DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points if one or more of these instructions are not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total	5	

Problem 1: (1 point)

(a) (0.5 point) Show that $\{(-a, b)\}$ is an additive inverse for $\{(a, b)\}$.

Proof: Consider $\{(a,b)\} + \{(-a,b)\} = \{(ab+b(-a),b^2)\} = \{(0,b^2)\} = \{(0,1)\}$, which is the additive identity in \mathbb{Q} . Q.E.D.

(b) (0.5 point) Prove the distributive law for \mathbb{Q} .

Proof: Let $\{(a, b)\}, \{(c, d)\}, \text{ and } \{(e, g)\} \in \mathbb{Q}$. We want to show

 $\{(a,b)\} \cdot [\{(a,b)\} + \{(e,g)\}] = \{(a,b)\} \cdot \{(c,d)\} + \{(a,b)\} \cdot \{(e,f)\}.$

A little algebra shows that

but $\{(b, b)\} = \{(1, 1)\}$ which is the multiplicative identity in \mathbb{Q} so Q.E.D.

Problem 2: (1 points) Let R be a ring and R_0 a nonempty subset of R. Show that R_0 is a subring iff, for any $a, b \in R_0$, we have $a - b, ab \in R_0$.

Proof: Let R be a ring and $R_0 \subset R$ with $R \neq \emptyset$.

Part I: Suppose R_0 is a subring. Then R_0 is also closed under addition and multiplication so for all $a, b \in R_0 \Longrightarrow a \cdot b \in R_0$. Also, since R_0 is a ring, for all $b \in R_0$ it's additive inverse $-b \in R_0$ as well. Hence for all $a, b \in R_0 \Longrightarrow a + (-b) = a - b \in R_0$.

Part II: Suppose for all $a, b \in R_0$ then $a \cdot b \in R_0$ and $a - b \in R_0$. Then

- The first part tells us that R_0 is closed under multiplication.
- The fact that R is a ring tells us that R_0 is associative under addition and multiplication, and commutative under addition (and $if \cdot$ is commutative in R then it is also commutative in R_0 , and that the distributive rule(s) holds.

We want to show that

- $0 \in R_0$. We know for all $a \in R_0 \Longrightarrow 0 = a a \in R_0$, so $0 \in R_0$.
- for all $a \in R_0$ we also have $-a \in R_0$. By the first part we know $a, 0 \in R_0$ so $-a = 0 a \in R_0$, and we are done.
- it is closed under +. Suppose R_0 is not closed. Then there exist $a, b \in R_0$ such that $a + b \notin R_0$, but $a + b = a (-b) \in R_0$ so R_0 must be closed under addition.

Q.E.D.

Problem 3: (1 points) Let X be a non-empty set and R be the power set of X. Prove that R with symmetric difference as addition and intersection as multiplication is a commutative ring with identity.

NAME:

See problem 1.3.9 in the book. You have already proven almost everything that is required here.

Problem 4: (1 point) Let $A = \{p, q, r\}$ and $B = \{\pi, e\}$. Determine all possible functions from A to B.

The functions are

- 1. $\{(p,\pi), (q,\pi), (r,\pi)\}$
- 2. $\{(p, e), (q, e), (r, e)\}$
- 3. $\{(p,\pi), (q,\pi), (r,e)\}$
- 4. $\{(p,\pi), (q,e), (r,\pi)\}$
- 5. $\{(p, e), (q, \pi), (r, \pi)\}$
- 6. $\{(p,\pi), (q,e), (r,e)\}$
- 7. $\{(p, e), (q, e), (r, \pi)\}$
- 8. $\{(p, e), (q, \pi), (r, e)\}$

Problem 5: (1 points) Given $f : A \to B$, suppose there exist $g, h : B \to A$ so that $f \circ g = I_B$ and $h \circ f = I_A$. Show that f is a bijection and that $g = h = f^{-1}$.

Proof: Let $f: A \to B$, and suppose there exist $g, h: B \to A$ so that $f \circ g = I_B$ and $h \circ f = I_A$.

Part I: We want to show that f is a bijection. First we will show onto. Let $b \in B$, then $(f \circ g)(b) = f(g(b)) = b$ call $g(b) = a \in A$ so there exists an $a \in A$ such that f(a) = b for all $b \in B$. Hence f is onto. Now suppose $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$. Then

$$h(f(a_1) = a_1,$$

$$h(f(a_2) = a_2,$$

but $b = f(a_1) = f(a_2)$ so $a_1 = h(b) = h(b) = a_2$ so f is 1-1. Hence f is a bijection.

Part II: We want to show that $g = h = f^{-a}$. Let $b \in B$ and $a \in A$. We know f(g(b)) = b and h(f(a)) = a. So

$$h(b) = h(f(g(b))) = g(b).$$

Q.E.D.