
Application of the Parker-Sochacki Method to Celestial Mechanics
Joseph W. Rudmin, March 1998

Physics Dept., James Madison University

Harrisonburg, VA 22807

Copyright statement: This essay is hereby placed entirely in the public domain and may
be reproduced and published freely provided this copyright statement is included.

Abstract:
A tutorial is presented which demonstrates the theory and usage of the Parker-Sochacki
method of numerically solving systems of differential equations. Solutions are
demonstrated for the case of projectile motion in air, and for the classical Newtonian N-
body problem with mutual gravitational attraction.

I. Introduction
Physics is the mathematical study of the interactions of matter and energy in the
observable universe. The key word in this description is “mathematical”. It is
mathematics which gives physics the analytical and predictive power which so
distinguishes it from the other fields of human knowledge. Mathematics is a process of
creating symbols, and rules for manipulating the symbols, in ways which abstract,
formalize, and enhance human logic. Without mathematics, physics would be nothing
but lore, experience, and stamp-collecting.

Historically, physics and mathematics have been synergistically entwined. Physics has
added to mathematics the subjects of geometry, trigonometry, vectors, calculus, and
distribution theory. Mathematics has supplied physics with such tools as algebra,
probability, complex mathematics, Boolean algebra, group theory, and most importantly,
the concept of abstract quantities such as energy, entropy, angular momentum, and fields,
and their rules of behavior—the laws of physics. Over the centuries, a major impetus for
studying mathematics has come from the benefits it confers through physics, and its
daughters the engineering fields. Conversely, for the educated layman, perhaps the very
best reason for studying physics is that it makes a person mathematically competent, and
the mathematics thus learned is much more widely applicable in life than in just physics.

Once in a while, mathematicians create a new tool which is so powerful and so widely
applicable, that to slow its dissemination might significantly retard development across
the whole field of physics and engineering. It is the belief of this author that the Parker-
Sochacki method of solving differential equations is such a tool. For this reason, I have
sought to publish it in a broad-spectrum journal such as American Journal of Physics,
rather than in a journal read by a smaller subset of scientists and engineers.

The Parker-Sochacki method is an extension of the Picard iteration, which in turn is an
algorithm for solving simultaneous differential equations. It is perhaps more easily
shown than described. It has been said that when you are holding a hammer, everything
looks like a nail. Similarly, the Parker-Sochacki method can be summarized by the
principle “When you have a Picard iteration, everything looks like a polynomial. Or at

 2

least it should.” The method has been formally published elsewhere, [1], but I will
present it more informally here, and will apply it to two examples, one simple and one
complicated.

II. Applying the Parker-Sochacki Method to a Two-dimensional
Trajectory in Air
Consider the case of an object of mass m falling through air. The air friction force is
assumed to be of the form DACs2 where D is the air density, A is the cross-sectional area,
C is a drag coefficient, and s is the speed of the object. Let x be the horizontal position, y
be the vertical position, u be the horizontal velocity component, and v be the vertical
velocity component. To simplify, let B = DAC/m. Then the equations of motion can be
written

dx/dt = u (1)

dy/dt = v (2)

du/dt = -Bsu (3)

and dv/dt = -g - Bsv. (4)

With a suitable choice of units, g for accelerations and sqrt(g/B) for velocities, we can
replace g and B with 1. Let’s try solving these using the Picard iteration. Assume x and
u can be expressed as a truncated Maclaurin series in time t:

x = x0 + x1t + x2t
2 + ... + xnt

n (5)

and

u = u0 + u1t + u2t
2 + ... + unt

n (6)

Substituting (5) and (6) into (1) permits us to recover the next higher term in the x series,
which yields

 xn+1 = un/(n+1) (7)

Continuing this process constitutes the Picard iteration, which consists of expressing each
right-hand member of equations (1) through (4) as a power series of order n in t, and then
using the equations to increment the number of terms for the series representing each left-
hand member. This was published by Picard in 1928 [2], but has been since regarded as
an impractical formalism, because it soon runs into practical difficulties, as we shall see.

For consider equation (3). This can be written as

 3

du/dt = -u(u2 + v2)1/2 = -su (8)

where s is the speed of the projectile. Similarly, (4) can be

written dv/dt = - 1 - v(u2 + v2)1/2 = -1 - sv (9)

To express the right member of (8) as a Maclaurin series, we first need to express s as a
power series in time. However, to do so, we first need to work out algebraic expressions
for the coefficients, and after the first two or three terms, these become so monstrously
complicated that it cannot practically be done. This type of difficulty halted widespread
application of the Picard iteration for the past sixty years. Now, however, Ed Parker and
Jim Sochacki of the James Madison University Mathematics department have succeeded
in bypassing this barrier with some creative insight. The solution is this. Since the usual
method of expanding the square root s fails to give the desired polynomial expansion in
time, simply treat s as another variable to be expressed as a power series, whose
coefficients are also to be discovered through the Picard iteration.

Thus let

s s s t s t= + + +0 1 2
2 ...

 (10)

where s u v= +() /2 2 1 2
 (11)

Then the time derivative of s is

ds
dt

u
du
dt

v
dv
dt

s= +() /
 (12)

Substituting in equations (9) and (10) gives

ds
dt

s v s= − −2 /
 (13)

This is no help at all, because the same difficulty as before arises due to s being in the
denominator of the last term. All we have achieved so far is to increase the number of
equations to be solved. Ed and Jim’s creative inspiration is to repeat this exercise, which
has just failed us!

Let r = 1/s. (14)

Then

dr
dt

ds
dt

s vr= − = +/ 2 31
 (15)

And now (13) can be rewritten as

 4

ds
dt

s vr= − −2

 (16)

Now we see that the whole mess has simplified beautifully. Gathering the equations
together:

dx
dt

u=
 (1)

dy
dt

v=
 (2)

du
dt

su= −
 (8)

dv
dt

sv= − −1
 (10)

ds
dt

s p= − −2

 (13)

and

dr
dt

pq= +1
 (15)

where p vr= and q r= 2
. (16)

Now suppose we know the expansions of each of the variables up through order n.
Applying the Picard iteration to (1) and (2) gives

x u nn n+ = +1 1/ () and y v nn n+ = +1 1/ () . (17)

For (8) a bit more work is required. su is the product of two expansions:

su s s t s t u u t u tn
n

n
n= + + ⋅⋅⋅ + + + ⋅⋅⋅ +()()0 1 0 1 . (18)

Multiplying these term by term gives the result that the coefficient of the nth-order term
for the product is

 () ()su s u s u s u s un n n n n= + + ⋅⋅⋅ + +− −0 1 1 1 1 0
 or

 5

()su s un i n i
i

n

= −
=
�

0 (19)

Then applying the Picard iteration to (3) gives

u s u nn i n i
i

n

+ −
=

= − +�1
0

1() / ()
 (20)

Similarly,

v s v nn i n i

i

n

+ −
=

= − +�1
0

1() / ()
. (21)

From (13),

s s s p nn i n i n

i

n

+ −
=

= − + +�1
0

1() / ()
 (22)

where

p r vn i n i

i

n

= −
=
�

0 . (23)

Now let

q r rn i n i

i

n

= −
=
�

0 . (24)

Then

r p q nn i n i

i

n

= +−
=
�

0

1/ ()
 (25)

Equations (17) and (20) through (25) implement the Picard iteration.

Now look at the beauty of what Ed Parker and Jim Sochacki have done. First, every term
in the expansions has been calculated simply and in closed form. The number of
operations required is not only finite, but small. Once a coefficient in the expansions is
calculated, it is never changed again. The only limit on its precision is the digital
accuracy to which it is first calculated. The calculations can even be done analytically,
displaying the exact algebraic expressions for terms of all orders. An algebraic
manipulator such as Macsyma or Maple can generate and display these coefficients to
any order desired. All the required operations on series have been reduced to just three:
integration of a series, and addition and multiplication of two series. Of these, the first
two are trivial, and the third is not difficult. Finally, the only arithmetic operations used
are multiplications, additions, and subtractions. The only divisions required are the

 6

inverses of small integers, and these can be calculated just once and stored in a table.
The serendipitous absence of divisions makes the method ideally suited for high speed
computation in computers.

As an aside, note that in demonstrating the method, we have also solved for the motion of
a projectile with a quadratic drag force--itself an important problem which, to this
author's knowledge, has not been previously published. Note that it would not be very
difficult to extend this calculation to include, say, an exponential atmosphere, buoyancy,
g varying with height, coriolis forces, and wind forces.

The world of theoretical physics is well-stocked with first-order approximations. Now
all the higher order-terms have been made available as well.

III. Chronology
Ed Parker and Jim Sochacki, of the James Madison University Mathematics Department,
discovered this approach in the late 1980's when they were studying chaotic systems
arising in population dynamics. Having achieved a series solution, but they wondered
what series it was that they were getting. With some further effort, they discovered that
in the population dynamics problem, the solution they were getting was the Maclaurin
series. They then succeeded in proving five theorems which are published in reference
[1]. Summarizing the results of these theorems:

(1) The polynomial solution produced by the Picard iteration is unique, and is therefore
identical with the Maclaurin series.

(2) In computing the term n+1 of a Picard iteration, only the first n terms of the other
series need to be used.

(3) Defining a property called "projectively polynomial", which is equivalent to a real
function having a polynomial generator, they show that this property is preserved by
addition, multiplication, and differentiation (using the chain-rule).

(4) The Picard-generated polynomial approximations to the solutions of the equations on
any finite interval can approach the solutions arbitrarily closely if the solutions are
analytic functions.

(5) The solutions reached by the Picard iteration satisfy a Lipshitz condition on any
locally analytic interval. Of these, probably the most important for the practicing
engineer or physicist is the first. It guarantees that the expansion produced in this
process is not just an approximation polynomial, but in fact is the Maclaurin series. It
allows us to safely assume all the powerful properties for the Maclaurin series, including
the fact that if the differential equation has a unique solution, and if the series converges
as n increases, it will converge to that solution.

They also raised two unanswered questions in their article. First, how can one obtain a
good estimate for the accuracy of the solution? Second, they have shown that the

 7

generators which are projectively polynomial are dense in the analytic functions. Are
they the set of analytic functions? I suggest a third question: What are the (or some of
the) differential equations for which the method fails?

When Ed and Jim first discovered the method in the late 1980's they didn't yet realize
how widely applicable it was. At that time, I was supervising a student--Timothy
MacDevitt--in trying a new approach to celestial mechanics. We decided to see if we
could improve on celestial mechanics calculations by extrapolating Hermite interpolation
polynomials of large order from previously calculated points. Although I was aware that
Lagrange interpolation polynomials were subject to unstable oscillations, I was optimistic
in this case because we intended to extend the polynomials to two higher derivatives.
That is, we would create a polynomial which at n different values of time, would fit the
position, velocity, and acceleration of the orbiting particle. The acceleration was to be
calculated from Newton's laws of motions. We would then extrapolate this polynomial
forward in time to get later positions. The project failed spectacularly. We found that we
could create a polynomial which would fit all three derivatives at n points in an orbit of
radius one, which between those points would oscillate to values of one million.
Increasing the number and density of points only made the oscillations worse, not better.
This taught me the following lesson: There are many polynomial approximations which
can satisfy a differential equation on a finite number of points, but there is only ONE
polynomial which will approach the solution BETWEEN those points, and that is the
truncated Maclaurin series.

Tim graduated and moved on to graduate school, and I turned to other research. In the
summer of 1994, I was awarded the LaRose Fellowship by the James Madison University
Foundation. This enabled me to hire a student, Geoffrey Williams, for a summer research
project. This project was to install a CCD on the JMU observatory telescope, with a goal
of tracking asteroids. To calculate the asteroid orbits, I decided to see if the method
developed by Parker and Sochacki could be applied to celestial mechanics. Ed said he
would try it, and succeeded beautifully, as the rest of this paper will show.

Before continuing, I again want to say what the Parker-Sochacki method can do.
Suppose you want to solve a set of n differential equations with initial conditions, such as

x'= F(x,y,z,t)

y'= G(x,y,z,t)

z'= H(x,y,z,t).

Try to write the right-hand members in such a way that if x,y, and z are polynomials in t,
then F,G, and H also give polynomials in t. To do this will require replacing non-
polynomial functions with new polynomial approximations, thus increasing the number
of variables needing solution. If you succeed, then the Picard iteration is guaranteed to
generate the Maclaurin series. The question arises "Are there some systems of
differential equations for which you cannot fulfill the required conditions?" Ed and Jim

 8

say that they do not know the answer to that question, but they have applied the method
to roughly 100 different systems, and have not yet found a system for which it fails.

IV. Celestial Mechanics
A. Parker-Sochacki Solution for the Classical N-body Problem

We now turn to the problem of high-precision computation of the coordinates and
velocities of N particles orbiting under mutual gravitation, neglecting relativistic effects.
This problem has not been previously solved exactly, and perturbation theories and
methods of averaging have provided only incomplete and approximate solutions. [3] Our
subject in this case is the solar system. First, we note that the center of mass of the three-
particle system consisting of the sun, Jupiter, and Saturn lies outside the surface of the
sun. Thus during the Jovian year, the sun moves around a region exceeding its diameter.
Therefore, the model of the system in which the sun is fixed and the planets move in
ellipses, is clearly no more accurate than about one part in ten thousand per Jovian year.
If we want to compute the orbits within one part in a billion per year, then we need to use
better computational methods. At this level of precision, perturbation theory also fails,
because the orbital elements need to be expressed as polynomials, and so many terms
need to be carried in the computation that, given the complexity of the functions, there is
no advantage in using elliptic orbits over using Cartesian coordinates.

It is fair to ask what the reasons are for requiring this level of precision. I suggest three.
The first is tracking asteroids. In this problem the most interesting cases are the non-
elliptic orbits--those in which the particle undergoes a deflection by a larger body, for it
is just these collisions which may shift orbits from safe to earth-threatening. Also, if an
object does appear to be headed near the earth, it is a great advantage to be able to predict
its trajectory more precisely.

Secondly, there may still be one or more undiscovered gravity sources in the solar
system. The anomalies of Neptune's orbit, which led to the discovery of Pluto, lost their
explanation when the discovery of Charon revealed Pluto's small mass. According to the
Astronomical Almanac, a satisfactory ephemeris for Uranus for the 1980's could be
computed only by excluding observations made before 1900. More precise
computational methods may permit higher resolution estimates of the anomalous forces
in the system. [4]

Finally, with the proliferation of computers, it is now possible for amateur and
professional astronomers to generate their own ephemerides, rather than relying on
approximation formulas and tables. Better algorithms will facilitate this.

Taking the solar system as a model for demonstrating the calculation technique, we will
assume Np planets with masses Mj = 1, ... Np, Cartesian coordinates xi,j , i = 1,2,3, and

 9

velocity components vi,j. Planet one is the sun and planet ten is Pluto. Following the
Astronomical Almanac, let M0 be the mass of the sun, G be Newton's Gravitational
Constant, and T be one earth year. There is a defined constant called the Gaussian
Gravitational Constant, k, which determines the length of the solar day as used in
astronomy.

k = 0.01720209895/day, or T = 2�/k = 365/256893 days.

This is in turn is used to define the Astronomical Unit, A, which is approximately the
radius of the earth's orbit around the sun:

A D GM k= (/) ./2
0

2 1 3

Effectively, you can think of A as an historical unit:

A = 1.32712440 x 1020 m (24)

and 2π/k as the number of days in the orbital period of an object of negligible mass
orbiting a much greater mass at that distance. In this calculation, it is assumed that

D = 1 day = 86400 seconds, and GM0 = 1.32712440x1020 m2/s3

In this case, the natural unit of time is 1/k = T/2π.

In these units, the equations of motion can be written

dx

dt
v

ij
ij=

, where i = 1,2,3, and j = 1,..,Np (25)

dv

dt
m x x s

ij
k ik ij

k j

N

jk

p

= −
= ≠
� () /

,1

3

 (26)

where sjk is the separation between particles k and j:

s x xjk ik ij
i

= −
=
�(()) /2 1 2

1

3

. (27)

 In (26), mk is the mass of the kth planet divided by the mass of the sun. The term sjk
3

in the denominator of (26) makes the integrals unsolvable. Therefore, following Parker
and Sochacki, we replace these factors with a polynomial approximation: Let this
polynomial be

u sjk jk= 1/
. (28)

For convenience, define ukk=0 for all k. We now need an equation which gives ujk

as a function of time. From the chain rule,

du

dt
s

ds

dt
u

ds

dt
jk

jk
jk

jk
jk= − = −−2 2 .

 (29)

From (27),

 10

ds

dt
u x x v v

jk
jk ik il ik ij

i

= − −
=
� ()()

1

3

 (30)

The sum in the right side of (30) has the units of action divided by mass, so we will
denote it by Ajk. Then (29) and (30) can be combined to give

du

dt
u A

jk
jk jk= − 3

 (31)

We now have a closed set of differential equations to use in the Picard iteration, at the
price of having increased the number of unknowns. For a solar system of 10 planets we
initially needed to calculate 30 position coordinates and 30 velocity components, for a
total of 60 unknowns. To this we have added 55 inverse separations, for a total of 115
unknown variables. This is a substantial increase, but it is a small price to pay for the
benefits of the Picard iteration.

As in the previous example, we can now derive the expressions for calculating the
coefficients of the terms in the Taylor series. We assume that we know the coefficients
for terms up to order m-1, and want to find the coefficients for terms of order m.

Let

x x tij ijl
l

l

m

=
=
�

0 (32)

and define coefficients vijl,, sjkl, and Ajkl for the velocity, separation, and action similarly.
From (25) we get

x v mijm i j m= −, , /1 (33)

From (26),

v m x x u mijm k ikl ijl j k m l

l

m

k

N p

= − − −
=

−

=
�� ()() /, , 1

3

0

1

1 (34)

For the four-factor product in (31), it is easier to simplify it by breaking the
multiplication into smaller steps. Define the coefficients of the square and cube for the
inverse separation as follows:

u u ujkm jkl

l

m

j k m l2
0

=
=

−� , ,
 (35)

and

u u ujkm jkl j k m l

l

m

3 2
0

= −
=
� , ,

. (36)

 11

From the definition of Ajk , and the expression (19) for a coefficient of the product of
two series, we get

A x x v vjkm ijl ikl i j m l i k m
il

m

= − −− −
==
�� ()(, , , ,)1

1

3

1 (37)

Then from (31),

u u A mjkm jkl j k m l

l

m

= − −
=

−

� 3
1

1

, , /
. (38)

Equations (32) through (38) constitute the Picard Iteration. It can be implemented with
less than 50 lines of code in Basic, Fortran, or C, as shown in the following example,
written in Power Basic [5].

 12

Table I: Basic Source Code for Solving the N-body Problem

Note: variables beginning with I through L are integers.

PolyGen: ' Generate the polynomials.
for m = 1 to nt
 mm1 = m-1
 um = 1./m
 for j = 1 to Np
 for i = 1 to 3
 xx(i,j,m) = vv(i,j,mm1)*um
 a = 0
 for k = 1 to Np
 b = 0
 for L = 0 to mm1
 mm1mL= mm1 - L
 b = b + (xx(i,k,L) -xx(i,j,L))*u3(j,k,mm1mL)
 next L 'Note u3(j,j,m) = 0
 a = a + b*amass(k)*um
 next k
 vv(i,j,m) = a
 next i
 jm1 = j-1
 for k = 1 to jm1
 a = 0
 for L = 0 to mm1
 mm1mL = mm1-L
 a = a - u3(j,k,L)*aa(j,k,mm1mL)
 next L
 u1(j,k,m) = a*um : u1(k,j,m) = a*um
 a = 0
 for L = 0 to m
 mmL = m - L
 a = a + u1(j,k,L)*u1(j,k,mmL)
 next L
 u2(j,k,m) = a : u2(k,j,m) = a
 a = 0 : b = 0
 for L = 0 to m
 mmL = m - L
 b = b + u2(j,k,L)*u1(j,k,mmL)
 for i = 1 to 3
 a = a + (xx(i,j,L) - xx(i,k,L))*(vv(i,j,mmL) - vv(i,k,mmL))
 next i
 next L
 aa(j,k,m) = a : aa(k,j,m) = a
 u3(j,k,m) = b : u3(k,j,m) = b
 next k
 aa(j,j,m) = 0 : u1(j,j,m) = 0
 u2(j,j,m) = 0 : u3(j,j,m) = 0
 next j
next m
return

 13

 Laurence G. Taff, in his excellent text Celestial Mechanics, A Computational Guide
for the Practitioner, writes the Newtonian equations of motion for N bodies orbiting
under mutual gravitation, and then comments, "No compelling evidence exists that a
successful numerical solution of Eq. 12.1 has even been carried out. Moreover, much
evidence to the contrary does exist." The preceding 47 lines of code demonstrate that
Taff's statement is no longer true. What is stunning is the simplicity of the solution.

B. Tests of the Algorithm

 A computer program was written for a PC-type computer in compiled Basic, [5], using
extended-precision floating point arithmetic (18-digit accuracy). Three tests of the
algorithm were run. The first test was to check the behavior of a two-particle system.
The result was the expected elliptic orbits.

 The second test was to use solar system data taken from page E3 of the 1991 and 1992
editions of the Astronomical Almanac [6]. These tables give the position and velocity,
relative to the sun, for each of the planets in the solar system, at two times separated by
200 days. In this test, polynomial approximations were generated using the Parker-
Sochacki method for the energy and angular momentum of the solar system. The Taylor
series coefficients for the center of mass-position, momentum, angular momentum, and
energy were displayed. The results are shown below in Table 2.

Table 2. Taylor Series Coefficients for Coordinates and Momentum of Center of Mass of
the Solar System

m x y z px py pz

0 9.95E-19 3.01E-22 4.00E-19 5.01E-20 -3.55E-19 3.65E-20

1 1.01E-22 3.64E-21 5.01E-20 1.02E-21 3.65E-20 8.29E-22

2 1.82E-21 5.54E-22 5.12E-22 3.18E-22 4.14E-22 1.07E-22

3 3.20E-23 5.56E-22 1.11E-24 2.93E-22 1.07E-22 5.94E-23

4 1.39E-22 4.45E-22 7.32E-23 6.34E-21 1.49E-23 3.27E-22

5 1.68E-22 2.12E-20 1.78E-21 3.08E-21 1.62E-22 4.10E-21

6 3.53E-21 4.32E-21 1.31E-21 4.62E-21 1.19E-21 9.22E-21

7 3.61E-21 1.15E-21 2.16E-21 2.91E-20 1.37E-21 3.56E-20

8 1.44E-22 7.12E-19 3.63E-21 5.10E-20 4.44E-21 3.39E-20

9 7.56E-20 3.35E-19 5.75E-21 4.55E-19 3.08E-21 7.51E-19

10 4.86E-20 7.65E-19 4.98E-20 5.50E-18 6.01E-20 2.41E-19

 14

Table 3. Taylor Series Coefficients for the components
of the total angular momentum, Lx, Ly, Lz and energy E.

 m Lx Ly Lz Energy

 0 9.288E-05 -1.379E-03 3.255E-03 -1.123E-04

 1 -3.438E-22 2.723E-21 -5.302E-21 -4.765E-22

 2 -2.729E-23 1.969E-22 7.079E-23 -1.800E-21

 3 -2.484E-22 1.147E-22 -4.129E-22 -2.541E-21

 4 7.794E-22 -1.508E-21 1.116E-21 3.494E-21

 5 2.836E-21 -8.924E-24 3.044E-21 1.016E-20

 6 -1.456E-21 7.495E-22 2.415E-20 2.033E-19

 7 -4.533E-20 2.402E-20 -6.175E-20 -3.930E-19

 8 -5.526E-20 -5.399E-20 -1.891E-19 -1.084E-18

 9 2.662E-19 5.654E-20 -3.556E-19 -4.554E-18

10 1.024E-18 -6.606E-19 1.262E-18 1.214E-17

Examining Tables 2 and 3, we see that the position and coordinates of the center of mass
remain zero, within the digital accuracy of the computer. In the columns showing the
angular momentum coefficients, we note that the initial values of angular momentum are
mostly in the y and z directions. The y component is substantial since the z axis points in
the direction of the earth's axis, which is not perpendicular to the plane of the ecliptic.
The m=1 terms are about 10-18 of the m=0 terms, and are non-zero due to round-off error.
As higher order-terms are calculated, the round-off error propagates and grows until by
term 10, the angular momentum coefficient is about 10-15 of the m=0 term, and the
energy is about 10-13 of the m=0 value.

As a third test of the algorithm, the program was used to propagate the solar system
between the two dates given in the table shown in the 1992 Astronomical Almanac [6].
This table, described as "low precision", gives the velocity and position coordinates of
the planets at two dates 200 days apart. The largest inconsistency in this table appears to
be for the position of Venus, with an inconsistency of about 2 x 10-6 AU or 300 km. That
is, the Parker-Sochacki algorithm was used to propagate a solar system from the first date
to the second, and the positions and velocities from the Almanac table and from our
computer results were compared for the second date. When our code ran at very high
precision, its highly self-consistent results disagreed with the Almanac's coordinates for
Venus by about 2 x 10-6 AU. We decided to experiment with the polynomial degree and
step size to give an ephemeris of about this precision. The most inaccurate resulting
coordinates were found to be in the position of Mercury. Therefore, we sought the
combination of polynomial degree and step size (200 days / # of steps) which would give
the shortest computation time, and a precision of 300 km or better. The computer used

 15

was a PC with an 133 MHz 80586, roughly equivalent to a 100 Mhz Pentium. We also
repeated this experiment for a precision of 10-7 Au or 15 km. The results are shown
below in Table 3. The running times were found to vary by a factor of roughly 2,
perhaps due to pipelining in the microprocessor. The fastest times are shown.

Table 4. 200-Day Computation times for a 100Mhz Pentium, as a Function of
Polynomial Degree and Step Size for Two Different Precisions

300 km Precision, 15 km Precision

Poly'l
Degree

Min #
steps

Step size
(days)

Comp'n
time (secs)

Poly'l
Degree

Min #
steps

Step size
(days)

Comp'n
time (secs)

5 244 0.8 9 12 38 5.3 14

6 107 1.9 8 14 37 5.4 11

7 83 2.4 8 15 35 5.7 9

8 62 3.2 6 16 34 5.9 10

9 44 4.5 7 18 30 6.7 14

10 38 5.3 7

11 33 6.1 8

12 33 6.1 7

13 33 6.1 10

The point of this table is to see that high levels of precision can be obtained in short
computation times, and that the most rapid computation is generally obtained by using a
higher-order polynomial, than is conventionally used in other methods.

In 1889, a prize for the best mathematical paper answering one of four questions, was
offered in honor of the sixtieth anniversary of the King of Sweden. One of the questions,
posed by Weierstrasse, was this.

"For a system of arbitrarily many mass points that attract each other according to
Newton's laws, assuming that no two points ever collide, give the coordinates of the
individual points for all time as the sum of a uniformly convergent series whose terms are
made up of known functions.... This problem, whose solution would considerably extend
our understanding of the solar system, would seem capable of being solved using
analytical methods presently at our disposal... Unfortunately, we know nothing about
[the deceased Dirichlet's] method... We can nevertheless suppose, almost with certainty,
that this method was based not on long and complicated calculations, but on the
development of a fundamental and simple idea that one could reasonably hope to recover
through persevering and penetrating research...". [7]

 16

The prize was won by Poincaré for the development of phase-space mechanics. It seems
possible that the lost method of solving differential equations, which Dirichlet took with
him to his grave, was the Parker-Sochacki method. Had this method been entered in the
1889 contest, it would have won the prize.

V. Conclusions
Looking ahead, there are several directions, both in the fields of celestial mechanics, and
in the area of general computation, which appear promising. For celestial mechanics,
these might include improved planetary ephemeredes, searching for an explanation for
the anomalies in the orbits of Neptune and Uranus, proliferation of desk-top software to
assist astronomers, and precision computation of the orbits of asteroids.

The method needs to be extended to include lowest order relativistic effects for Mercury,
and to include the effects of the larger moons on their host planets. The relativistic
effects on Mercury can probably be simulated by a quadrupole (or oblateness) term in the
sun's field. The planet-moon systems can be handled by first finding the orbits of the
planets in the solar system, treating each planet-moon system as a point, and then going
back and recalculating the positions of the moons and their host planets as a two-body
(earth), or five-body (Jupiter), system with the sun and other planets as a background
field. This should prove feasible for projections of a few centuries into the future.

The Parker-Sochacki algorithm can also be used to check various methods of averaging,
such as the simplectic method and other statistical methods. If implemented with parallel
processors, it could even be used for direct high-precision orbit computation over periods
of several tens-of millions of years, for a system of ten particles.

What are the intractable problems? Comets appear to be unsolvable, because of the
unpredictable forces caused by vapor emissions. Chaos is also still present--an
immeasurably small change in the velocity or position of an asteroid may cause it to pass
on the opposite side of a planet centuries later. The effects of ocean tides on the moon's
position over eons of time would also seem difficult if not impossible, since this is
affected by glaciation as well.

In the area of general computation, the Parker-Sochacki method is clearly a fertile ground
for parallel computation. In the celestial mechanics problem, the mth coefficient for all
115 unknowns could have been computed in parallel. Widespread adoption of the
method could provide a substantial motivation for the development of parallel processing
hardware.

It is hard to overstate the importance of the Parker-Sochacki method. It has solved the
problem of celestial mechanics, which has occupied many of the greatest minds of
mathematics for over two centuries, as far as it every will or can be solved. But the

 17

method has much wider application. It may be the greatest advance in the solution of
differential equations since the development of orthogonal functions. Coupled with the
modern computer, it may have more impact on the solution of dynamical systems than
any other method in the history of mathematics.

VI. Acknowledgments
 In addition, of course, to Ed Parker and Jim Sochacki, I would like to acknowledge
Laurence Taff for his honest exposition of the challenges of celestial mechanics, P.
Kenneth Seidlemann for encouragement and consultation, and Geoffrey Williams for
assistance in developing the computer codes. This work was supported by the James
Madison University Foundation and the Robert LaRose Fellowship program.

References

[1] G. Edgar Parker and James S. Sochacki, "Implementing the Picard Iteration", Neural,
Parallel, and Scientific Computations 4 (1996), 97-112.

[2] E. Picard, "Traite D'Analyse", Volume 3, Gauthier-Villars (1922-28).

[3] Laurence G. Taff, Celestial Mechanics, A Computational Guide for the Practitioner,
John Wiley and Sons, New York, 1985.

[4] The Astronomical Almanac for the Year 1991, U.S. Government Printing Office,
pL1.

[5] Available from Power Basic, 316 Mid Valley Center, Carmel, CA 93923, email
info@powerbasic.com, URL www.powerbasic.com. This is an excellent technical
programming language for DOS-based personal computers.

[6] Astron. Alm., pE3.

[7] Newton's Clock, Chaos in the Solar System, Ivars Peterson, W. H. Freeman and
Company, New York, 1993.

[8] J. Wisdom and M. Holman, Astron. J. 102, 1528 (1992).

