
An adaptive N -body algorithm of optimal order

C. David Pruett a,*, Joseph W. Rudmin b, Justin M. Lacy c

a Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA 22807, USA
b Physics Department, James Madison University, Harrisonburg, VA 22807, USA

c SETI Institute, 2035 Landing Drive, Mountain View, CA 94043, USA

Received 22 May 2002; received in revised form 11 December 2002; accepted 14 February 2003

Abstract

Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and

uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and

Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs,

based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The

applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are

projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be

expected. The method is ideally suited to the classical N-body problem, which is projectively polynomial. Here, we
recast the N -body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is

highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic

N -body systems reveal that optimal order is dynamic. That is, in addition to dependency upon N and the desired

accuracy, optimal order depends upon the configuration of the bodies at any instant.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: N-body problem; Initial-value problems; Picard iteration; Power series; Maclaurin series; Optimal order

1. Introduction

Of historical and practical interest, the N -body problem occupies a unique place at the heart of classical

physics. Newton�s stunning success with the two-body problem – the orbit of a planet about the sun – for
which he developed both the calculus and the universal theory of gravitation as tools, launched the scientific

age of which we are yet a part. The intractability of the three-body problem led Poincar�ee to consider the
qualitative behavior of systems of ordinary differential equations (ODEs) thereby providing the tools

necessary for the articulation of nonlinear dynamics and chaos theory in the late 20th century (for example,

phase portraits and Poincar�ee maps).

Journal of Computational Physics 187 (2003) 298–317

www.elsevier.com/locate/jcp

*Corresponding author. Tel.: +1-540-568-6227.

E-mail addresses: pruettcd@jmu.edu (C.D. Pruett), rudminjw@jmu.edu (J.W. Rudmin).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00101-3

mail to: pruettcd@jmu.edu

The N -body problem remains alive and well in a variety of contexts. Modern methods for simulating the

formation of structure in the universe (e.g., both planetary and galactic accretion) exploit N -body dynamics
[2,3,10]. Moreover, Lagrangian (particle-tracking) methods such as smoothed particle hydrodynamics

(SPHs) [9] share much in common with N -body algorithms and have been adapted to problems as diverse as
liquid-drop oscillations, gravitational collapse, and supernova explosion.

It can be inferred from recent review articles on astrophysical applications of N -body dynamics [10] that
N -body algorithms fall into two categories: N -body integrators, and N -body simulators. The distinction,

according to Morbidelli [10], is subtle but important. Whereas integrators directly solve Newton�s equations
of motion without approximations except those inherent in the numerical scheme itself, simulators model

certain dynamical and physical effects via layers of approximation. The distinction is analogous to the

difference between direct numerical simulation (DNS) and large-eddy simulation (LES) in Eulerian com-

putational fluid dynamics. Typically, integrators accurately evolve the motions of individual particles

(bodies), which requires exceedingly high accuracy. Integrators scale as N 2 in computational effort and are

limited by practical considerations to a few hundred bodies. Simulators, on the other hand, which seek

statistical properties of large aggregates of particles and in which the specifics of individual particles are less

important, favor efficiency at the expense of some degradation in accuracy. Such algorithms enjoy oper-
ation counts as low as N logN and treat 108 particles in reasonable time on supercomputers.

The review articles of Bertschinger [3] and Morbidelli [10] discuss N -body algorithms for simulations of
structure formation in the universe and the solar system, respectively. A breakthrough in N -body simu-
lation technology occurred with the introduction of mixed-variable symplectic methods by Wisdom and

Holman in 1991 [16], which tend to preserve volume in phase space. The algorithm was adapted to

asynchronous time-steps by Saha and Tremaine in 1994 [14]. Symplectic algorithms tend to use non-

adaptive leap-frog time advancement, which is of second order. Low-order without adaptation renders the

method unsuitable for close encounters (near collisions) [10], as do basic assumptions of the formulation.
Another milestone in N -body simulation is marked by the advent of hierarchal tree algorithms, in which
individual clusters of particles are treated as a single pseudo-particle located at the center of mass of the

cluster. Tree algorithms (e.g. [2,15]) scale as N logN , which permits their application to massive systems.
However, they are limited in accuracy to approximately 1% [2].

Direct integration of the classical N -body problem has tended to favor classical methods. Among these

are Runge–Kutta, Bulirsch–Stoer, and Taylor-series methods [10]. Since 1985, many N -body algorithms
have exploited some variant of Aarseth-type techniques [1,12], which are hybrid schemes inherently capable

of simulation or integration. The Aarseth methods are predictor-corrector methods derived from Taylor-
series expansions, typically of 4th-order, and coupled with asynchronous time advancement. Forces are

separated into irregular (local) and regular (distant) contributions which are represented by two different

polynomial expansions. Local force contributions are directly computed and the distant ones are predicted

(modeled). The choice of nearest neighbors is effected on the basis of local density contrast. The separation

of scales in time results in increases in efficiency typically of two orders of magnitude relative to classical

methods [12]. However the scheme is optimal only if such separation of scales exists. In simulations,

Aarseth-type schemes typically preserve energy to less that one part in 10�4.

The issue of optimal order arises in both contexts: N -body integration and N -body simulations. Press
and Spergel [12] address the ‘‘extrapolability’’ of Aarseth-type codes, which they define as how far into the

future the force may be projected while maintaining pre-established fractional accuracy of the solution.

Higher order generally results in greater extrapolability and hence larger time-steps. However, in numerical

experiments, they observe a point of diminishing returns, which suggests the existence of an optimal order.

Their studies indicate that orders considerably higher than four are indicated, but they are unable to es-

tablish precise guidelines for optimizing order. The issue is picked up by Makino [8], who observes from

numerical experiments that high-order schemes are favored over low-order during close encounters. In our

interpretation, imminent close encounters (near singularities) are first manifest in high-order derivatives.

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 299

Thus adaptive low-order schemes run the risk of stepping over close encounters. Makino concludes that

optimal order depends both upon the number of bodies N and the desired accuracy. It would therefore

seem that optimal order is inherently dynamic, in that it depends upon desired accuracy, system size N , and
the system configuration at any given instant.

In 1993, Le Guyader [7] introduced a power-series method for the N -body problem that is of arbitrarily

high order, and demonstrated the scheme in evolving the solar system to extraordinary accuracy (relative

position errors < 10�10 in the outer planets) with polynomial orders as high as 25. Despite its relative in-

efficiency, such a scheme is useful for addressing the issue of optimal order. The method presented herein is
also a power-series method of arbitrary order, similar to that of Le Guyader but derived independently. The

present method generalizes that of Le Guyader in two fundamental ways. First, the method is derived from

the novel perspective of Picard iteration, and thus represents a general approach readily adaptable to a wide

class of problems, of which the N -body problem is an especially interesting example. Second, whereas the

method of Le Guyader is adaptive in time, the present method is adaptive in both time and order.

In summary, the present paper presents a straightforward and novel computational approach suitable for

a wide class of low-dimensional initial-value problems for which exceptionally high accuracy is favored over

computational efficiency. The method also provides an appropriate theoretical tool for addressing numerical
issues related to optimal order. Based upon Picard iteration, the method is demonstrated for the classical N -
body problem. Normally a theoretical tool, Picard iteration is adapted in Section 2 to solve autonomous

systems of first-order ODEs, and the method is illustrated with simple linear and nonlinear (predator–prey)

examples. In Section 3, relevant theoretical considerations are reviewed. Section 4 extends the algorithm to a

wide class of initial value problems, and in Section 5, the algorithm is adapted to the classical N -body
problem. An adaptive time-advancement procedure is developed in Section 6. In Section 7, the adaptive

procedure is enhanced to dynamically optimize both time-step and order. This is accomplished by mini-

mizing computational effort while maintaining a pre-specified global accuracy in the solution. If the machine
unit round-off error is exploited as the accuracy constraint, the entire algorithm is a parameter-free. The

algorithm is demonstrated by evolving both benign (the solar system) and chaotic N -body systems to double-
precision global accuracy. Concluding remarks and directions for future work are offered in Section 8.

2. Picard iteration revisited

Picard iteration has long been exploited to establish the existence and uniqueness of solutions of first-order
systems of differential equations (e.g. [4]). However, until recently [11], Picard iteration was assumed im-

practical as a solutionmethod per se. The advent of computer algebra systems has removed this impracticality.

Furthermore, attempts to design practical solutionmethods based uponPicard iteration have yielded not only

successful new algorithms but have raised intriguing theoretical issues. In this section, we briefly review Picard

iteration, and demonstrate its application to the solution of the classical predator–prey problem.

Any system of high-order ordinary differential equations can be rendered as a first-order system, namely

dy

dt
¼ fðy; tÞ ðt > t0Þ; yðt0Þ ¼ y0: ð1Þ

The successive Picard iterates ykðtÞ of this system, defined by

ykþ1 ¼ y0 þ
Z t

t0

f½ykðsÞ; s�ds ð2Þ

converge uniformly to the exact solution yðtÞ for all jt � t0j6 T provided the vector function f satisfies the
Lipschitz condition, in which case yðtÞ is unique [4]. Because non-autonomous systems of ODEs can be
rendered autonomous, it suffices to consider

300 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

dy

dt
¼ fðyÞ ðt > t0Þ; yðt0Þ ¼ y0; ð3Þ

whereby the Picard iterates are

ykþ1 ¼ y0 þ
Z t

0

f½ykðsÞ�ds; ð4Þ

where without loss of generality, t0 ¼ 0. Henceforth, according to [11], we will refer to the function f as the

generator of the ODE.

2.1. A 1D example: the exponential function

Consider the scalar, linear initial value problem

dy
dt

¼ y ðt > 0Þ; yð0Þ ¼ 1: ð5Þ

It is straightforward to show that ykþ1ðtÞ ¼ 1þ
R t
0
ykðsÞds ¼ 1þ t þ t2=2þ 	 	 	 þ tkþ1=ðk þ 1Þ! That is, the

kth Picard iterate is the kth-order Maclaurin polynomial.

2.2. A 2D example: the predator–prey problem

The classical predator–prey problem provides a simple but useful example to illustrate a practical so-

lution method based upon Picard iteration.

dy1
dt

¼ þc1y1 � c2y1y2;

dy2
dt

¼ �c3y2 þ c4y1y2:
ð6Þ

Here, c1, c2, etc., are positive constants and y ¼ ½y1; y2�T, where y1 and y2 denote the populations (in say,
thousands and hundreds) of prey and predator species, respectively. Note that f is both nonlinear and

autonomous. Because the system is non-dissipative, the solution is, for any non-equilibrium initial con-

dition, a closed limit cycle. For specificity, we take c1 ¼ 1:1, c2 ¼ 0:9, c3 ¼ 1:0, and c4 ¼ 1:0, and
y0 ¼ ½0:6; 0:7�T. From the generic initial condition with t0 ¼ 0, the first two Picard iterates are

y11ðtÞ ¼ y01 þ ay01
�

� by01y
0
2

�
t;

y12ðtÞ ¼ y02 þ
�
� cy02 þ dy01y

0
2

�
t

ð7Þ

and

y21ðtÞ ¼ y01 þ c1y01
�

� c2y01y
0
2

�
t þ 1

2
c21y

0
1

h
þ 2c1c2y01y

0
2 þ c2c3y01y

0
2 � c2c4 y01

� �2
y02 þ c22y

0
1 y

0
2

� �2i
t2

� 1

3
c2y01y

0
2 c1
�

� c2y02
��

� c3 þ c4y01
�
t3

y22ðtÞ ¼ y02 þ
�
� c3y01 þ c4y01y

0
2

�
t þ 1

2
c23y

0
2

h
� 2c3c4y01y

0
2 þ c24ðy01Þ

2y02 � c1c4y01y
0
2 � c2c4y01ðy02Þ

2
i
t2

þ 1

3
c4y01y

0
2 c1
�

� c2y02
��

� c3 þ c4y01
�
t3:

ð8Þ

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 301

What is noteworthy about (8) is that the approximation holds for arbitrary initial state y0. Thus the same

equation can be successively advanced in time simply by reseting the initial condition following each step.

In general, the higher the Picard iterate, the larger the admissible time-step. Whereas the generation of

successively higher Picard iterates rapidly becomes too tedious for hand computation, such calculations are

routine for computer algebra systems.

In the sample problem, f is of polynomial form and degree two, in which case Picard iterate yk is of order

2k � 1. More generally, for polynomial f of degree p, qk ¼ ðpk � 1Þ=ðp � 1Þ, where qk denotes the degree of
the kth Picard iterate. For arbitrary initial conditions, high order Picard iterates of polynomial generators
become intractable, even for computer algebra systems, by, say, iteration eight, in which case there may be

no advantage in using a Picard-based method over, for example, classical Runge–Kutta methods. Alter-

nately, the initial conditions (and parameters) can be specified numerically. For example, for the predator–

prey system, the 2nd Picard iterate (8) collapses to

y21ðtÞ ¼ 0:6þ 0:282t þ 0:14187t2 þ 0:023688t3;

y22ðtÞ ¼ 0:7� 0:280t þ 0:15470t2 � 0:026320t3:
ð9Þ

For this scenario, the order of the expansion that can be generated by a computer algebra system is quite

large. However, the expansion is valid only for a single time-step, following which another expansion must

be generated.

In summary, Picard iteration can exploited once to generate a reusable power-series expansion of the
solution with symbolic coefficients that incorporate the initial condition, or it can be exploited at each time-

step to re-derive a power-series approximation with numerical coefficients.

3. Theoretical considerations

The generation of series solutions by Picard iteration would remain a novelty without much practical

import were it not for several theoretical considerations that are potentially far reaching.
The straightforward symbolic computation of the successive Picard iterates in the example above hinged

upon the polynomial form of the generator f. (Henceforth, for clarity, we adopt the convention that degree

refers to the generator whereas order refers to the approximation of the solution.) Many or most systems of

ODEs are not originally cast in polynomial form. For example, consider the two-body problem of a satellite

orbiting a planet at the fixed location ðx0; y0Þ. The state vector ½x; y; u; v�T of the satellite is governed by the
autonomous system

dx
dt

¼ u;

dy
dt

¼ v;

du
dt

¼ GMðx0 � xÞ
½ðx� x0Þ2 þ ðy � y0Þ2�ð3=2Þ

;

dv
dt

¼ GMðy0 � yÞ
½ðx� x0Þ2 þ ðy � y0Þ2�ð3=2Þ

;

ð10Þ

where M is the mass of the planet and G is the universal gravitational constant. By defining a new

variable, the inverse separation distance s ¼ 1=

ffi
ðx� x0Þ2 þ ðy � y0Þ2

q
, the system above (10) can be

rendered as

302 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

dx
dt

¼ u;

dy
dt

¼ v;

du
dt

¼ GMðx0 � xÞs3;

dv
dt

¼ GMðy0 � yÞs3;

ds
dt

¼ ½ðx0 � xÞuþ ðy0 � yÞv�s3

ð11Þ

for which f is a 5th-degree polynomial in the five unknowns.

It appears that many generators that arise from physical laws can be rendered polynomial. Following the
terminology of Parker and Sochacki [11], we term such generators projectively polynomial. Moreover,

Carothers [5] has shown that any system whose generator f is polynomial can be re-written in polynomial

form of degree two (although how to re-write a specific f is not obvious). This observation has potentially

far-reaching implications. It would appear that many nonlinear systems of ODEs are quadratic systems in

disguise.

But suppose that f is not polynomial, yet belongs to C10 . Let yðtÞ, t 2 ½0; T �, be the unique solution for
generator f and initial condition y0. The theory [11] states that, for any small number � > 0, there exists a

polynomial generator fp with solution ypðtÞ (for the same initial condition), for which jyðtÞ � ypðtÞj < � for
all t 2 ½0; T �. This result for ODEs is analogous to the Weierstrass Approximation Theorem for approxi-

mating polynomials.

Furthermore, the kth Picard iterate ynðtÞ is the kth Maclaurin polynomial plus a polynomial of degree
greater than k [11]. That is, each successive Picard iterate generates one additional term of the Maclaurin

series expansion of the solution. Thus, Picard iteration provides an alternative to conventional methods for

developing the Maclaurin-series expansion of the solution. Rather than successively differentiating the

generator f, one successively integrates power series in t.
Finally, the Maclaurin series is also generated by modified Picard iteration. That is, suppose ~yykðtÞ rep-

resents the kth modified Picard iterate, which retains terms only through order k in t. Then, the following
process, termed modified Picard iteration, generates the kth-order Maclaurin polynomial approximation of
yðtÞ:

~yykþ1 ¼ y0 þ
Z t

0

f½~yykðsÞ�ds: ð12Þ

In summary, ODEs of physical origin can often be re-written as first-order autonomous systems with

polynomial generators. The Maclaurin-polynomial approximation of the solution of such systems is readily

generated term-by-term to arbitrarily high-order by modified Picard iteration, a routine computation for

modern computer-algebra systems.

4. An algorithm based upon modified Picard iteration

We demonstrate modified Picard iteration by solving the classical predator–prey system (6), with the

help of the computer algebra software package Maple. Maple code to generate the successive Maclaurin-

series terms for the predator–prey example (with arbitrary parameters and initial conditions) is provided in

Appendix A. The mþ 1 Maclaurin coefficients of the n equations are stored as an n� ðmþ 1Þ matrix C,
computed only once, automatically converted to Fortran code, and embedded (via an INCLUDE directive)

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 303

directly into a generic evaluation subroutine matrix_C, which is given in Appendix B. The subroutine is

called within a time advancement loop that updates the solution via Horner�s method for vectors (Appendix
B). The entire algorithm, summarized below, is remarkably compact.

where cj is the n-vector comprised of the elements of the jth column of C. Here, for simplicity, the time
increment Dt is presumed constant, but it need not be.
Fig. 1 presents the solution of the predator–prey system obtained by the Picard-based algorithm above.

The integration time is approximately the period of the limit cycle. The figure compares the continuous
solution with a discrete solution of 18 steps equally spaced in time and obtained by modified Picard iter-

ation with m ¼ 7. Clearly, high order permits an accurate solution despite large time-steps.

5. A classical application: the N-body problem

Here, we develop and demonstrate a second Picard-based method in which the Maclaurin coefficients are

generated numerically rather than symbolically. The method is applied to the classical N -body problem.
Let xij and vij represent the ith position coordinate and the ith velocity component, respectively, of

particles j ¼ 1; 2; . . . ;N of respective masses mj. Furthermore, let rjk ¼ ½
P3

i¼1ðxij � xikÞ2�1=2 denote the
separation distances between the centers of particles j and k, where k ¼ 1; 2; . . . ;N . In classical form, the
N -body problem consists of 6N coupled autonomous first-order ODEs, namely

for l from 1 to s by 1 do
t ¼ lDt
call matrix_C(y0,C)

y ¼ cm
for j from m� 1 by �1 to 0 do
y ¼ Dtyþ cj

end do

y0 ¼ y

end do

Fig. 1. Continuous and discrete solutions of predator–prey problem: discrete solution by modified Picard method of fixed order m ¼ 7

with uniform time intervals.

304 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

dxij
dt

¼ vij;

dvij
dt

¼
X
k 6¼j

mkðxik � xijÞ=r3jk:
ð13Þ

By defining the inverse separation distances to be sjk ¼ 1=rjk (j 6¼ k), we derive the following polynomial
formulation of the N -body problem:

dxij
dt

¼ vij; ð14Þ

dvij
dt

¼
X
k 6¼j

mkðxik � xijÞs3jk; ð15Þ

dsjk
dt

¼ �s3jk
X3
i¼1

ðxik � xijÞðvik � vijÞ: ð16Þ

Even when symmetry is exploited (sjk ¼ skj), we have paid a price for polynomial form; the number of
equations n has been increased to n ¼ 6N þ NðN � 1Þ=2. The gain is that the system now readily admits a

Maclaurin-series solution of arbitrary order.

Let xijl denote the lth order coefficient of the Maclaurin series for xij. That is, xijðtÞ ¼
Pm

l¼0 xijlt
l. Let

similar notation hold for vij and sjk. Suppose that coefficients are known for terms through order m� 1. In

light of the theoretical considerations mentioned previously, the coefficients for the mth term is obtained

simply by integrating (14) with respect to t, to yield

xijm ¼ vi;j;m�1=m: ð17Þ

Similarly, by integrating (15), we obtain

vijm ¼
Xn
k¼1

mk

Xm�1
l¼0

ðxikl � xijlÞðs3Þj;k;m�l�1=m: ð18Þ

The coefficients of nonlinear terms are generated by successive Cauchy products. For example,

ðs2Þjkm ¼
Xm
l¼0

sjklsj;k;l�m; ðs3Þjkm ¼
Xm
l¼0

ðs2Þjklsj;k;l�m: ð19Þ

Finally, by defining

ajkm ¼
Xm
l¼1

X3
i¼1

ðxijl � xiklÞðvi;j;m�l � vi;k;m�lÞ ð20Þ

we obtain from (16)

sjkm ¼ �
Xm�1
l¼1

ðs3Þjklaj;k;m�l=m: ð21Þ

The essence of the algorithm consists of two procedures inside a time-advancement loop. First, via (17)–

(21) the following coefficient vectors and matrices are generated for l ¼ 1; 2; . . . ;m: xjl ¼ ½x1jl; x2jl; x3jl�,

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 305

vjl ¼ ½v1jl; v2jl; v3jl�, and Sl, whose entries are sjkl. Subsequently, the solution is advanced in time merely by
evaluating the Maclaurin polynomials. For example, the position update is accomplished by

xjðDtÞ ¼ xj0 þ xj1Dt þ xj2Dt2 þ 	 	 	 þ xjmDtm: ð22Þ

Recall that the update stage is efficiently accomplished by Horner�s method.
The algorithm is identical to that given at the end of Section 4 with the exception that the coefficients are

generated rather than simply evaluated at each time-step. The generation step requires just 50 lines of
computer code and O½ðmNÞ2� machine operations. In contrast, the Horner update requires but

OðmnÞ ¼ OðmN 2Þ operations.
Finally, a comment is in order on the relationship between the present method and that of Le Guyader

[7]. The methods are similar though not identical. Both exploit polynomial generators, whose forms nev-

ertheless differ. The polynomial form of the present method permits all nonlinear terms of all orders to be

generated simply as Cauchy products. In contrast, there appears to be no standard method for the gen-

eration of nonlinear terms in [7].

In the next section, we discuss an adaptive time advancement for the Picard-based algorithm of this
section.

6. Time-step adaptation

A number of venerated theorems exist in the analysis of ODEs that establish the connection between

local and global truncation errors. Simply put, controlling local truncation error tends to control

global error as well, provided the generator f satisfies the Lipschitz condition, stated here for autonomous
systems.

jfðy2Þ � fðy1Þj6 Ljy2 � y1j; ð23Þ

where L is a finite constant [4]. If f is continuously differentiable, as is the case for polynomial generators,
then the Lipschitz condition is satisfied as a strict equality with L ¼ supD jof=oyj, where D is the domain [4].
Moreover, for any one-level numerical integration scheme, the cumulative (global) error E for an inte-

gration over the time interval 06 t6 T is at most [4]

d
L
ðeLT � 1Þ ð24Þ

if the relative error per step is at most d. The linear approximation of (24) suggests the working relationship

E
 dT ; ð25Þ

which is useful provided neither the Lipschitz constant L nor the integration time T is too large.
For reasons to be discussed later, we focus on the velocity components of the system, namely vj. Let EV

be the global error in maxj jjvjjj2 and el be the relative error during time-step l whose length is Dtl. Global
error approximation (25) suggests EV ¼

Ps
l¼1 el, s being the number of time-steps. Let � be the global

tolerance in velocity error. It follows that jEV j6 � provided jelj6 �l, where

�l ¼
�Dtl
T

: ð26Þ

This defines the allowable relative error per step, presuming that the velocity components have been scaled

by an appropriate reference velocity.

306 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

Let vjðtlþ1Þ be the exact velocity at time tl and let wmj ðtlþ1Þ be its mth-order Maclaurin polynomial

approximation via (22). The magnitude of the error of the step from time tl to tlþ1 is el ¼ jjvjðtlþ1Þ�
wmj ðtlþ1Þjj2, which we approximate using the mþ 1 term of the Maclaurin series. That is,

el
 max
j

jjvj;mþ1ðtlÞjj2Dtmþ1l : ð27Þ

By requiring el < �l, we have

max
j

jjvj;mþ1ðtlÞjj2Dtml 6
�Dtl
T

ð28Þ

from which it follows that:

Dtl6
�

maxj jjvj;mþ1ðtlÞjj2T

� �1=m
: ð29Þ

6.1. A three-body example

The three-body problem with close encounters is notoriously ill-conditioned because it admits chaotic

solutions that manifest extreme sensitivity to initial conditions. The following example demonstrates the
power of the present method for an ill-conditioned three-body problem comprised of the earth, its moon,

and a ‘‘spacecraft’’.

The masses, initial positions, and initial velocities of the bodies are provided in Table 1. The ‘‘spacecraft’’

is given significant mass so that it too exerts a small but non-negligible gravitational force. Data are only

approximately related to realistic values. For all bodies, the initial coordinate x3 and velocity v3 are assumed
zero so that the orbits remain co-planar. Masses are scaled relative to the mass of the earth; distances are in

earth radii. Velocity is normalized by the orbital velocity at the earth�s surface, for which the orbital period
is 2p. The integration time (T ¼ 3200) is in excess of 500 orbital periods.
Fig. 2 compares time-step adaptations for solutions with m ¼ 8, m ¼ 12, and m ¼ 16, for T ¼ 3200. The

computations are performed in double precision on a PC for which the machine unit roundoff error

u ¼ 2:2� 10�15. For all three calculations � ¼ u. At t ¼ 386 the spacecraft narrowly misses the moon and its

orbit is dramatically altered by the slingshot effect, as shown by the inset in the first sub-plot. Subsequent

sub-plots for m ¼ 8, m ¼ 12, and m ¼ 16 show only the region of the close encounter. For clarity the plot

density is greatly reduced. Symbols show positions at every 80th, every 20th, and every 10th time-steps for

the m ¼ 8, m ¼ 12, and m ¼ 16 calculations, respectively. The plots reveal the ability of the current fixed-

order scheme to dramatically adapt its time-step during close encounters. Moreover, by comparing the sub-
plots associated with differing orders m, one gleans an indication of the relationship between time-step and
order for fixed global accuracy.

The results of the computations shown in Fig. 2 agree at the final time (t ¼ T) to 10 decimal places, as do
computations with m ¼ 10, 20, 30, 36, and 40. A computation with the same global error tolerance and

m ¼ 5 agrees with the other results to only 7 digits. Whereas the m ¼ 5 computation requires 47,000 time-

Table 1

Masses and initial data for three-body problem

Body Mass, Mj x1 x2 v1 v2

Earth 1.0 0.0 0.0 0.0 0.0

Moon 0.0125 42.4)42.4 0.095 0.095

Craft 0.00001)1.0 0.0 0.0 1.4034

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 307

steps, the m ¼ 12 computation requires just over 500. We infer that, over such long-time integration, there

accumulates a 4–5 digit loss due to round-off error for most computations except that with m ¼ 5, for which

there is an apparent 7-digit loss. These suspicions appear to be confirmed during single precision
� ¼ u ¼ 2�23
 10�7 calculations which agree at t ¼ T to only two significant digits for m ¼ 8, m ¼ 12, and

m ¼ 16, again suggesting a 5-digit loss to round-off error. A reference calculation with the Bulirsch–Stoer

method suffers commensurate round-off errors.

7. Optimally adapted time advancement

As implied previously, the number of floating-point operations (FLOPS) required per time-step for the
N -body solver is O½ðmNÞ2�. More specifically, let P ðm;NÞ be the function that represents the computational
cost in FLOPS per time-step of generating the Maclaurin coefficients to order m for N bodies. In recog-

nition that different machines may require differing numbers of clock cycles for addition, subtraction,

multiplication, and division, we define

P ðm;NÞ ¼ waPaðm;NÞ þ wsPsðm;NÞ þ wmPmðm;NÞ þ wdPdðm;NÞ; ð30Þ

where, for example, wa is the relative cost (computational weight) of addition and Paðm;NÞ is the number of
additions. Specifically,

Paðm;NÞ ¼ 5

4
NðN � 1Þðmþ 1Þðmþ 2Þ þ 3

2
N 2mðmþ 1Þ þ 1

2
NðN � 1Þmþ 6mm þ 4N 2

Pdðm;NÞ ¼ mN :
ð31Þ

Similar to Paðm;NÞ, Psðm;NÞ and Pmðm;NÞ are each O½ðmNÞ2�. If the weights are unknown, we simply use
the default values, wa ¼ ws ¼ wm ¼ wd ¼ 1. On the other hand, in years past, programmers who wished to

Fig. 2. Positions of Moon and spacecraft showing time-step adaptation during close encounter, for selected orders of Maclaurin

polynomial: (continuous) – reference solution with inset of close encounter; (8th-order) – position shown at every 80th time-step; (12th-

order) – every 20th time-step shown; (16th-order) – every 10th time-step shown.

308 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

optimize performance on Cray supercomputers, for example, were advised that wd ¼ 3wm because division
on those platforms was accomplished in three steps: reciprocal approximation, Newton refinement, and

multiplication by the reciprocal.

Let us now define Cðm;NÞ to be the computational cost per unit time at time tl; that is,

Cðm;NÞ ¼ P ðm;NÞ
Dtl

; ð32Þ

where Dtl is related to m and N through (29). Because we have chosen to compute Dtl by constraining
velocity error, and velocity is a smooth function, Cðm;NÞ is also a smooth function. Our goal now is to

choose both m and Dtl so as to minimize Cðm;NÞ at each time-step, while maintaining the requisite tol-
erance on local truncation error. The obvious approach is to differentiate and minimize Cðm;NÞ with re-
spect to m at each step. This, it turns out, is unnecessary. Fig. 3 compares CPU time, estimated on the basis

of the cost function C, with actual CPU time for the three-body example, both as functions of order m.
Here, the global relative error tolerance � is set at the unit roundoff error for double precision; that is
� ¼ 2�52
 10�16. The estimated CPU time is simply the number of flops arbitrarily scaled by an average
mega-flop (Mflop) rate, in this case 50 MFlops. Because the cost function does not take into consideration

how the machine exploits cache, it can be considered only a rough indicator of computational effort.

However, from Fig. 3, three things are obvious: (1) the cost function reflects the trends in actual CPU time,

(2) the cost function is smooth, and (3) increasing order rapidly diminishes cost to a point, beyond which

cost increases very gradually. Consequently, we opt for the simplest possible scheme. As we compute the

successive Maclaurin coefficients of ascending orders k, we simultaneously evaluate Dtl via (29), Pðm;NÞ by
(30) and Cðk;NÞ by (32). If Cðk þ 1;NÞ < Cðk;NÞ we continue to the next higher order. Otherwise, we stop
at order k; that is, we set the maximum order m ¼ k. For the example shown in Fig. 3, the estimated and
actual minima occur at m ¼ 19 and m ¼ 23, respectively. However, because of the characteristic shape of C,
there is very little penalty for not precisely hitting the optimal m.
If the default values of the weights are used, and if the machine unit roundoff error u is selected as the

tolerance (that is, � ¼ u) then the present optimal-order algorithm is entirely parameter free. In Fortran 90,

for example, the intrinsic function EPSILON returns the value of u. Thus, the parameter-free implemen-
tation of the algorithm returns velocities whose relative truncation errors are bounded by machine epsilon.

Fig. 4 compares results of the fixed m and parameter-free versions of the algorithm for the three-body

example. Results are shown for both single precision (SP) and double precision (DP) values of u, 2�23 and

Fig. 3. Actual CPU time in seconds as measured by system clock vs. CPU time estimated from Eqs. (30) and (31), for three-body

example with double-precision accuracy.

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 309

2�52, respectively. For single precision, the fixed-order method attains minimum CPU time whenever the

order m ¼ 12. In contrast, the corresponding minimum for double precision occurs at m ¼ 21. For both

single and double precision, the parameter-free algorithm beats the best times of the fixed-order method

because the optimization is dynamic, as indicated by the lengths of the dashed lines, which show the range
of the order m over the duration of the calculation. For the single-precision computation, the order varies

from 8 to 14. In contrast, for the double precision result, m varies from 14 to 23. Fig. 4 corroborates the

observations of Press and Spergel [12] that increasing order improves efficiency, but only to a point, and

that orders higher than four are desirable.

7.1. Practical considerations

The current algorithm minimizes CPU time and maximizes accuracy at the expense of storage. Storage

intensive, the algorithm requires memory for mþ 1 vectors for the Maclaurin coefficients of n state vari-
ables, relative to, for example, four vectors for the classic fourth-order Runge–Kutta scheme. Moreover, for

the parameter-free algorithm in which m floats, the actual storage is not known a priori. A natural way in

which to deal with this uncertainty is to use dynamic memory allocation in conjunction with linked lists,
which both C and Fortran 90 support. As a linked list, the storage vector for coefficients of order k in-
corporates a pointer to the vector for order k þ 1. Thus, memory can be both allocated or deallocated as the

method adjusts the order.

For some purposes (graphical, for example) the coarse time-steps permitted by a high-order algorithm

may be undesirable. For these purposes, fine-grained results are efficiently generated directly from the

Maclaurin polynomial simply by evaluating it at several intermediate times that range over the full time

interval Dtl. Because the global operation count of the algorithm is dominated by generating the Maclaurin

coefficients, additional Horner updates do not add substantially to the computational effort.

7.2. An N-body example: evolution of the solar system

Here we consider the present method for evolution of the solar system. For reference, we also provide a
reference solution computed by the Bulirsch–Stoer method. The reference method, which combines

Richardson extrapolation with a second-order modified midpoint method [13], represents the de facto state-

Fig. 4. Actual CPU time for fixed-order algorithm vs. time for dynamic optimal-order algorithm, for three-body example: (solid lines)

fixed-order method for single- (SP) or double-precision (DP) relative global error; (dashed lines) optimal-order method, with length of

line showing dynamic range of order m.

310 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

of-the-art for classical ODE integrators [13]. Initial data are taken from Ephemerides of Minor Planets [6]

for Epoch 1997, December 18.0 (Julian Date). The sun and the nine planets without moons are considered;

thus N ¼ 10. Cartesian position coordinates (x; y; z) are given in astronomical units [AU] referenced from
the center of the Sun, which is located at the origin. The first two coordinates are in the nominal plane of

the ecliptic. The third coordinate z is normal to the ecliptic. The natural time unit [NTU] is mean Earth
years (365.25689833 Earth days) divided by 2p. Velocities are given in [6] in AU/day and are converted in
the program to AU/NTU. The period of integration is 1000 NTUs, roughly 159 Earth years, which is just

short of the period of Neptune. There are no relativistic corrections for the orbit of Mercury.
Because of periodic orbits without close encounters, the problem of evolving the solar system is benign

relative to the three-body example studied previously. Both the present method and the Bulirsch–Stoer

reference performed well. The parameter-free modified Picard method worked as expected the first time:

successfully to completion, accurately, and without adjustment. The Bulirsch–Stoer method required

modest experimentation before an appropriate error tolerance and normative time-step were found. Twice

the reference method failed, for different reasons, when the tolerance was too restrictive. The methods

agreed to at least nine significant digits in all three position coordinates of all 10 bodies at the final time.

The Bulirsch–Stoer method maintained constant angular momentum of the entire system to 12 digits; the
parameter-free Picard method to 14 digits. The one-parameter (�) Picard method with � ¼ 10�6 matched the

accuracy of the optimally tuned Bulirsch–Stoer algorithm. However, at equivalent accuracy it ran con-

siderably slower. On the same platform (an SGI Octane with a single 270 MHz IP30 processor), Bulirsch–

Stoer ran to completion at 8520 time-steps in 138 s (including output). The present method took 11446

time-steps in 970 s (also including output). For the present method, the average time-step was .087 NTUs,

or approximately 5 Earth days. For this benign problem there was relatively little adjustment in time in-

crements. For � ¼ 10�6, the order m remained nearly constant at 13, with infrequent excursions to as low as
9 and as high as 14.

7.3. Gravitational collapse of an N-body system

A final test of the present method, the partial gravitational collapse of an N -body system, is far less
benign. We consider a sphere radius r ¼ N 1=3 in which N particles are randomly distributed in position with

random initial velocities. Specifically, the Euclidean norm of the position vector of each particle is a random

variable uniformly distributed on ½0; r�, and the particle�s speed is uniformly distributed on ½0; 1�. The di-
rections of position and velocity vectors are assigned in spherical coordinates by angles / and h uniformly
distributed on ½0; p� and ½0; 2p�, respectively. Such systems tend to eject ‘‘hot’’ particles followed by suc-
cessive collapses. The greater N or the smaller r, the greater the probability of a direct collision in finite
time. Near misses are the norm; as a result, some particles exhibit chaotic trajectories. In general, such

problems severely challenge adaptive integrators.
Here we compare the present (Picard) method against the Bulirsch–Stoer reference, for gravitating

systems of N ¼ 2; 4; 8; 16, and 32 bodies, each of mass unity. The specific initial conditions (in rectangular
Cartesian coordinates) for the N ¼ 32 case are attached as Table 3 in Appendix C. The results are

summarized in Table 2 below. The integration time is 06 t6 0:5. At the final time, the N ¼ 16 solutions

agree to 8–9 significant digits and the N ¼ 32 solutions agree to 4–5 significant digits. We attribute the

discrepancy to the round-off errors of both methods. For large N , some numerical experimentation is
required to avoid initial conditions that result in direct collisions within the time span of interest. The

Bulirsch–Stoer algorithm (with polynomial rather than rational polynomial extrapolation) is taken di-
rectly from Numerical Recipes [13] without modification. For roughly equivalent accuracy (� ¼ 10�14 for

both methods), the Bulirsch–Stoer algorithm runs approximately 10 times faster than the present method.

However, it is clear that the method struggles with near collisions. The authors of Numerical Recipes

report, ‘‘Keep a watch for failed steps. If these are not rare, then Bulirsch–Stoer is in trouble’’. As shown

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 311

in Table 2, the ratio of failed (BAD) to successful (OK) steps grows quickly with N . It is interesting to
note that, for a slightly more stringent error tolerance of � ¼ 10�15, the number of failed steps exceeds

successful ones for N ¼ 16 and the reference method experiences an underflow error in step size h for
N ¼ 32. In contrast, the present method continues to perform at � ¼ u ¼ 2�52, with only a modest increase
in CPU time. An indication of the chaoticity of the system is shown in Fig. 5, which shows the trajectory

of particle 18 for the N ¼ 32 integration.

A drawback of the present method is that it is memory intensive, requiring
 3=2N 2mmax memory

locations, relative to 12N for the reference method. In addition to CPU time, Table 2 presents the

maximum order mmax for the optimal-order variant of the current method. High memory demands for the

N -body problem are an indirect consequence of the requirement that the generator be of polynomial

form.

In summary, some advantages of the current algorithm relative to existing ones are its extraordinary
accuracy, its simplicity, the freedom from arbitrary parameters, its robustness, and its built-in inter-

polation feature. On the other hand, the method is admittedly memory-intensive and typically slower

than the Bulirsch–Stoer algorithm, the state-of-the-art for general systems of ODEs. The Picard-based

method is at its best for problems in which drastically adaptive stepping is necessary. Present results

confirm Makino�s assertion [8] that optimal order depends both upon N (Table 2) and accuracy (Fig.

4). To that we would add, based upon all tests cases and Fig. 4, that optimal order is a dynamic

function of the instantaneous configuration, with close encounters favoring higher order as observed by

Makino.

Table 2

Current method vs. reference (Bulirsch–Stoer) method for gravitating N -body systems with random initial positions and velocities

N Picard B–S, � ¼ 10�14 B–S, � ¼ 10�15

CPU (s) mmax CPU (s) OK/BAD CPU (s) OK/BAD

2 .03 17 .003 3/0 .004 4/0

4 .23 19 .025 4/2 .050 6/2

8 6.2 21 .617 20/10 1.21 35/22

16 402. 24 41.8 484/293 303. 4140/4393

32 1847. 25 180. 570/365 Underflow Failed

Fig. 5. Position coordinates of chaotic trajectory of particle 18 for gravitating system of N ¼ 32, showing effects of near collisions.

312 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

Although we have focused on the N -body problem, the method extends naturally to any system of ODEs

whose generator f can be written in polynomial form. Because the coefficients of nonlinear terms of high

degree can be computed by successive Cauchy products of lower order coefficients, the operation count for

nonlinear problems scales as nm2 log2 p, where n is the number of equations, m is the order of the Maclaurin
polynomial, and p is the polynomial degree of the generator. As a practical consequence, the algorithm is

effectively quadratic in m for all nonlinear systems, in which case the number of operations is easily counted
or estimated. However, the intermediate computations necessary to evaluate high-degree terms may require

additional storage.

8. Conclusions

The present paper adapts the work of Parker and Sochacki [11] to the solution of the classical N -body
problem. The solution method is based upon modified Picard iteration, which generates successive ap-

proximations of the Maclaurin series of the solution to arbitrarily high order, provided that the right-

Table 3

Random initial conditions for gravitating system with N ¼ 32

x1 x2 x3 v1 v2 v3

)0.451781)0.668711 2.130823)0.390649 0.170636)0.139339
0.139627 2.417780)0.184771 0.059581 0.064517 0.278170

)0.012178 0.005604 3.094713 0.002131 0.000994 0.523462

0.957195)1.649651)1.648189 0.483751)0.143965)0.450655
1.832367)2.058355)1.196428)0.005011 0.004957 0.028043

)1.323243 0.092987 1.958540)0.304847)0.254990)0.331886
2.619225)0.531646)1.001710 0.049874 0.029157)0.094518
0.304035)0.493170 0.062824 0.083240 0.083887)0.017629
1.761668 1.260788)1.938820)0.013529)0.003297)0.510776

)0.010658)0.013185 0.575171)0.296793 0.022484 0.041705

)0.031451)0.072838)1.528530)0.116508 0.019669 0.363987

)0.110800 0.268477 0.510285 0.624336 0.021235 0.642547

0.359750)0.279393 1.018212)0.041297)0.073610)0.612759
0.086059 0.169721)0.086404)0.602516 0.048723 0.463746

)0.094330)0.004586 2.926841 0.100003 0.013467)0.297018
0.023506)1.690861 1.241850)0.597471 0.093746 0.015160

)0.429119 0.017477 0.442344)0.001187 0.109198 0.407929

0.056293)0.054437)0.100358 0.008737 0.177400 0.371940

0.147657)0.220578 0.563181)0.090589)0.031124)0.793053
)0.228752 1.036050 2.857207 0.032978 0.000263 0.714455

)0.494299 0.998871 1.570144 0.031275 0.239224)0.349678
0.249536 0.849006)0.812883)0.097460 0.714458)0.455581
0.845137)0.689624 1.870891)0.007234 0.002523)0.024845

)0.693832)0.071945 3.039076)0.672755)0.002692)0.003527
)0.351586 0.158041)0.278988 0.001492)0.039310)0.668484
)0.029971 0.663645)1.956217 0.027927)0.015388 0.249257

)0.664721)2.549115 0.657397 0.327532 0.161669 0.044897

)0.480630)0.226497 0.104536)0.105470)0.057948)0.135116
1.206708)0.660459 2.342273 0.092884 0.195367 0.458886

2.026496 0.609431 2.289365 0.207987)0.306392)0.210477
)0.195273 0.012207)0.066007)0.667363)0.207305 0.144972

0.030465 0.050829 0.016035)0.024180)0.040752 0.048022

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 313

hand side (the generator) can be cast in polynomial form. The method is well-suited to the simultaneous

optimization of time-step and order. An adaptive, optimal-order variant of the algorithm reveals that

optimal order is inherently dynamic, dependent upon the number of bodies N , the specified error global
tolerance �, and the instantaneous configuration. Advantages of the method are its simplicity, its

robustness, its extraordinary accuracy, that it inherently contains a built-in high-order method for

interpolation between coarse time-steps, and that it can be rendered completely parameter free. Its dis-

advantages include computational inefficiency relative to standards such as Bulirsch–Stoer, and that it is

memory intensive.
Despite its relative inefficiency, the current algorithm is well-suited for certain applications, among these

accurate integration of chaotic N -body systems, where close encounters are the norm, and as a platform for

numerical experiments on optimal order. Because of its robustness and freedom from arbitrary parameters,

the method could be adapted to hybrid N -body integrators, where, for example, a more efficient method is
used until a close encounter, at which time the scheme hands off to the current method for negotiating a

difficult passage.

The robustness and accuracy of the method are demonstrated for both benign (e.g., the solar system) and

chaotic N -body systems.
The inefficiency of the method stems from the fact that the operation count scales as m2

maxN
2, where mmax

is the maximum order of the Maclaurin polynomial approximation. Order N 2 computational effort is

normative for N -body integrators (relative to N -body simulators). However, because mmax can be quite

high, say 25 or more for double-precision accuracy, it is desirable to explore methods for reduction of

order. One possibility is consideration of rational polynomial generators, which should be better at rep-

resenting near singularities. In addition to further exploration of this possibility, future efforts include the

development and implementation of dynamic memory allocation and deallocation within the algorithm,

and adaptations suitable for parallel processing.
Finally, although the solution method was developed expressly for the N -body problem, it is applicable

to a wide class of ordinary differential equations of initial-value type.

Acknowledgements

The authors are extremely grateful to their mathematics colleagues J.S. Sochacki, G.E. Parker, D.C.

Carothers, and P.G. Warne, and their physics colleagues W.H. Ingham and D.W. Peterson, for numerous
clarifications and insights. Moreover, the timely references and insightful suggestions of the reviewers are

also greatly appreciated.

Appendix A. Maple code for predator–prey ODE

The Maple code given below generates Maclaurin coefficients for the classical predator–prey program.

By appropriately changing the number of equations n and modifying the generator rhs_f, the code can be
readily adapted to any autonomous polynomial first-order system.

p¼ number of modified Picard iterates
n¼ number of equations
C½i; j� ¼ storage array for Maclaurin coefficients
> restart: with(linalg):

> p :¼ 8; n :¼ 2;

> y :¼ array(1..n); C :¼ array(1..n,0..p);

314 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

Define (autonomous) generator, n-vector function f.

Establish (generic) initial condition (i ¼ 0) for Picard iteration.

Create linear (Euler) approximation to introduce t explicitly.

Do p modified Picard iterates; build Maclaurin series term-by-term.

Convert coefficient matrix C to optimized Fortran source code.

Appendix B. Fortran code for modified Picard method

B.1. Generic module for evaluating Maclaurin coefficients

Current versions of Maple generate Fortran 77 code but not Fortran 90 code. Provided below is a

generic Fortran 77 subroutine in which to imbed the Fortran 77 output of the Maple code provided in
Appendix B:

> rhs_f :¼ [a*y[1] - b*y[1]*y[2],

> -c*y[2] + d*y[1]*y[2]];

> f :¼ unapply(rhs_f,y);

> y0 :¼ evalm(y);

> for i from 1 by 1 to n do

> C[i,0] :¼ y0[i];

> od;

> y_n :¼ evalm(y0 + f(y0)*t);

> for i from 1 by 1 to n do

> C[i,1] :¼ coeff(y_n[i],t,1);
> od;

> for j from 1 by 1 to p-1 do

> temp :¼simplify(f(y_n));

> k :¼j + 1;

> for i from 1 by 1 to n do

> C[i,k] :¼simplify(coeff(temp[i],t,j) / k);

> y_n[i] :¼simplify(y_n[i] + C[i,k]*t^k);

> od:

> od;

> fortran(C,optimized,precision¼double,filename¼ ��mat_c.h��);

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 315

B.2. Time advancement via Horner�s method

Fortran 90 code for advancing the solution yðtÞ forward in time from initial state y0 via Horner�s method
is provided below. Here, the time increments are constant, but they need not be.

DO time_step¼ 1, max_steps
CALL matrix_C (n, m, y0, C) ! y0 is initial state

time¼ time_step * dt
y¼C(1:n,order) ! accumulate in highest-order register
DO j¼ order-1, 0, -1 ! Horner�s method for state vector y
y¼ dt*y + C(1:n,j)

END DO

IF (mod(time_step,skip)¼ ¼ 0) WRITE (*,*) time, y

y0¼ y ! reset initial state and start over
END DO

If the programs containing the code above are entitled main.f90 and subs.f, respectively, the following

UNIX script accomplishes compilation and linking to create the executable file run.x:

f77 -c subs.f
f90 -c main.f

f90 subs.o main.o -o run.x

Appendix C. Initial conditions for gravitating N-body system

See Table 3.

References

[1] S.J. Aarseth, Direct methods for N -body simulations, in: J.U. Brackbill, B.I. Cohen (Eds.), Multiple Time Scales, Academic Press,
New York, 1985, pp. 377–418.

SUBROUTINE matrix_C (n, m, y, C)

DOUBLE PRECISION y(1:n), C(1:n,0:m)
c

c Parameter definition here; parameters shown for predator–prey example

c

c1¼ 0.9D0
c2¼ 1.1D0
c3¼ 1.0D0
c4¼ 1.0D0

c
c Include Maple-generated Fortran 77 here

c

INCLUDE �mat_C.h�
c

RETURN

END SUBROUTINE matrix_C

316 C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317

[2] U. Becciani, V. Antonuccio-Delogu, M. Gambera, A modified parallel tree code for N-body simulation of the large-scale structure

of the universe, J. Comput. Phys. 163 (2000) 118–132.

[3] E. Bertschinger, Simulations of structure formation in the universe, Annu. Rev. Astron. Astrophys. 36 (1998) 564–599.

[4] G. Birkhoff, G.-C. Rota, Ordinary Differential Equations, Ginn and Company, New York, 1962.

[5] D.C. Carothers, Some results on systems of polynomial differential equations and projectively polynomial functions, Presented at

the 20th Annual Southeastern-Atlantic Regional Conference on Differential Equations, Virginia Tech, October 20–21, 2000.

[6] Ephemerides of Minor Planets, Institute of Applied Astronomy of the Russian Academy of Sciences, St. Petersburg, 1997, p. 148.

[7] Cl. Le Guyader, Solution of the N -body problem expanded into Taylor series of high orders. Applications to the solar system over

large time range, Astronomy Astrophys. 272 (1993) 687–694.

[8] J. Makino, Optimal order and time-step criterion for adaptive Aarseth-type N -body integrators, Astrophys. J. 369 (1991) 200–212.
[9] J.J. Monaghan, Particle methods for hydrodynamics, Comput. Phys. Rep. 3 (1985) 71–124.

[10] A. Morbidelli, Modern integrations of solar system dynamics, Annu. Rev. Earth Planet. Sci. 30 (2002) 89–112.

[11] G.E. Parker, J.S. Sochacki, Implementing the Picard iteration, Neural, Parallel, Sci. Comput. 4 (1996) 97–112.

[12] W.H. Press, D.N. Spergel, Choice of order and extrapolation method in Aarseth-type N -body algorithms, Astrophys. J. 325 (1988)
715–721.

[13] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran 77, second ed., The Art of Scientific

Computing, Cambridge University Press, Cambridge, 1992.

[14] P. Saha, S. Tremaine, Long-term planetary integration with individual time steps, Astronomical J. 108 (1994) 1962–1969.

[15] W.L. Sweatman, The development of a parallel N -body code for the edinburgh concurrent supercomputer, J. Comput. Phys. 111
(1994) 110–119.

[16] J. Wisdom, M. Holman, Symplectic maps for the N -body problem, Astronomical J. 102 (1991) 1528–1538.

C.D. Pruett et al. / Journal of Computational Physics 187 (2003) 298–317 317

	An adaptive N-body algorithm of optimal order
	Introduction
	Picard iteration revisited
	A 1D example: the exponential function
	A 2D example: the predator-prey problem

	Theoretical considerations
	An algorithm based upon modified Picard iteration
	A classical application: the N-body problem
	Time-step adaptation
	A three-body example

	Optimally adapted time advancement
	Practical considerations
	An N-body example: evolution of the solar system
	Gravitational collapse of an N-body system

	Conclusions
	Acknowledgements
	Generic module for evaluating Maclaurin coefficients
	Time advancement via Horner’s method
	Maple code for predator-prey ODE
	Fortran code for modified Picard method
	Initial conditions for gravitating N-body system
	References

