
HOMEWORK 4 DUE: Friday, Jan. 29 NAME:

DIRECTIONS:

• STAPLE this page to the front of your homework (don’t forget your name!).

• Show all work, clearly and in order You will loose points if you work is not in order.

• When required, do not forget the units!

• Circle your final answers. You will loose points if you do not circle your answers.

Question Points Score

1 1

2 2

3 3

4 3

5 1

Total 10

Problem 1: (1 point) Calculate the second-order Taylor polynomial for f(x, y) = cosx cos y at the point
(0, π/2).

The Taylor polynomial is given by

f(x0 + h) = f(x0) +

n
∑

i=1

hi

∂f

∂xi

(x0) +
1

2

∞
∑

i,j=1

hihj

∂2f

∂xi∂xj

(x0) +R2(x0.h).

So calculating the partials of f

∂f
∂x

= − sinx cos y =⇒ ∂f
∂x

(x0) = 0,
∂f
∂y

= − cosx sin y =⇒ ∂f
∂y

(x0) = −1,
∂2f
∂x2 = − cosx cos y =⇒ ∂2f

∂x2 (x0) = 0,
∂2f
∂y2 = − cosx cos y =⇒ ∂2f

∂y2 (x0) = 0,
∂2f
∂x∂y

= sinx sin y =⇒ ∂2f
∂x∂y

(x0) = 0.

Hence
f(x0 + h) = −h2.

Problem 2: (2 points) A metal plate has the shape of the region x2 + y2 ≤ 1. The plate is heated so that
the temperature at any point (x, y) on it is indicated by

T (x, y) = 2x2 + y2 − y + 3.
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Fine the hottest and coldest points on the plate, and the temperature at each of these points (Hint:
Parametrize the boundary of the plate in order to find any critical points there.)

Let us define U =
{

x ∈ R
2 | ||x|| ≤ 1

}

as the disc centered at the origin of radius 1. Then the boundary

∂U =
{

x ∈ R
2 | ||x|| = 1

}

. Let us first consider the critical points of T (not restricted to U). These are
given when

Df(x) = 0,

that is, when
(

∂T

∂x
,
∂T

∂y

)

= 0=⇒
{

4x = 0 =⇒ x = 0,
2y − 1 = 0 =⇒ y = 1

2
.

Notice, the point x0 =
(

0, 1

2

)

∈ U − ∂U (i.e. in U , but not in the ∂U). Now let us consider the boundary,
which can be parametrized by

c(t) = (sin t, cos t) ,

with 0 ≤ t ≤ 2π. To locate the critical values of T on ∂U , it suffices to locate the maxima and minima of

g(t) = T (c(t)) = 2 sin2 t+ cos2 t− cos t+ 3.

Setting dg
dt

= 0, we find

sin t (2 cos t− 1) = 0=⇒
{ sin t = 0 =⇒ t = 0, π

or
cos t = 1

2
=⇒ t = π

3
, 2π − π

3
.

So examining the values of T for critical values internal to U , we have

T

(

0,
1

2

)

= 2.74,

and for critical values on ∂U , we have

t = 0 =⇒ T (0, 1) = 3,

t = π =⇒ T (0,−1) = 5,

t =
π

3
=⇒ T

(√
3

2
,
1

2

)

= 4.25,

t = 2π − π

3
=⇒ T

(

−
√
3

2
,
1

2

)

= 4.25.

Hence the maximum is achieved at the point (0,−1) on the boundary, and the minimum is achieved at the
point

(

0, 1
2

)

in the interior of U .

Problem 3: (3 points) Suppose the cone z2 = x2 + y2 is sliced by the plane z = x + y + 2 so that a conic
section C is created. Use Lagrange multipliers to find the points on C that are nearest to and farthest from
the origin. (Hint: Think about the shape of C. What does it look like?).

The problem is to find the minimum and maximum distances from (0, 0, 0) of points (x, y, z) on C. For
algebraic simplicity, we may look at the square of the distance, rather than the actual distance. Thus, we
desire to find the extrema of

f(x, y, z) = x2 + y2 + z2,
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subject to the constraints

g1(x, y, z) = x2 + y2 − z2 = 0,

g2(x, y, z) = x+ y − z = −2.

The constrained critical points (x0, y0, z0) must statisfy

▽f(x0, y0, z0) = λ1 ▽ g1(x0, y0, z0) + λ2 ▽ g2(x0, y0, z0),

as well as the two constraint equations. Thus, we must solve

2x = 2λ1x+ λ2,

2y = 2λ1y + λ2,

2z = −2λ1z − λ2,

x2 + y2 − z2 = 0,

x+ y − z = −2.

Eliminating λ2 from the first two equations yields

λ2 = 2x− 2λ1x = 2y − 2λ1y,

which implies
2(x− y)(1− λ1) = 0.

Therefore either x = y or λ1 = 1. The condition λ1 = 1 implies immediately that λ2 = 0, and the third
equation in the system becomes 2z = −2z=⇒ z = 0, then x = y = 0 from the fourth equation. However,
(0, 0, 0) is not a point on the plane z = x+ y+ 2. Thus, the condition λ1 = 1 leads to no critical points. On
the other hand, if x = y, then th constraint equations (the last two) become

2x2 − z2 = 0,

2x− z = −2.

Substituting z = 2x+ 2 yields
2x2 + 8x+ 4 = 0,

whose solutions are x = −2±
√
2. Therefore, there are two constrained points:

a1 =
(

−2 +
√
2,−2 +

√
2,−2 + 2

√
2
)

,

a2 =
(

−2−
√
2,−2−

√
2,−2− 2

√
2
)

.

We can check that f(a1) = 24−16
√
2 and f(a2) = 24+16

√
2. At first glance, it would seem that a1 must be

the point on C lying nearest the origin and a2 must be the point that lies farthest. However, we don’t know
a priori if there is a farthest point from the origin. To understand what kind of curve C is, note that a1 has
a positive z-coordinate and a2 has a negative z-coordinate. Therefore, the plane z = x + y + 2 intersects
both nappes of the cone, meaning C must be a hyperpola. This means that a1 is, indeed the point nearest
the origin, but a2 is not the farthest point.

Problem 4: (3 points) Find the critical points of f(x, y) = x2 + y subject to x2 + 2y2 = 1 and use the
Hessian criterion to determine the nature of the critical point(s).

Let h be the auxiliary function such that h(x, y, λ) = f(x, y)− λg(x, y) where g(x, y) = x2 + 2y2 − 1. Then

h(x, y, λ) = x2 + y − λ(x2 + 2y2 − 1).
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The critical points occur when the following are satisfied

2x(1 − λ) = 0,

1− 4λy = 0,

x2 + 2y2 − 1 = 0,

The first equation implies that either x = 0 or λ = 1. If x = 0 then we find the critical points are given by

c1,2 = (x, y, λ) =
(

0,±
√
2

2
,±

√
2

4

)

and if λ = 1, the critical points are given by c3,4 = (x, y, λ) =
(

±
√

7

8
, 1

4
, 1
)

.

The bordered Hessian for this problems is given by

|H̄| =

∣

∣

∣

∣

∣

∣

0 −2x −4y
−2x 2(1− λ) 0
−4y 0 −4λ

∣

∣

∣

∣

∣

∣

= 16x(xλ − 2y2)− 32y2(1− λ).

At the points c1,2, |H̄| < 0 implying these are relative minima, while at the points c3,4, |H̄| > 0, implying
these are relative maxima.

Problem 5: (1 point) Consider the equations that relate polar and Cartesian coordinates:

x = r cos θ

y = r sin θ

These equations define x and y as functions or r and θ. Use the Inverse Function theorem to determine the
set of points {x} near which we can invert these equations. What can you say about the inverse function
theorem at the origin?

We first need to compute the Jacobian:

∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

= r.

Thus, we see that, away from the origin (r=0), we can solve (locally) for r and θ uniquely in terms of x and
y. At the origin, however, the inverse function theorem does not apply. Geometrically, this makes perfect
sense, since at the origin, the polar angle θ can have any value.
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