
HOMEWORK 2 DUE: Fri., Apr. 6 NAME:

DIRECTIONS:

• Turn in your homework as SINGLE-SIDED typed or handwritten pages.

• STAPLE your homework together. Do not use paper clips, folds, etc.

• STAPLE this page to the front of your homework.

• Be sure to write your name on your homework.

• Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions Points Score

1 1

2 1

3 1

4 2

5 3

6 1

7 1

Total 10
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Problem 1: (1 point) Suppose A 6= ∅ and B 6= ∅. Show that A×B = B ×A iff A = B.

Proof: Assume A 6= ∅ and B 6= ∅.

Part 1: Assume A × B = B × A. By definition of equality of sets, this means that every element of A× B
is an element of B ×A so there exist elements p, m ∈ A and elements q, l ∈ B such that x = (p, q) ∈ A×B
and x = (l,m) ∈ B × A and (p, q) = (l,m). But by the definition of ordered pairs, that means p = l and
q = m so for all p ∈ A, there exists an l ∈ B such that p = l hence A ⊂ B. Similarly, B ⊂ A.

Part 2: Assume A = B. Let (p, q) ∈ A ×B. Hence p ∈ A = B=⇒ p ∈ B and q ∈ B = A=⇒ q ∈ A. Hence
(p, q) ∈ B×A as well by definition of Cartesian product, hence A×B ⊂ ofB×A. Similarly, B×A ⊂ A×B.

Parts 1 and 2 imply that assuming A 6= ∅ and B 6= ∅ then A×B = B ×A iff A = B. Q. E. D.

Problem 2: (1 point) If A, B, and C are finite sets, show that

#(A ∪B ∪ C) =# A+# B +# C −# (A ∩B)−# (A ∩ C)−# (B ∩ C) +# (A ∩B ∩C).

Proof: Since this is equality of numbers, rather than sets, it suffices to show that for element x in the
universal set X contributes the same number to both sides of the equation above. An element x ∈ A∪B∪C
or x /∈ A ∪B ∪ C.

Part 1: x /∈ A∪B ∪C ⇐⇒ x /∈ A and x /∈ B and x /∈ C. So x is also not in any of the intersections of two
or three of these sets. For such x, the contributions are

L.H.S. = +0,
R.H.S. = +0.

So the element contributes exactly zero to both sides.

Part 2 x ∈ A ∪B ∪ C ⇐⇒

1. x is in exactly one of the sets (e.g. x ∈ A but x /∈ B and x /∈ C)

L.H.S. = +1,
R.H.S. = +1 + 0 + 0− 0− 0− 0 + 0.

2. x is in exactly two of the sets (e.g. x ∈ A and x ∈ B but x /∈ C)

L.H.S. = +1,
R.H.S. = +1 + 1 + 0− 1− 0− 0 + 0.

3. x is in exactly three of the sets (i.e. x ∈ A, x ∈ B, and x ∈ C

L.H.S. = +1,
R.H.S. = +1 + 1 + 1− 1− 1− 1 + 1.

In any case, the element contributes exactly one to both sides of the equation.

Q.E.D.

Problem 3: (1 point) If a, b ∈ Z, show (−a)(−b) = ab.
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Proof: Let a, b ∈ Z. By convention we know that −a = (−1)a and −b = (−1)b. So

(−a)(−b) = (−1)(a)(−1)(b) = (−1)(−1)(ab),

by associativity. But we also know that −1 is its own multiplicative inverse so (−1)(−1) = 1, hence

(−a)(−b) = (1)ab = ab,

since 1 is the multiplicative identity.

Q. E. D.

Problem 4: (2 points) If a, b ∈ Z,

(a) (1 point) Suppose 0 < a and 0 < b. Show that a < b iff a2 < b2.

Proof: Suppose 0 < a and 0 < b.

Part I: Assume a < b, then since a and b are positive we may multiply both sides by a and b to obtain
a2 < ab and ab < b2. Since < is transitive, a2 < b2.

Part II: Assume a2 < b2. Hint, suppose we do not have a < b, so either a = b or b < a. By the same
approach as in part I, we arrive at a contradiction for both options.

Q.E.D.

(b) (1 point) Suppose a < 0 and b < 0. Show that a < b iff b2 < a2.

Proof: Suppose a < 0 and b < 0.

Part I: Assume a < b, then −b < −a from facts 1.5.5 in the text. By the same proof as (a) we are done.

Part II: Follow the same procedure as in part (a).

Problem 5: (3 points) If n, k are non-negative integers, we define the binomial coefficient,
(

n

k

)

, by
(

n

k

)

=
n!

k!(n− k)!
,

where n! = n · (n− 1) · · · 2 · 1, and we set 0! = 1.

(a) (2 point) Prove that
(

n

r

)

+

(

n

r − 1

)

=

(

n+ 1

r

)

,

for r = 1, 2, 3,..., n

Proof: We will use proof by induction. Consider the case when r = 1,
(

n

1

)

+

(

n

0

)

= n+ 1 =

(

n+ 1

1

)

.

Now let us assume that for some r = k
(

n

k

)

+

(

n

k − 1

)

=

(

n+ 1

k

)

,
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which is the same as writing

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!
=

(n+ 1)!

k!(n+ 1− k)!
.

We want to show that
(

n

k + 1

)

+

(

n

k

)

=

(

n+ 1

k + 1

)

,

which is the same as writing

n!

(k + 1)k!(n− k − 1)!
+

n!

k!(n− k)!
=

(n+ 1)!

(k + 1)!(n− k)!
.

We notice that if we multiply the equation for r = k by m+1−k

k+1
on both sides, the R.H.S. becomes exactly

what we want in the equation for r = k + 1. That is

m+ 1− k

k + 1

[

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

]

=
(n+ 1)!

(k + 1)!(n− k)!
.

With a little algebra, we see that the L.H.S. is exactly what we want for r = k + 1.

Q.E.D.

(b) (1 points) Using part (a), prove the Binomial Theorem:

If a, b ∈ Z and n is a positive integer, then

(a+ b)n =

n
∑

k=0

(

n

k

)

akbn−k.

Hint: Use mathematical induction

If a, b ∈ Z and n is a positive integer, then

(a+ b)n =

n
∑

k=0

(

n

k

)

akbn−k.

Hint: Use mathematical induction

Proof: We will use proof by induction. Consider the case when n = 1,

(a+ b)1 = a+ b,

and
1

∑

k=0

(

1

k

)

akb1−k =

(

1

0

)

b+

(

1

1

)

a = a+ b.

Now let us assume that this holds true for some n = m, that is

(a+ b)m =

m
∑

k=0

(

m

k

)

akbm−k,
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and we W.T.S. that

(a+ b)m+1 =

m+1
∑

k=0

(

m+ 1

k

)

akbm+1−k.

We first notice that the L.H.S. for the m+1 case is precisely (a+ b) times the L.H.S. for the m case. So, let
us multiply by (a+ b)

(a+ b)m+1 =
∑

m

k=0

(

m

k

)

akbm−k(a+ b)

=
∑m

k=0

(

m

k

) [

ak+1bm−k + akbm+1−k
]

=
(

m

0

) [

abm + bm+1
]

+
(

m

1

) [

a2bm−1 + abm
]

+
(

m

2

) [

a3bm−1 + a2bm−1
]

+
(

m

3

) [

a4bm−3 + a3bm−2
]

+ · · ·+
(

m

m−1

) [

amb+ am−1b2
]

+
(

m

m

) [

am+1 + amb
]

=
(

m

0

)

bm+1 +
[(

m

0

)

+
(

m

1

)]

abm +
[(

m

1

)

+
(

m

2

)]

a2bm−1 + · · ·+
[

(

m

m−1

)

+
(

m

m

)

]

amb+
(

m

m

)

am+1

=
∑

m+1

k=0

(

m+1

k

)

akbm+1−k,

by using part (a).

Q.E.D.

Problem 6: (1 point) Let n be an integer greater than or equal to 2. If a, b ∈ Z, we say that a ∼ b iff a− b
is a multiple of n, that is, n divides a− b. Prove this defines an equivalence relation.

Proof: It suffices to show that this relation is (1) reflexive, (2) symmetric, and (3) transitive.

1. Reflexive; (a− a) = 0 = 0 · n so a ∼ a.

2. Symmetric: Suppose a ∼ b then there exists c ∈ mathbbZ such that a − b = cn hence −(b − a) =
cn=⇒ b− a = (−c)n. So b ∼ a.

3. Transitive: Suppose a ∼ b, and b ∼ c, then there exist e, g ∈ Z such that a − b = en and b − c = fn.
Hence (a− b)− (b − c) = en− fn=⇒a− c = (e − f) where (e − f) ∈ Z.

Q.E.D.

Problem 7: (1 point) Let n be a positive integer greater than or equal to 2. Then there exists a prime p
such that p divides n.

Hint: Consider using the Principle of Strong Induction: To prove an infinite sequence of statements p(n)
for n = b, b + 1, ..., prove the following implication for k = b, b + 1, b + 2, ... : p(m) for all m such that

b ≤ m < k=⇒ p(k).

Proof: Consider n = 2, then 2|2 and 2 is prime. Now suppose every integer less than k but greater than or
equal to 2 has a prime factor. If k prime then we are done. If not, then k is composite and k = cm for c,
m ∈ [2, 3, 4, ..., k − 1]=⇒m has a prime factor, hence m = dp. So k = (cd)p so p|k.

Q.E.D.
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