DIRECTIONS:

- This exam will be closed book, closed notes.
- NO CALCULATORS allowed.
- Show all work, clearly and in order.
- Circle your final answers. You will lose points if you do not circle your answers.
- This exam will have between 5 and 7 problems, with 1 extra credit problem.

Problem Type 1: Determine the form of the general solution of the following differential equations.

$$
\begin{aligned}
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime} & =x^{3}+2 e^{x} \\
y^{(4)}-2 y^{\prime \prime}+y & =e^{x}+\sin x \\
y^{(4)}+y^{\prime \prime \prime} & =\sin 2 x
\end{aligned}
$$

(Hint: Considering writing the equation using differential operators and think about annihilators.)
Problem Type 2: Use variation of parameters to determine the general solution for the following differential equations

$$
\begin{aligned}
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y & =e^{x} \\
y^{\prime \prime \prime}+y^{\prime} & =\sec x \\
y^{(4)}+2 y^{\prime \prime}+y & =\sin x
\end{aligned}
$$

Problem Type 3: Determine the radii and intervals of convergence for the following series.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n 2^{n}} \\
\sum_{k=0}^{\infty} x^{k} \\
\sum_{k=0}^{\infty} \frac{(-1)^{2 k}}{(2 k)!} x^{2 k}
\end{gathered}
$$

Problem Type 4: Find and classify the singular points of the following differential equations. Solve the differential equations using series solutions about the ordinary point $x_{0}=0$.

$$
\begin{aligned}
y^{\prime \prime}-x y & =0 \\
\left(4-x^{2}\right) y^{\prime \prime}+2 y & =0
\end{aligned}
$$

Problem Type 5: Find one series solution to the following differential equations about the regular singular point $x_{0}=0$. What can you say about the certainty of getting two linearly independent solutions if you were to apply Frobenius's Method?

$$
\begin{aligned}
2 x y^{\prime \prime}+y^{\prime}+x y & =0 \\
x^{2} y^{\prime \prime}+x y^{\prime}+(x-2) y & =0 \\
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y & =0
\end{aligned}
$$

Problem Type 6: Consider the differential equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 .
$$

WITHOUT solving, what can you say about the existence of series solution(s) about the point $x_{0}=0$? If solutions exist, what will their radius of convergence be?

Problem Type 7: For example problems on complex analysis, review your class notes and the homework problems from HW7.

Note: Just because a formula or theorem is given here, does not mean that it is necessary for any of the given problems. Use these as needed only.

FORMULAE:

$$
\begin{array}{ll}
e^{i \theta} & =\cos \theta+i \sin \theta \\
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \text { for all } \mathrm{x} \\
\log (1-x) & =-\sum_{k=1}^{\infty} \frac{x^{k}}{k} \text { for } x \in[-1,1) \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k} \text { for } x \in(-1,1) \\
\frac{x}{(1-x)^{2}} & =\sum_{k=1}^{\infty} k x^{k} \text { for } x \in(-1,1) \\
\sin x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \text { for all } \mathrm{x} \\
\cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{2 k}}{(2 k)!} x^{2 k} \text { for all } \mathrm{x}
\end{array}
$$

A few useful annihilators are given by

$$
\begin{array}{ll}
D^{n}\left[c_{0}+c_{1} x+\cdots c_{n-1} x^{n-1}\right] & =0 \\
(D-\alpha)^{n}\left[\left(c_{0}+c_{1} x+\cdots c_{n-1} x^{n-1}\right) e^{\alpha x}\right] & =0
\end{array}
$$

The radius of convergence of the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

If $z^{n}=w$ then the roots of this equation are given by

$$
\begin{aligned}
z_{k} & =|w|^{1 / n}\left(\cos \theta_{k}+i \sin \theta_{k}\right) \\
\theta_{k} & =\frac{\operatorname{Arg} w}{n}+k\left(\frac{2 \pi}{n}\right)
\end{aligned}
$$

where $k=0,1,2, \ldots, n-1$.
THEOREM 1: Consider the first order, initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

and a rectangle, R, in the $x y$-plane such that $\left(x_{0}, y_{0}\right) \in R$. If f and $\frac{\partial f}{\partial y}$ are continuous on R, then there exists an interval, I, centered at x_{0}, and a unique solution $y(x)$ on I such that y satisfies the above initial value problem.

THEOREM 2: Consider the second order, linear, initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}
$$

where p, q, and g are continuous on an open interval, I, such that $x_{0} \in I$. Then there exists a unique solution $y(x)$ on I such that y satisfies the above initial value problem.

THEOREM 3: Consider the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

If $x=x_{0}$ is an ordinary point of this equation, then we can find two linearly independent solutions of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

which will converged for $\left|x-x_{0}\right|<R$, where R is the distance from x_{0} to the nearest singular point, real or complex.

THEOREM 4: (Frobenius' Theorem) If $x=x_{0}$ is a regular singular point of the differential equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

then there exists at least one series solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is a constant that must be determined (one of the indicial roots) and the series will converge at least on some interval $\left|x-x_{0}\right|<R$.

