DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total	5	

Problem 1: (1 point)
(a) (0.5 point) Show that $\{(-a, b)\}$ is an additive inverse for $\{(a, b)\}$.
(b) (0.5 point) Prove the distributive law for \mathbb{Q}.

Problem 2: (1 points) Let R be a ring and R_{0} a nonempty subset of R. Show that R_{0} is a subring iff, for any $a, b \in R_{0}$, we have $a-b, a b \in R_{0}$.

Problem 3: (1 points) Let X be a non-empty set and R be the power set of X. Prove that R with symmetric difference as addition and intersection as multiplication is a commutative ring with identity.

Problem 4: (1 point) Let $A=\{p, q, r\}$ and $B=\{\pi, e\}$. Determine all possible functions from A to B.
Problem 5: (1 points) Given $f: A \rightarrow B$, suppose there exist $g, h: B \rightarrow A$ so that $f \circ g=I_{B}$ and $h \circ f=I_{A}$. Show that f is a bijection and that $g=h=f^{-1}$.

