DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	2	
5	3	
6	1	
7	1	
Total	10	

Problem 1: (1 point) Suppose $A \neq \emptyset$ and $B \neq \emptyset$. Show that $A \times B = B \times A$ iff A = B.

Problem 2: (1 point) If A, B, and C are finite sets, show that

$${}^{\#}(A \cup B \cup C) = {}^{\#}A + {}^{\#}B + {}^{\#}C - {}^{\#}(A \cap B) - {}^{\#}(A \cap C) - {}^{\#}(B \cap C) + {}^{\#}(A \cap B \cap C).$$

Problem 3: (1 point) If $a, b \in \mathbb{Z}$, show (-a)(-b) = ab.

- **Problem 4:** (2 points) If $a, b \in \mathbb{Z}$,
- (a) (1 point) Suppose 0 < a and 0 < b. Show that a < b iff $a^2 < b^2$.
- (b) (1 point) Suppose a < 0 and b < 0. Show that a < b iff $b^2 < a^2$.

Problem 5: (3 points) If n, k are non-negative integers, we define the binomial coefficient, $\binom{n}{k}$, by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

where $n! = n \cdot (n-1) \cdots 2 \cdot 1$, and we set 0! = 1.

(a) (2 points) Prove that

$$\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r},$$

for r = 1, 2, 3, ..., n

(b) (1 points) Using part (a), prove the Binomial Theorem:

If $a, b \in \mathbb{Z}$ and n is a positive integer, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Hint: Use mathematical induction

Problem 6: (1 point) Let *n* be an integer greater than or equal to 2. If $a, b \in \mathbb{Z}$, we say that $a \sim b$ iff a - b is a multiple of *n*, that is, *n* divides a - b. Prove this defines an equivalence relation.

Problem 7: (1 point) Let n be a positive integer greater than or equal to 2. Then there exists a prime p such that p divides n.

Hint: Consider using the Principle of Strong Induction: To prove an infinite sequence of statements p(n) for n = b, b + 1, ..., prove the following implication for <math>k = b, b + 1, b + 2, ... : p(m) for all m such that $b \le m < k \Longrightarrow p(k)$.