IMPLEMENTING THE PICARD ITERATION

G. Edgar Parker
James S. Sochacki

Department of Mathematics
James Madison University
Harrisonburg, VA 22807

Implementing the Picard Iteration
Neural, Parallel & Scientific Computations
March 1996,Volume 4,Number 1, pp. 97-112

ABSTRACT:

In this paper we show that the Picard Iteration can be used to generate the Taylor
Series solution to any ordinary differential equation on R™ that has a polynomial generator.
This is accomplished by embedding evolutions into autonomous problems and translating
initial conditions to zero. We present a definition that permits extensive use of a technique
from A. Gibbons and R. Moore and prove a theorem which shows the generality of using
polynomial generators. The power of the theory in machine implementation is illustrated.

I. INTRODUCTION

The ordinary differential equation with generator F : R*T!1 — R"

y'(t)=F(t,y(t);y(T) =z

is equivalent to the integral equation

y(t):x—l—/;Fo(I,y),

where I represents the identity function on R. The Picard iteration [9] (modeled from
the integral equation),

t
for t = Tiyu(t) =@ and yur () =2+ [Fo(Iyn)n>1,
T

must converge to y on some interval containing T whenever F is locally Lipschitz.
For F analytic, the sequence of Taylor Polynomials,

t—=1T)"
) = 2+ Y ()= T) + oy)
must also converge to y on some interval containing T. The computational difficulties
associated with computing the Taylor coefficients (especially for n > 1 and/or F
nonlinear) are well documented. The Picard iteration is typically dismissed in the

literature as impractical. !

!See, for instance, [2] p.89, 1992, ” ... As a rule, it is impossible to compute explicitly more than
a few members of the (Picard) sequence, therefore the limit function can only be found in rare cases.

»

We present five theorems which show that, in fact, a proper modification of the
Picard iteration can be used to generate or approximate the Taylor polynomials for
the entire class of problems with analytic F'. Furthermore, the indicated processes are
well suited for computer implementation. Schemes for symbolic and numerical codes
are presented. The schemes are applied to some classical problems. Some structural
examples are considered in light of this theory.

II. DEFINITIONS AND THEOREMS FOR A MODIFIED PICARD

METHOD

In order to realize the full impact of the theory on applications it is important
to have a precise definition for a polynomial on R™. We offer here a definition that
translates directly into a (numerical) computing environment.

Definition 1
Suppose that n € N. Let
E={f|f:{k|keNand k <n} - NU{0}},
and suppose that
P:R"— R
The statement that

P is a polynomial function on R"

means that there are

T:{k|keN and k <n}— 27
and
c:{(k,q) | keN and k<n and qeT(k)} - R— {0},

and there is

v € R" so that if & < n, then if x ¢ R”,

n

P(z) =ve+ Y, clk,q)]] x;-](i).

qeT (k) i=1

Here, II,P(x) denotes the projection of P(z) into the k™ component and v (z;)
denotes the projection of v (z) into the k' (i*) component. Note that 1" selects the
exponents of the factors of the individual terms and that ¢ selects the coefficients for
the terms.

The conclusion of Theorem 1 involves a comparison of coefficients for the polyno-
mials which are the Picard iterates. To focus on this comparison we will denote the

coefficient of the " power of the k™ component of the s iterate, ps, as ajs;; that
is,
ji |
ips(t) = 2 + > ap st
i=1

Theorem 1

Suppose that P : ®" — R” is a polynomial. Let = ¢ R".
Define

m={({t,w):t>0 and w =z},
and if s € N, define
psr1={(t,w):t>0 and w=ux+] Pop,}.
Then if re N, m >r, k<n,

Jr

(epr) (t) = g + Y aprit’

i=1
and
jm .
(Ipm) () = 2 + D agm it
i=1
then if [< r,
Qk,rl = Qkm,l-
Note jr <]m
Proof

Observe that if s € N, each component function of p, is a polynomial on R because
each component function of the generator P multiplies numbers times powers of
components of the previous iterate. The induction is guaranteed by the fact that
each component of p; is a constant function and thus a polynomial on .

At each step of the iteration, in any component each term from the integral in the
iteration, because of the power rule, has exponent at least 1. Thus the constant term
for any pair of iterates in corresponding components is the appropriate component of
the initial condition, and the induction is begun.

P is given to be a polynomial on R", so let T, ¢ and v define P as described in
Definition 1, that is, for £ < n and y ¢ R"

MP(y) =ve + > elk,q) [i
qeT' (k) i=1

For the purpose of the inductive argument, let r ¢ N so that

Jr . Js .
if s>r, k<n,(Ip,)(t) =2k + Y aprit’, and (Tps)(t) = zp + Y g4t

i=1 =1

then if m <7, Gkym = Qg sm-

(This has been established for r = 1.)
We will now establish the result for » +1. Let s > r+1 and consider p,,; and p;.
For k <n, if t > 0,

n

H/cpr+1()—$k+/vk+z (k,q) [T (Mip,) @,

geT (k) i=1

and

Hkps()—frk+/vk+z (k,q) [T(Mps—1)?
=1

qeT'(k)

Again letting I represent the identity function on

n

Hkpr+1()—$k+/vk+ Z (%, q) H $z+zazrdf +Zazrdf ()
i=1 d=r

q€T (k)

and

Js—1

n r—1
Mps(t) =i+ [et Y elha) 1+ X aismral) + 3 aisoral)
=1 d= d=r

qeT'(k)

By the induction hypothesis if £ < n,z;, + ZQ;} aky,ﬂydld =z, + EQ;} akys,l,dld.
Denote each such function by M.
From the Binomial Theorem (C, s represents the appropriate binomial coefficient)

n

q(4)
Hkp,«+1()—l‘k+/ U + Z k ,q H(Mq +ZC qu Za“«dfd
=1 b=1

qeT'(k)

and

]sl

n q(2)
Hkps()—$k+/vk+ kQHMq +ZC qu Zazs ldI
qeT' (k) i=1 =

Every term of Eb . C)qu() (X0 aipqI%)? and
Zb 1 qu(0-b (e a,,s_l,dfd)b has degree at least . Therefore, the terms of both
Hkp,nﬂ() t) and Tl;p,(t) of degree r must come from integrating v+ ey (K, @) TTi=, M)
which is the same in the integrand of both p,,;(¢) and ps(¢). Thus the induction is
continued. O

It should be noted that for efficiency in applications the proof shows that to
compute the term of power r, only those terms of power less than r need be carried
forward in the iteration.

Theorem 1 guarantees that, for an ODE with an autonomous polynomial generator
and initial conditions given at 0, the 0 through s — 1 degree terms in the s Picard
iterate (denoted by p, in the proof) are the corresponding terms in the s degree
Maclaurin polynomial for the solution to the ODE.

We now present theorems that show how to broaden the applicability of Theorem
1 to evolution equations, ODE’s with initial conditions not given at 0, and to ODE’s
with analytic generators that are not polynomials.

Initially, we consider evolution equations and establish connections among the
technique suggested by Theorem 1, Picard Iteration, and Taylor Series. The technique
utilizes the classic embedding of an evolution in an autonomous problem. (See for
instance Goldstein [5].)

Theorem 2

Let P be a polynomial on "+ and y be a function into R" so that if ¢ > T and
t € D(y'), then

y'(t) = P(t,y(t)), y(T) ==
Let u be a function into R so that if ¢ > 0 and ¢ € D(u'), then

u'(t) = (1, P(u(?)), u(0) = (T,z).

Define
m={({t,w):t>T and w =z},
and if s € N,
psr1={(t,w):t>T and w=2a+ [LPo(I,p,)}.
Define
¢ ={(t,w):t>0 and w=(T,x)},
and if s € IV,

gss1 = {(t,w) 11> 0 and w = (T,2) + f5(1, P o (q:)}-
Then if s € N, Ilsqs(t — T') = ps(t).
Proof
From the embedding, y = {(IT u(t), [yu(t)),t > 0}. Therefore if ¢ > T, then

y(t) = Iu(t — T). We observe that if t > T,1lyq,(t —T) = pi(t) = =. For the
purpose of induction, suppose that for ¢t > T, Ilyqs(t — T) = ps(t).

tn(t) = (T,)+ [[(1.Pog)

Every iterate produces I[I,q, = I 4+ T', thus

t
Mygssr(f) = 7 + / Po(I+T 1g,).
0

Therefore,

t—T
HZQerl(t - T) =T+ 0 Po ([+ T7 H2Qs)‘

Shifting the interval of integration

t t
Mygsi1 (t—T) :x+/T Po((I+T)o(I-T), Tsgso(I—T)) :x+/T Po(I, Tygs0 (I —T))
From the induction hypothesis, [Toq; o (I — T) = p,. Thus,

t
Mogusa(t=T) =+ [Po(l,p) =pos(d)

and the induction is continued.O

Since Theorem 1 guarantees that the Maclaurin Series is generated by Picard
iteration, the embedding in the proof of Theorem 2 now gives the Taylor Series by the
substitution ¢ —7" in the Maclaurin series for the second component. Furthermore, the
fact that Ilyqs(t —T') = ps(t) means that the Picard iterate must telescope to produce
the first s terms of the Taylor Series. Thus to get these s terms the ENTIRE Picard
iterate must be computed. On the other hand, from Theorem 1 using the embedding,
only the first s terms must be computed. Furthermore, from the proof of Theorem 1,
the computation can be further simplified since only those terms known to be terms
of the Maclaurin Series for the solution need be used to continue the iteration.

Many important applications involve ODE’s with polynomial generators (For ex-
ample, Lorenz, van der Pol, Volterra-Lotka, the Logistic equation). Many other
analytic problems, however, do not (For example, Duffing, the N-body problem, the
torus equation). With the following definition and theorems we formalize a technique
from Gibbons [4] and Moore [8] to extend the applicability of Theorem 1 to a broad
class of problems with analytic generators.

Definition 2
Suppose that y : [0,7) — R is analytic. The statement that

y is projectively polynomial

means that there is n € N, a polynomial P on ", and w so that w’' = P ow for which
there is £ < n so that y = [T,w.

To illustrate Definition 2 consider sine. sin’ = I2 o (1 — I2) o sin; sin(0) = 0.
Note that I% o (1 — I?) is analytic around 0, but not polynomial. However, sine is
projectively polynomial since sin’ = cos and cos’ = —sin and thus there exists the
ODE with polynomial generator P(u,v) = (—v,u) for which sine is the projection
into the first component of w defined by v’ = P o w; w(0) = (0, 1).

Theorem 3

Suppose that each of f and ¢ is projectively polynomial. Then f + g, fg, and
f o g are projectively polynomial.

Proof

(f+9)=f+4d"
(f9)' =f9+ 19"
(fog) =foyg.
To complete the proof, the component of the generator into which f or g is pro-

jected replaces f’ or ¢' as appropriate and the polynomial equations into whose solu-
tions f and ¢ are projected are appended. O

Theorem 4

The projectively polynomial elements of Cjg 1) are dense in Cig,y).

Proof
Consider f = ag + X7_, arI*.

(ag + Z akI’“)’ =a + Z kaka_l

k=1 k=2
Let fk = Ik

fr=a1+ > kayfr1.
k=2
St

For 1 <m < n,

f7ln = mfm—l-

The fact that the polynomials are dense in Cjy ;) completes the argument. O
Theorem 5

Suppose that A is a convergent power series on R”, that B is a polynomial which
g

is a partial sum for A, that x ¢ 7,0 < T < =—, and y and w are functions so that

\BlLip’
if t € [0,T7,
y'(t) = Aoy (t) and y(0) = =;
w'(t) = Bow (t) and w(0) = x.
Then if ¢ € [0,T7,

(A= B)oy|T

Proof

Let A, B, x,y,w and T be as in the premise.
Let s € [0, 7] so that |y — w|sup = ||y(s) — w(s)||. Then if t € [0, T,

ly(t) = w@®] < [ly(s) —wls)]]

Since
/(y’—w’)z/ Aoy—Bouw,
0 0
ly(s) = w()l| < [1Boy=Bowlu+ [(4=B) oyl
Thus
v = 0lp < [1Bluily = wlop + [1A= B) 0yl
and

[y — wlsup < [Blriply — wlsupT + (A = B) 0 ylsupT
Subtracting, dividing by 1 — T'|B|Li,, and applying the first inequality, then

(A= B) oylsupT

In the event we were to have an analytic generator which was not projectively
polynomial, 2 Theorem 5 allows us to use an approximating problem with a polyno-
mial generator to approximate solutions. The proof of Theorem 4 allows us to replace
this approximating equation with an equivalent system of lower degree.

O

ly(t) = w(®)]] <

ITI. SOME APPLICATIONS

We present examples that use our modified Picard method and demonstrate the
power and flexibility of polynomial projections. All the presented Taylor polynomials
are generated using a single code that implements our modified Picard method.

Example 1: (Milne [7])

Milne offered the following two examples to illustrate the impracticality of the
Picard iteration. (To see that this attitude has not changed, recall Boyce & DiPrima’s
more recent comment given in the Introduction.)

Milne notes that if y;, is the £ Picard iterate for the equation

y(t) =1t —y(t)% y(-1) =0
then ’It is apparent that the labor of obtaining successive approximations increases
rapidly. Evidently ... ys (is) of degree 63

2 At present the authors have no example of an analytic problem to which the method does not
apply.

Imbedding the evolution so that Theorem 1 applies:

It follows that

y={(w(t),v(®)|t e D)}
Using only those terms of the Maclaurin Polynomial approximating the solution to
continue the iteration, we get

wi(t) = —Lwg(t) = =1+t k>1,

v(t):()

ttt

= —vi =t - — =
/Ow3 v3 +2 5

12 t4 t5
= [t ompr =i L

2 5’
¢ I? It
vo(t) = [(wE = (= 5+ 01+ 5)%) =
0 2 2
) t4 t5 t6 t? t8 t9 th tll
R e

2 5 6 5 20 36 50 275
Thus the 5 degree Taylor polynomial for y is

(t+ 1D (t+1)°

2 5
(_(tTH)G is also a term due to the special properties of the problem, but is not
guaranteed by the proof to be a term of the Maclaurin Series.)

In way of contrast, from Theorem 2 this polynomial can be gotten by telescoping
(not a trivial computational task itself!) the 6" Picard iterate for the original equa-
tion, a 63" degree polynomial, and then taking the first 5 powers. However, note
the savings in calculation; to continue the Picard iteration a 63"? degree polynomial
must be squared, whereas to continue our process a 5" degree polynomial is squared.
Therefore, the savings in calculation is exponential.

(t+1)— (t+1)*+

y'(t) = sin(t) + cos(y(t)); y(0) =0

Milne points out that the integral that yields the third Picard iterate cannot be
obtained by elementary methods. However, sin + cos o y is projectively polynomial,
and we can make the projection w = sin,v = cos,z = cosoy,x = sin o y.

3We have included the third degree term of the Maclaurin Series to conform to the proof of
Theorem 1. In practice this is not necessary since the next iterate simply repeats the previous step.

w'(t) = v(t); w(0) =
v'(t) = —w(t); v(0) =
y'(t) = w(t) + 2(t); y(0)=0
Z(t) = —2(t)(w(t) + 2(t)); 2(0) =1
() = 2(t)(w(t) + 2(t)); #(0) =0

has a second degree generator and thus the Maclaurin series is easily generated. Note
that determining the Maclaurin Series by the classic textbook method of differentiat-
ing the generator is comparatively more computationally expensive for even moderate
powers.

Example 2: A Stiff System

y1(t) = —11y1(t) 4+ 10ya(t) + dcos(t) — 0.25sin(t); y1(0) = 2.25
ys(t) = 10y1(t) — 11ya(t) — 9cos(t) + 0.25sin(t); y2(0) = 0.75

The eigenvalues of this system are —1 and —21. The eigenvalue —21 effects the
stability and the eigenvalue —1 has an effect over time.

An equivalent autonomous problem with polynomial generator for the above sys-
tem is

y1 = —1ly; + 10ya + 5y3 — (0.25)y4; 31(0) = 2.25
ys = 10y; — 11yo — ys + (0.25)y4; y2(0) = 0.75
ys = —ya; y3(0) = 1.0
Yy = y3; ya(0) = 0.0.

We applied Runge-Kutta of order 4 to each of these systems. We applied our
modified Picard scheme to produce fourth and eighth degree Taylor polynomials for
the autonomous problem. The same code was used to generate both of these Taylor
Polynomials; to get an eighth order scheme for Runge-Kutta a new algorithm must
be used and thus a new code must be written.

The largest increment for which the Runge-Kutta scheme of order 4 on the original
system gave meaningful results was .0125. Smaller increments did not improve the
results. The impact of the polynomial projection is noticeable by observing that the
Runge-Kutta scheme of order 4 on the autonomous problem gives meaningful results
for an increment of 0.05. The Taylor Polynomials are computed for an increment of
0.1.

The following graph displays the results in comparison to a graph of the closed-
form solution for 0 < ¢ < 1.5.

- T T F o~
s &
37 *
-
05 M ,
+ 7
+ 7
e
+
R
&
ot g i
. + &,
+
.‘ +J§//
& //
©
_0.5% . ﬁ+// 4
g® 4
4
+7
4
+
-1+ 4 4
+
+
I
-15 I I I I I
-0.5 0 0.5 1 1.5 2 25

00000 Graph of Closed-Form Solution

..... Graph of 8 Degree Taylor (h = 0.1) *

Fxkkk Graph of 4" Degree Taylor (h = 0.1)

++4+++ Graph of 4" Order Runge-Kutta for the projected system (h = 0.05)
- - - - Graph of 4" Order Runge-Kutta for the original system (h = 0.0125)

Example 3:

This example illustrates the effects of choosing different projections for the gener-
ator and of choosing higher degree relative to smaller increment, and shows how our
methods provide better accuracy than NDSolve, the built-in numerical ODE solver
of Mathematica.

Consider

V1) = =+ 9(0) = 1

By projecting the generator using y, as the identity on and y3; as y 3, we get
the autonomous system
v =y +y2 y(0) =

vy = 1;42(0) = 0
yh = —3y2yi(ys + ya); y3(0) = 64.

1
4

4The graph has been extended to distinguish it from the closed-form solution.

By projecting the generator using y, as the identity on R, y3 as y 3, and y, as i
we get the autonomous system

1
Y =ys +yo; y(0) = 1

Yy = 1;42(0) =0
Yy = —3ysya(ys + y2); y3(0) = 64
i = —yi(ys + 12); ya(0) = 4.

We sought a numerical solution on [0, 1] for the original equation by applying
our modified Picard scheme to produce fourth degree Taylor polynomials and con-
tinuing the solution by using final values for one increment as initial values for the
next increment. The first projection overflows between 0.007 and 0.008. The second
projection, however, computes values over the entire interval, although the data does
not have even two-digit accuracy. Thus, for this ODE under these conditions, larger
dimension (4) with smaller degree (3) is more robust than smaller dimension (3) with
larger degree (5). Thus not only is it true that using a polynomial generator can im-
prove computational ability and/or accuracy (see Example 2), but which projection
is chosen may also affect these factors.

By decreasing the increment from 0.001 to 0.00001 we obtain agreement through
11 decimal places on [0, 1] for both fourth and eighth degree Taylor polynomials for
the second projection, a strong indication of the accuracy of the solution. Another
verification of the accuracy of our results is comparing these results with the closed
form solution to

, 1
W= w(0) = 0.25.

Analysis shows that |y(0.0001) —w(0.0001)| < 5107%. Our data displays this prop-
erty. For example, the value of w(0.0001) to 12 decimal places is 0.256167960022
and, our approximation of y(0.0001) is 0.256167964906. Running the standard ND-
Solve, Mathematica gives the approximation 0.256166029504 for y(0.0001) which is
not within the above estimate. Increasing the accuracy in NDSolve to 25 digits rather
than the default of 16 digits gives our result. Note that we bettered Mathematica’s
default accuracy with only a fourth degree Taylor Polynomial on an increment of
0.00001.

Example 4: The N-Body Problem (Birkhoff [1])

o) =y M=)

j#i &
m;(y; —y
o) = 32 "= v
j#i &
2y =y a2
j#i &

The generator is projectively polynomial. A projection for this problem with a
1

5" degree generator obtained by letting s; ; = & 7, u; = &}, v; = y}, and w; = 2] is
T = u;
Yi = v;
2, = w;
uy =y m;(x; xz-)s?,j
i
Uy = ij(y] yz-)S?,j
J#i
3
wi =D m;(z; — z)s;,
J#i
1 1 3
St = ~ %2 = x5) (ui = ug) + 2(ys = y3) (i = v3) +2(z — 2) (Wi — wy)].
This system has dimension 6N+w, since s; j = s;,;. Fortunately, the iteration

can be done in parallel. So even though memory requirements may be substantial
the time factor can be managed.

Joseph Rudmin of the Physics Department at James Madison has used the mod-
ified Picard scheme on planetary models.

Example 5:

' =ao+) ay"
k=1

Let wy = y*. An equivalent system (following the proofs of Theorems 3 and 4) is

yl =ap+ a1y + Z QWi
k=2

For k > 2,

n
w;c = kwk,l(ao + a1y + Z akwk)
k=2

Note

e (i) The system is linear in the first component.

e (ii) The generator in the first component is a factor of the generator of every
other component and need be computed only once.

e (iii) Every other component is quadratic using this as the second factor.

Thus in a parallel environment, the solution can be computed quite rapidly. There-
fore, if your generator is a Maclaurin polynomial (such as when Theorem 5 is applied)
the above substitution is effective.

Example 6: Resolvent of a Semigroup

Let T represent the semigroup on Cfo ;) with infinitesimal generator A, defined by

Alf) = f1"
For the resolvent equation,
(I=2)7(g) =f
implies
f=XMf"=g.

If g is projectively polynomial into a system with solution g and generator P, the
system

f=h
(f—9)

B o=wl =2

A
w' = —w?h
g =Pog
solves the resolvent problem and gives a computational basis from which to iterate
the resolvent such as in the Crandall-Liggett theory [3].
Example 7: Computer Generated Output

Because the implementation of the method involves only the addition and multi-
plication of polynomials and the power rule for anti-derivatives, our method can be
implemented in both numerical and symbolic environments. Consider

(', y) = (1 +y — a2®, fz), (2,y)(0) = (c,d),

the differential equation which generates the Henon Dynamical System [6].

In a numerical environment we must specify the parameters and initial conditions.
Using Henon’s values for illustration purposes, let « = 1.4, 5 = 0.43, and
(¢,d) = (0.63135448,0.18940634). We obtain

(x,y)(t) =
(0.631354 + 0.631352¢ + —0.422308¢% + 0.108082t% + 0.123738¢*,

0.189403 + 0.271482t 4 0.135741#* + —0.0605308¢* + 0.0116188t*)

as the fourth degree Maclaurin polynomial.

By working in a symbolic environment we can generate the general fourth degree
Maclaurin polynomial.

(x,y)(t) =
(c+[1+ (a)(®) +dJt + [(ac) + ((Be)/2) + (a®)(c?) + (aed)|t*+
[a/3+ /6 + (4/3)(a”)(c®) + (1/2)(aB)(c*)+
(@®)(¢') + (2/3)(ad) + (1/6)(Bd) + (4/3)(®)(¢*)d + (a/3)(d*)]t*+
[(2/3)(a®)e+ (5/12)(aBc) + (1/24)(B%)c + (5/3) () () + (7/12)(®) () 5+
(@)(€) + (4/3)(a®)(cd) + (5/12)(aBed) + (5/3) () (*)d + (2/3) (o) (d?)c]t",

o?)

2

~— o~

(a

d+ Bt +[8/2)(1 + a(c?) + d]t* + [Bc/6)(2a + B + 2(a?)(c®) + 2ad]t*+

[3/24)(1 + (3a)(c?) + d)(2a + B + 2(a?)(c?) + 2ad]t?).

This formula essentially gives us access to the entire dynamical system; the so-
lution from any initial conditions can be continued by using final values as the next
initial conditions, new initial conditions can be posed by substituting for ¢ and d, and
new parameters imposed by substituting for o and . Substituting Henon’s values
into this formula verifies that both outputs give the same polynomial.

IV. SOME QUESTIONS

Section 2 provides a link between the Picard process and Taylor’s Theorem for a
large class of linear and non-linear ordinary differential equations. However, nothing
in the theory guarantees whether or not the estimates for the Picard process, which
can be estimated a priori, hold for the Taylor polynomials which have been shown to
be truncations of the Picard iterates and are known to be truncations of the solution.
An estimate for the error in using the Taylor polynomial as an approximation that
does not depend on the n'® derivative of the solution would clearly be advantageous.
Can the link between Picard and Taylor be used to accomplish this?

We have proven that the analytic generators which are projectively polynomial
are dense in the analytic functions. Are they the set of analytic functions?

REFERENCES

[1] Birkhoff, G. and Rota, G-C. Ordinary Differential Equations Third Edition.
John Wiley and Sons, Inc. (1978).

[2] Boyce, W.E. and DiPrima, R.C. Elementary Differential Equations Fifth Edi-
tion. John Wiley and Sons, Inc. (1992).

[3] Crandall, M.G. and Liggett, T.M., Generators of semigroups of nonlinear trans-
formations on general Banach spaces, American Journal of Mathematics 93,
(1971) 265 ff.

Gibbons, A. A program for the automatic integration of differential equations
using the method of Taylor series, Computer Journal 3 (1960) 108-111.

Goldstein, J.A. An example of a nonlinear semigroup, Nieuw Archief Voor
Wiskunde 3 XXIIT (1974) 170-174.

Henon, M. A two-dimensional mapping with a strange attractor Communica-
tions in Mathematical Physics 50 (1976) 69-77.

Milne, W.E. Numerical Solution of Differential Equations Second Revised and
Enlarged Edition. Dover Publications, Inc. (1970).

Moore, R.E. Interval Analysis Prentice-Hall (1966).

Picard, E. Traite D’Analyse Volume 3, Gauthier-Villars (1922-1928).

