DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Questions	Points	Score
1	1	
2	2	
3	2	
Total	5	

Problem 1: (1 points) Let $A=(-\infty, 1], B=\{1\}, C=(-1,1]$. Determine the interval $(A \cup B) \cap C$.
The interval is

$$
(A \cup B) \cap C=(-1,1]
$$

Problem 2: (2 point) Consider the expression $f(x)=\frac{x^{4}-4 x^{2}}{x(x+2)}$.
(a) (1 point) What is the set of points at which f does not exist? Please give your answer in set notation.

The set of points at which f does not exist is $\{0,-2\}$.
(b) (1 point) What is the solution set of the equation $f(x) \leq 0$. Please give your answer in set notation.

First we factor and cancel, while keeping in mind the answer to part (a)

$$
\frac{x^{4}-4 x^{2}}{x(x+2)}=\frac{x^{2}(x-2)(x+2)}{x(x+2)} \leq 0
$$

Simplifying (while remembering (a)) we consider

$$
x(x-2) \leq 0
$$

which means either (1) $x \leq 0$ and $x \geq 2$ (which is the empty set) or (2) $x \geq 0$ and $x \leq 2$ which is the interval [0, 2]

So excluding the points at which f does not exist the solution set $S=\{x \in \mathbb{R} \mid 0<x \leq 2\}$.
Problem 3: (2 points) For each of the following, mark the statement as either true (T) or false (F).
(a) (0.5 points) No set can be both open and closed. \qquad ."
(b) (0.5 points) $\frac{2 B}{B}=2$ for all values of B." \qquad ."
(c) (0.5 points) $A B=0 \Longleftrightarrow B=0$. \qquad ."
(d) (0.5 points) There is a formula that can be used to factor every possible polynomial (hint: consider $x^{2}+1$). \qquad ."

