-
sity made possible by NSF SCREMS grant DMS-0821309. Finally,
the authors are grateful to their colleague J. Martin for his wisdom
in all things computing.

References

[1] G.E. Parker, J.S. Sochacki, Neural Parallel Sci. Comput. 4 (1996) 97.
[2] R.D. Stewart, W. Blair, J. Comput. Neurosci. 27 (2009) 115.
[3] C.D. Pruett, J.W. Rudmin, J.M. Lacy, J. Comput. Phys. 187 (2003) 298.
[4] E. Fehlberg, NASA TN D-2356 (1964).
[5] R. Broucke, Celestial Mech. 4 (1971) 110.
[6] J. Makino, Astrophys. J. 369 (1991) 200.
[7] W.H. Press, D.N. Spergel, Astrophys. J. 325 (1988) 715.
[8] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-

Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer,
Berlin, 2002, p. 179.

[9] H. Van de Vyver, Int. J. Mod. Phys. C 19 (2008) 1257.
[10] J.E. Chambers, Mon. Not. Roy. Astron. Soc. 304 (1999) 793.
[11] T.R. Quinn, S. Tremaine, M. Duncan, Astron. J. 101 (1991) 2287.

	Parallel implementation of an adaptive and parameter-free N-body integrator
	Introduction
	Governing equations
	Baseline algorithm
	Adaptive stepping
	Optimization
	Parallel implementation
	Results
	A binary-star simulation
	Evolution of the solar system
	Short-term evolution of the solar system
	Long-term evolution of the solar system

	Core-halo instability

	How to use
	Conclusions
	Acknowledgements
	References

