DIRECTIONS:

- This exam will be closed book, closed notes.
- NO CALCULATORS allowed.
- Show all work, clearly and in order.
- Circle your final answers. You will lose points if you do not circle your answers.
- This exam will have between 9 and 11 problems, with 1 extra credit problem.

Problem Type 1: Be familiar with complex trigonometric functions. That is, be able to prove the following

$\cos z$	=	$\cos x \cosh y - i \sin x \sinh y$
$\sin z$	=	$\sin x \cosh y + i \cos x \sinh y$
$\cos(z+w)$	=	$\cos z \cos w - \sin z \sin w$
$\sin(z+w)$	=	$\sin z \cos w + \cos z \sin w$
$\mathrm{Arcsin}z$	=	$-i \operatorname{Log}\left(iz + \sqrt{1-z^2}\right)$
$\operatorname{Arccos} z$	=	$-i \operatorname{Log}\left(z + \sqrt{z^2 - 1}\right)$
$\operatorname{Arctan} z$	=	$\frac{i}{2}$ Log $\left(\frac{1-iz}{1+iz}\right)$

where $z = x + iy \in \mathbb{C}$ and $x, y \in \mathbb{R}$. Note $\operatorname{Arcsin} z = \sin^{-1} z$.

Problem Type 2: Be able to write z^w where $z, w \in \mathbb{C}$ as a number you can plot in the complex plane (i.e. as x + iy where $x, y \in \mathbb{R}$. For example

(a) i^{1+i} ,

(b) π^{i} .

Problem Type 3: In your own words, be able to define or describe:

- (a) Suppose D is a domain. What does this mean?
- (b) What does it mean for a set to be open?
- (c) What does it mean for a set to be connected?
- (d) What does it mean for a set to be closed?
- (e) What does it mean for a set to be simply connected?
- (f) What does it mean for a complex valued function, f, to be analytic at a point z_0 in a domain D?
- (g) What does it mean for f to be harmonic?
- (h) How does analycity for f(z) differ from continuity for a real valued function, g(x)?
- (i) Why do we learn complex analysis in a differential equations class?

(j) Describe how you might use differential equations, mathematical modeling, or complex analysis (pick one) in real life.

Problem Type 4: Be able to state and use the Cauchy-Riemann equations. For example, suppose $u(x, y) = x^2 - y^2$. Find f(x, y) = u(x, y) + iv(x, y) such that f is analytic.

Problem Type 5: Consider the function

$$f(z) = \frac{z^2 + z^4}{(z-2)^2}.$$

(a) Identify and classify the singularities (i.e. is $z_0 = 2$ a removable singularity or a pole? What is the difference?)

- (a) Calculate the Laurent series of f about it's singularity.
- (c) What is the residue of f at the singularity?

(d) Let γ_1 be a parametrization of the circle |z| = 3 and γ_2 be a parametrization of the circle |z - 10| = 2. Draw γ_1 and γ_2 and plot the singularities of f.

(e) Calculate

$$\int_{\gamma_i} f(\zeta) d\zeta.$$

Problem Type 6: You will be asked to verify the Laplace Transform for one of the following

$$f(t) F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$$

$$1 \frac{1}{s}$$

$$e^{at} \frac{1}{s-a}$$

$$\sin at \frac{a}{s^2+a^2}$$

$$\cos at \frac{s}{s^2+a^2}$$

$$u_c(t) \frac{e^{-cs}}{s}$$

$$\delta(t-c) e^{-cs}$$

$$u_cf(t-c) e^{-cs}F(s)$$

Problem Type 7: Solve the initial value problem

$$ay'' + by' + cy = g(t), \ y(0) = y_0, \ y'(0) = y'_0,$$

using Laplace Transforms. For example

(a) y'' + 3y' + 2y = 0 where y(0) = 1 and y'(0) = 1.

(b) $y'' + y = \sin 2t$ where y(0) = 2 and y'(0) = 1. (Note, this one is an example in your book in section 6.2).

Note: Just because a formula or theorem is given here, does not mean that it is necessary for any of the given problems. Use these as needed only.

LAPLACE TRANSFORMS:

$$\begin{split} f(t) & F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt \\ 1 & \frac{1}{s} \\ e^{at} & \frac{1}{s-a} \\ t^n & \frac{n!}{s^{n+1}}, \ n \text{ a positive integer} \\ \sin at & \frac{a}{s^2+a^2} \\ \cos at & \frac{s}{s^2+a^2} \\ \sinh at & \frac{s}{s^2-a^2} \\ \cosh at & \frac{s}{s^2-a^2} \\ u_c(t) & \frac{e^{-cs}}{s} \\ \delta(t-c) & e^{-cs} \\ f^{(n)}(t) & s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0) \end{split}$$

FORMULAE:

If $z^n = w$ then the roots of this equation are given by

$$z_k = |w|^{1/n} \left(\cos \theta_k + i \sin \theta_k\right),$$

$$\theta_k = \frac{\operatorname{Arg} w}{n} + k \left(\frac{2\pi}{n}\right),$$

where k = 0, 1, 2, ..., n - 1.

The step, or Heaviside function is given by

$$u_c(t) = \begin{cases} 0, & t < c \\ 1, & t \ge c \end{cases}$$

 $\log z$ $= \ln |z| + i \arg(z)$ $= \ln |z| + i \operatorname{Arg}(z)$ $\log z$ e^{ix} $= \cos x + i \sin x$ $= \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$ $\sin z$ $= \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$ $\cos z$ $= \frac{\sin z}{\cos z}$ $\tan z$ $= \frac{1}{2} (e^x - e^{-x})$ $\sinh x$ $= \frac{1}{2} \left(e^x + e^{-x} \right)$ $\cosh x$ Arcsin $z = -i \operatorname{Log} \left(iz + \sqrt{1 - z^2} \right)$ Arccosz = $-i \operatorname{Log} \left(z + \sqrt{z^2 - 1} \right)$ $\operatorname{Arctan} z = \frac{i}{2} \operatorname{Log} \left(\frac{1 - iz}{1 + iz} \right)$

where $z \in \mathbb{C}$ and $x \in \mathbb{R}$.

THEOREM 1: Consider the equation

$$P(x)y'' + Q(x)y' + R(x)y = 0.$$

If $x = x_0$ is an ordinary point of this equation, then we can find two linearly independent solutions of the form

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^n,$$

which will converged for $|x - x_0| < R$, where R is the distance from x_0 to the nearest singular point, real or complex.

THEOREM 2: (Cauchy-Riemann equations) Consider the complex valued function f = u + iv. If f is analytic on a domain D, then f satisfies the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

THEOREM 3: (Cauchy's Theorem) Suppose f is analytic on a domain D. Let γ be a piecewise smooth, simple, closed curve in D whose inside, Ω , is also in D. Then

$$\int_{\gamma} f(z) dz = 0$$

THEOREM 4: (Residue Theorem) Suppose f is analytic on a simply-connected domain D except at a finite number of isolated singularities at $z_1, z_2, ..., z_N$ of D. Let γ be a piecewise smooth, positively oriented, simple closed curve in D that does not pass through $z_1, z_2, ..., z_N$. Then

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{z_k \text{ inside } \gamma} \operatorname{Res}(f; z_k).$$