FORMULAE:

$$
\begin{array}{ll}
e^{i \theta} & =\cos \theta+i \sin \theta \\
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \text { for all } \mathrm{x} \\
\log (1-x) & =-\sum_{k=1}^{\infty} \frac{x^{k}}{k} \text { for } x \in[-1,1) \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k} \text { for } x \in(-1,1) \\
\frac{x}{(1-x)^{2}} & =\sum_{k=1}^{\infty} k x^{k} \text { for } x \in(-1,1) \\
\sin x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \text { for all } \mathrm{x} \\
\cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{2 k}}{(2 k)!} x^{2 k} \text { for all } \mathrm{x}
\end{array}
$$

THEOREM 1: Consider the first order, initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

and a rectangle, R, in the $x y$-plane such that $\left(x_{0}, y_{0}\right) \in R$. If f and $\frac{\partial f}{\partial y}$ are continuous on R , then there exists an interval, I, centered at x_{0}, and a unique solution $y(x)$ on I such that y satisfies the above initial value problem.

THEOREM 2: Consider the second order, linear, initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}
$$

where p, q, and g are continuous on an open interval, I, such that $x_{0} \in I$. Then there exists a unique solution $y(x)$ on I such that y satisfies the above initial value problem.

