DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points if one or more of these instructions are not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total	5	

Problem 1: (1 point)
(a) (0.5 point) Show that $\{(-a, b)\}$ is an additive inverse for $\{(a, b)\}$.

Proof: Consider $\{(a, b)\}+\{(-a, b)\}=\left\{\left(a b+b(-a), b^{2}\right)\right\}=\left\{\left(0, b^{2}\right)\right\}=\{(0,1)\}$, which is the additive identity in \mathbb{Q}. Q.E.D.
(b) (0.5 point) Prove the distributive law for \mathbb{Q}.

Proof: Let $\{(a, b)\},\{(c, d)\}$, and $\{(e, g)\} \in \mathbb{Q}$. We want to show

$$
\{(a, b)\} \cdot[\{(a, b)\}+\{(e, g)\}]=\{(a, b)\} \cdot\{(c, d)\}+\{(a, b)\} \cdot\{(e, f)\}
$$

A little algebra shows that

$$
\begin{aligned}
\text { L.H.S. } & =\{(a, b)\} \cdot\{(c f+d e, d f)\}=\{(a c f+a d e, b d f)\} \\
\text { R.H.S } & =\{(a c, b d)\}+\{(a e, b f)\}=\left\{\left(a c b f+b d a e, b^{2} d f\right)\right\}=\{(b, b)\} \cdot\{(a c f+d a e, b d f)\},
\end{aligned}
$$

but $\{(b, b)\}=\{(1,1)\}$ which is the multiplicative identity in \mathbb{Q} so Q.E.D.
Problem 2: (1 points) Let R be a ring and R_{0} a nonempty subset of R. Show that R_{0} is a subring iff, for any $a, b \in R_{0}$, we have $a-b, a b \in R_{0}$.

Proof: Let R be a ring and $R_{0} \subset R$ with $R \neq \emptyset$.
Part I: Suppose R_{0} is a subring. Then R_{0} is also closed under addition and multiplication so for all $a, b \in R_{0} \Longrightarrow a \cdot b \in R_{0}$. Also, since R_{0} is a ring, for all $b \in R_{0}$ it's additive inverse $-b \in R_{0}$ as well. Hence for all $a, b \in R_{0} \Longrightarrow a+(-b)=a-b \in R_{0}$.

Part II: Suppose for all $a, b \in R_{0}$ then $a \cdot b \in R_{0}$ and $a-b \in R_{0}$. Then

- The first part tells us that R_{0} is closed under multiplication.
- The fact that R is a ring tells us that R_{0} is associative under addition and multiplication, and commutative under addtion (and if \cdot is commutative in R then it is also commutative in R_{0}, and that the distributive rule(s) holds.

We want to show that

- $0 \in R_{0}$. We know for all $a \in R_{0} \Longrightarrow 0=a-a \in R_{0}$, so $0 \in R_{0}$.
- for all $a \in R_{0}$ we also have $-a \in R_{0}$. By the first part we know $a, 0 \in R_{0}$ so $-a=0-a \in R_{0}$, and we are done.
- it is closed under + . Suppose R_{0} is not closed. Then there exist $a, b \in R_{0}$ such that $a+b \notin R_{0}$, but $a+b=a-(-b) \in R_{0}$ so R_{0} must be closed under addition.
Q.E.D.

Problem 3: (1 points) Let X be a non-empty set and R be the power set of X. Prove that R with symmetric difference as addition and intersection as multiplication is a commutative ring with identity.

See problem 1.3.9 in the book. You have already proven almost everything that is required here.
Problem 4: (1 point) Let $A=\{p, q, r\}$ and $B=\{\pi, e\}$. Determine all possible functions from A to B.
The functions are

1. $\{(p, \pi),(q, \pi),(r, \pi)\}$
2. $\{(p, e),(q, e),(r, e)\}$
3. $\{(p, \pi),(q, \pi),(r, e)\}$
4. $\{(p, \pi),(q, e),(r, \pi)\}$
5. $\{(p, e),(q, \pi),(r, \pi)\}$
6. $\{(p, \pi),(q, e),(r, e)\}$
7. $\{(p, e),(q, e),(r, \pi)\}$
8. $\{(p, e),(q, \pi),(r, e)\}$

Problem 5: (1 points) Given $f: A \rightarrow B$, suppose there exist $g, h: B \rightarrow A$ so that $f \circ g=I_{B}$ and $h \circ f=I_{A}$. Show that f is a bijection and that $g=h=f^{-1}$.

Proof: Let $f: A \rightarrow B$, and suppose there exist $g, h: B \rightarrow A$ so that $f \circ g=I_{B}$ and $h \circ f=I_{A}$.
Part I: We want to show that f is a bijection. First we will show onto. Let $b \in B$, then $(f \circ g)(b)=f(g(b))=b$ $\operatorname{call} g(b)=a \in A$ so there exists an $a \in A$ such that $f(a)=b$ for all $b \in B$. Hence f is onto. Now suppose $a_{1}, a_{2} \in A$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then

$$
\begin{aligned}
& h\left(f\left(a_{1}\right)=a_{1}\right. \\
& h\left(f\left(a_{2}\right)=a_{2}\right.
\end{aligned}
$$

but $b=f\left(a_{1}\right)=f\left(a_{2}\right)$ so $a_{1}=h(b)=h(b)=a_{2}$ so f is $1-1$. Hence f is a bijection.
Part II: We want to show that $g=h=f^{-a}$. Let $b \in B$ and $a \in A$. We know $f(g(b))=b$ and $h(f(a))=a$. So

$$
h(b)=h(f(g(b)))=g(b) .
$$

Q.E.D.

