DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	2	
5	3	
6	1	
7	10	
Total		

Problem 1: (1 point) Suppose $A \neq \emptyset$ and $B \neq \emptyset$. Show that $A \times B=B \times A$ iff $A=B$.
Proof: Assume $A \neq \emptyset$ and $B \neq \emptyset$.
Part 1: Assume $A \times B=B \times A$. By definition of equality of sets, this means that every element of $A \times B$ is an element of $B \times A$ so there exist elements $p, m \in A$ and elements $q, l \in B$ such that $x=(p, q) \in A \times B$ and $x=(l, m) \in B \times A$ and $(p, q)=(l, m)$. But by the definition of ordered pairs, that means $p=l$ and $q=m$ so for all $p \in A$, there exists an $l \in B$ such that $p=l$ hence $A \subset B$. Similarly, $B \subset A$.

Part 2: Assume $A=B$. Let $(p, q) \in A \times B$. Hence $p \in A=B \Longrightarrow p \in B$ and $q \in B=A \Longrightarrow q \in A$. Hence $(p, q) \in B \times A$ as well by definition of Cartesian product, hence $A \times B \subset$ of $B \times A$. Similarly, $B \times A \subset A \times B$.

Parts 1 and 2 imply that assuming $A \neq \emptyset$ and $B \neq \emptyset$ then $A \times B=B \times A$ iff $A=B$. Q. E. D.

Problem 2: (1 point) If A, B, and C are finite sets, show that

$$
\#(A \cup B \cup C)={ }^{\#} A+{ }^{\#} B+{ }^{\#} C-{ }^{\#}(A \cap B)-{ }^{\#}(A \cap C)-{ }^{\#}(B \cap C)+{ }^{\#}(A \cap B \cap C) .
$$

Proof: Since this is equality of numbers, rather than sets, it suffices to show that for element x in the universal set X contributes the same number to both sides of the equation above. An element $x \in A \cup B \cup C$ or $x \notin A \cup B \cup C$.

Part 1: $x \notin A \cup B \cup C \Longleftrightarrow x \notin A$ and $x \notin B$ and $x \notin C$. So x is also not in any of the intersections of two or three of these sets. For such x, the contributions are

$$
\begin{aligned}
& \text { L.H.S. }=+0, \\
& \text { R.H.S. }=+0 .
\end{aligned}
$$

So the element contributes exactly zero to both sides.
Part $2 x \in A \cup B \cup C \Longleftrightarrow$

1. x is in exactly one of the sets (e.g. $x \in A$ but $x \notin B$ and $x \notin C$)

$$
\begin{array}{llc}
\text { L.H.S. } & = & +1, \\
\text { R.H.S. } & = & +1+0+0-0-0-0+0 .
\end{array}
$$

2. x is in exactly two of the sets (e.g. $x \in A$ and $x \in B$ but $x \notin C$)

$$
\begin{array}{llc}
\text { L.H.S. } & = & +1 \\
\text { R.H.S. } & =+1+1+0-1-0-0+0 .
\end{array}
$$

3. x is in exactly three of the sets (i.e. $x \in A, x \in B$, and $x \in C$

$$
\begin{array}{llc}
\text { L.H.S. } & = & +1, \\
\text { R.H.S. } & = & +1+1+1-1-1-1+1 .
\end{array}
$$

In any case, the element contributes exactly one to both sides of the equation.
Q.E.D.

Problem 3: (1 point) If $a, b \in \mathbb{Z}$, show $(-a)(-b)=a b$.

Proof: Let $a, b \in \mathbb{Z}$. By convention we know that $-a=(-1) a$ and $-b=(-1) b$. So

$$
(-a)(-b)=(-1)(a)(-1)(b)=(-1)(-1)(a b)
$$

by associativity. But we also know that -1 is its own multiplicative inverse so $(-1)(-1)=1$, hence

$$
(-a)(-b)=(1) a b=a b
$$

since 1 is the multiplicative identity.
Q. E. D.

Problem 4: (2 points) If $a, b \in \mathbb{Z}$,
(a) (1 point) Suppose $0<a$ and $0<b$. Show that $a<b$ iff $a^{2}<b^{2}$.

Proof: Suppose $0<a$ and $0<b$.
Part I: Assume $a<b$, then since a and b are positive we may multiply both sides by a and b to obtain $a^{2}<a b$ and $a b<b^{2}$. Since $<$ is transitive, $a^{2}<b^{2}$.

Part II: Assume $a^{2}<b^{2}$. Hint, suppose we do not have $a<b$, so either $a=b$ or $b<a$. By the same approach as in part I, we arrive at a contradiction for both options.
Q.E.D.
(b) (1 point) Suppose $a<0$ and $b<0$. Show that $a<b$ iff $b^{2}<a^{2}$.

Proof: Suppose $a<0$ and $b<0$.
Part I: Assume $a<b$, then $-b<-a$ from facts 1.5.5 in the text. By the same proof as (a) we are done.
Part II: Follow the same procedure as in part (a).
Problem 5: (3 points) If n, k are non-negative integers, we define the binomial coefficient, $\binom{n}{k}$, by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

where $n!=n \cdot(n-1) \cdots 2 \cdot 1$, and we set $0!=1$.
(a) (2 point) Prove that

$$
\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}
$$

for $r=1,2,3, \ldots, \mathrm{n}$
Proof: We will use proof by induction. Consider the case when $r=1$,

$$
\binom{n}{1}+\binom{n}{0}=n+1=\binom{n+1}{1}
$$

Now let us assume that for some $r=k$

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}
$$

which is the same as writing

$$
\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}=\frac{(n+1)!}{k!(n+1-k)!}
$$

We want to show that

$$
\binom{n}{k+1}+\binom{n}{k}=\binom{n+1}{k+1}
$$

which is the same as writing

$$
\frac{n!}{(k+1) k!(n-k-1)!}+\frac{n!}{k!(n-k)!}=\frac{(n+1)!}{(k+1)!(n-k)!} .
$$

We notice that if we multiply the equation for $r=k$ by $\frac{m+1-k}{k+1}$ on both sides, the R.H.S. becomes exactly what we want in the equation for $r=k+1$. That is

$$
\frac{m+1-k}{k+1}\left[\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}\right]=\frac{(n+1)!}{(k+1)!(n-k)!}
$$

With a little algebra, we see that the L.H.S. is exactly what we want for $r=k+1$.
Q.E.D.
(b) (1 points) Using part (a), prove the Binomial Theorem:

If $a, b \in \mathbb{Z}$ and n is a positive integer, then

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Hint: Use mathematical induction

If $a, b \in \mathbb{Z}$ and n is a positive integer, then

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Hint: Use mathematical induction
Proof: We will use proof by induction. Consider the case when $n=1$,

$$
(a+b)^{1}=a+b
$$

and

$$
\sum_{k=0}^{1}\binom{1}{k} a^{k} b^{1-k}=\binom{1}{0} b+\binom{1}{1} a=a+b
$$

Now let us assume that this holds true for some $n=m$, that is

$$
(a+b)^{m}=\sum_{k=0}^{m}\binom{m}{k} a^{k} b^{m-k}
$$

and we W.T.S. that

$$
(a+b)^{m+1}=\sum_{k=0}^{m+1}\binom{m+1}{k} a^{k} b^{m+1-k}
$$

We first notice that the L.H.S. for the $m+1$ case is precisely $(a+b)$ times the L.H.S. for the m case. So, let us multiply by $(a+b)$

$$
\begin{aligned}
(a+b)^{m+1}= & \sum_{k=0}^{m}\binom{m}{k} a^{k} b^{m-k}(a+b) \\
= & \sum_{k=0}^{m}\binom{m}{k}\left[a^{k+1} b^{m-k}+a^{k} b^{m+1-k}\right] \\
= & \binom{m}{0}\left[\begin{array}{c}
\left.a b^{m}+b^{m+1}\right]+\binom{m}{1}\left[a^{2} b^{m-1}+a b^{m}\right]+\binom{m}{2}\left[a^{3} b^{m-1}+a^{2} b^{m-1}\right]+\binom{m}{3}\left[a^{4} b^{m-3}+a^{3} b^{m-2}\right] \\
\\
\\
+\cdots+\binom{m}{m-1}\left[a^{m} b+a^{m-1} b^{2}\right]+\binom{m}{m}\left[a^{m+1}+a^{m} b\right] \\
= \\
\\
\binom{m}{0} b^{m+1}+\left[\binom{m}{0}+\binom{m}{1}\right] a b^{m}+\left[\binom{m}{1}+\binom{m}{2}\right] a^{2} b^{m-1}+\cdots+\left[\binom{m}{m-1}+\binom{m}{m}\right] a^{m} b+\binom{m}{m} a^{m+1} \\
=
\end{array} \sum_{k=0}^{m+1}\binom{m+1}{k} a^{k} b^{m+1-k}\right.
\end{aligned}
$$

by using part (a).
Q.E.D.

Problem 6: (1 point) Let n be an integer greater than or equal to 2 . If $a, b \in \mathbb{Z}$, we say that $a \sim b$ iff $a-b$ is a multiple of n, that is, n divides $a-b$. Prove this defines an equivalence relation.

Proof: It suffices to show that this relation is (1) reflexive, (2) symmetric, and (3) transitive.

1. Reflexive; $(a-a)=0=0 \cdot n$ so $a \sim a$.
2. Symmetric: Suppose $a \sim b$ then there exists $c \in$ mathbb Z such that $a-b=c n$ hence $-(b-a)=$ $c n \Longrightarrow b-a=(-c) n$. So $b \sim a$.
3. Transitive: Suppose $a \sim b$, and $b \sim c$, then there exist $e, g \in \mathbb{Z}$ such that $a-b=e n$ and $b-c=f n$. Hence $(a-b)-(b-c)=e n-f n \Longrightarrow a-c=(e-f)$ where $(e-f) \in \mathbb{Z}$.
Q.E.D.

Problem 7: (1 point) Let n be a positive integer greater than or equal to 2 . Then there exists a prime p such that p divides n.

Hint: Consider using the Principle of Strong Induction: To prove an infinite sequence of statements $p(n)$ for $n=b, b+1, \ldots$, prove the following implication for $k=b, b+1, b+2, \ldots: p(m)$ for all m such that $b \leq m<k \Longrightarrow p(k)$.

Proof: Consider $n=2$, then $2 \mid 2$ and 2 is prime. Now suppose every integer less than k but greater than or equal to 2 has a prime factor. If k prime then we are done. If not, then k is composite and $k=c m$ for c, $m \in[2,3,4, \ldots, k-1] \Longrightarrow m$ has a prime factor, hence $m=d p$. So $k=(c d) p$ so $p \mid k$.
Q.E.D.

