DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	2	
5	3	
6	1	
7	10	
Total		

Problem 1: (1 point) Suppose $A \neq \emptyset$ and $B \neq \emptyset$. Show that $A \times B=B \times A$ iff $A=B$.
Problem 2: (1 point) If A, B, and C are finite sets, show that

$$
\#(A \cup B \cup C)={ }^{\#} A+{ }^{\#} B+{ }^{\#} C-{ }^{\#}(A \cap B)-{ }^{\#}(A \cap C)-{ }^{\#}(B \cap C)+{ }^{\#}(A \cap B \cap C) .
$$

Problem 3: (1 point) If $a, b \in \mathbb{Z}$, show $(-a)(-b)=a b$.
Problem 4: (2 points) If $a, b \in \mathbb{Z}$,
(a) (1 point) Suppose $0<a$ and $0<b$. Show that $a<b$ iff $a^{2}<b^{2}$.
(b) (1 point) Suppose $a<0$ and $b<0$. Show that $a<b$ iff $b^{2}<a^{2}$.

Problem 5: (3 points) If n, k are non-negative integers, we define the binomial coefficient, $\binom{n}{k}$, by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

where $n!=n \cdot(n-1) \cdots 2 \cdot 1$, and we set $0!=1$.
(a) (2 points) Prove that

$$
\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}
$$

for $r=1,2,3, \ldots, \mathrm{n}$
(b) (1 points) Using part (a), prove the Binomial Theorem:

If $a, b \in \mathbb{Z}$ and n is a positive integer, then

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Hint: Use mathematical induction

Problem 6: (1 point) Let n be an integer greater than or equal to 2 . If $a, b \in \mathbb{Z}$, we say that $a \sim b$ iff $a-b$ is a multiple of n, that is, n divides $a-b$. Prove this defines an equivalence relation.

Problem 7: (1 point) Let n be a positive integer greater than or equal to 2 . Then there exists a prime p such that p divides n.

Hint: Consider using the Principle of Strong Induction: To prove an infinite sequence of statements $p(n)$ for $n=b, b+1, \ldots$, prove the following implication for $k=b, b+1, b+2, \ldots: p(m)$ for all m such that $b \leq m<k \Longrightarrow p(k)$.

