DIRECTIONS:

- This exam will be closed book, closed notes.
- NO CALCULATORS allowed.
- Show all work, clearly and in order.
- Circle your final answers. You will lose points if you do not circle your answers.
- This exam will have between 9 and 11 problems, with 1 extra credit problem.

Problem Type 1: Be familiar with complex trigonometric functions. That is, be able to prove the following

$$
\begin{array}{ll}
\cos z & =\cos x \cosh y-i \sin x \sinh y \\
\sin z & =\sin x \cosh y+i \cos x \sinh y \\
\cos (z+w) & =\cos z \cos w-\sin z \sin w \\
\sin (z+w) & =\sin z \cos w+\cos z \sin w \\
\operatorname{Arcsin} z & =-i \log \left(i z+\sqrt{1-z^{2}}\right) \\
\operatorname{Arccos} z & =-i \log \left(z+\sqrt{z^{2}-1}\right) \\
\operatorname{Arctan} z & =\frac{i}{2} \log \left(\frac{1-i z}{1+i z}\right)
\end{array}
$$

where $z=x+i y \in \mathbb{C}$ and $x, y \in \mathbb{R}$. Note $\operatorname{Arcsin} z=\sin ^{-1} z$.
Problem Type 2: Be able to write z^{w} where $z, w \in \mathbb{C}$ as a number you can plot in the complex plane (i.e. as $x+i y$ where $x, y \in \mathbb{R}$. For example
(a) i^{1+i},
(b) π^{i}.

Problem Type 3: In your own words, be able to define or describe:
(a) Suppose D is a domain. What does this mean?
(b) What does it mean for a set to be open?
(c) What does it mean for a set to be connected?
(d) What does it mean for a set to be closed?
(e) What does it mean for a set to be simply connected?
(f) What does it mean for a complex valued function, f, to be analytic at a point z_{0} in a domain D ?
(g) What does it mean for f to be harmonic?
(h) How does analycity for $f(z)$ differ from continuity for a real valued function, $g(x)$?
(i) Why do we learn complex analysis in a differential equations class?
(j) Describe how you might use differential equations, mathematical modeling, or complex analysis (pick one) in real life.

Problem Type 4: Be able to state and use the Cauchy-Riemann equations. For example, suppose $u(x, y)=$ $x^{2}-y^{2}$. Find $f(x, y)=u(x, y)+i v(x, y)$ such that f is analytic.

Problem Type 5: Consider the function

$$
f(z)=\frac{z^{2}+z^{4}}{(z-2)^{2}}
$$

(a) Identify and classify the singularities (i.e. is $z_{0}=2$ a removable singularity or a pole? What is the difference?)
(a) Calculate the Laurent series of f about it's singularity.
(c) What is the residue of f at the singularity?
(d) Let γ_{1} be a parametrization of the circle $|z|=3$ and γ_{2} be a parametrization of the circle $|z-10|=2$. Draw γ_{1} and γ_{2} and plot the singularities of f.
(e) Calculate

$$
\int_{\gamma_{i}} f(\zeta) d \zeta
$$

Problem Type 6: You will be asked to verify the Laplace Transform for one of the following

Problem Type 7: Solve the initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}
$$

using Laplace Transforms. For example
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$ where $y(0)=1$ and $y^{\prime}(0)=1$.
(b) $y^{\prime \prime}+y=\sin 2 t$ where $y(0)=2$ and $y^{\prime}(0)=1$. (Note, this one is an example in your book in section 6.2).

Note: Just because a formula or theorem is given here, does not mean that it is necessary for any of the given problems. Use these as needed only.

LAPLACE TRANSFORMS:

$$
\begin{array}{ll}
f(t) & F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \\
1 & \frac{1}{s} \\
e^{a t} & \frac{1}{s-a} \\
t^{n} & \frac{n!}{s^{n+1}}, n \text { a positive integer } \\
\sin a t & \frac{a}{s^{2}+a^{2}} \\
\cos a t & \frac{s}{s^{2}+a^{2}} \\
\sinh a t & \frac{a}{s^{2}-a^{2}} \\
\cosh a t & \frac{s}{s^{2}-a^{2}} \\
u_{c}(t) & \frac{e^{-c s}}{s} \\
\delta(t-c) & e^{-c s} \\
f^{(n)}(t) & s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)
\end{array}
$$

FORMULAE:

If $z^{n}=w$ then the roots of this equation are given by

$$
\begin{aligned}
z_{k} & =|w|^{1 / n}\left(\cos \theta_{k}+i \sin \theta_{k}\right) \\
\theta_{k} & =\frac{\operatorname{Arg} w}{n}+k\left(\frac{2 \pi}{n}\right)
\end{aligned}
$$

where $k=0,1,2, \ldots, n-1$.
The step, or Heaviside function is given by

$$
u_{c}(t)= \begin{cases}0, & t<c \\ 1, & t \geq c\end{cases}
$$

$$
\begin{array}{ll}
\log z & =\ln |z|+i \arg (z) \\
\log z & =\ln |z|+i \operatorname{Arg}(z) \\
e^{i x} & =\cos x+i \sin x \\
\sin z & =\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) \\
\cos z & =\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \\
\tan z & =\frac{\sin z}{\cos z} \\
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
\operatorname{Arcsin} z & =-i \log \left(i z+\sqrt{1-z^{2}}\right) \\
\operatorname{Arccos} z & =-i \log \left(z+\sqrt{z^{2}-1}\right) \\
\operatorname{Arctan} z & =\frac{i}{2} \log \left(\frac{1-i z}{1+i z}\right)
\end{array}
$$

where $z \in \mathbb{C}$ and $x \in \mathbb{R}$.

THEOREM 1: Consider the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

If $x=x_{0}$ is an ordinary point of this equation, then we can find two linearly independent solutions of the form

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

which will converged for $\left|x-x_{0}\right|<R$, where R is the distance from x_{0} to the nearest singular point, real or complex.

THEOREM 2: (Cauchy-Riemann equations) Consider the complex valued function $f=u+i v$. If f is analytic on a domain D, then f satisfies the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

THEOREM 3: (Cauchy's Theorem) Suppose f is analytic on a domain D. Let γ be a piecewise smooth, simple, closed curve in D whose inside, Ω, is also in D. Then

$$
\int_{\gamma} f(z) d z=0
$$

THEOREM 4: (Residue Theorem) Suppose f is analytic on a simply-connected domain D except at a finite number of isolated singularities at $z_{1}, z_{2}, \ldots, z_{N}$ of D. Let γ be a piecewise smooth, positively oriented, simple closed curve in D that does not pass through $z_{1}, z_{2}, \ldots, z_{N}$. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{z_{k} \text { inside } \gamma} \operatorname{Res}\left(f ; z_{k}\right)
$$

