DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points if one or more of these instructions are not followed.

Questions	Points	Score
1	2	
2	2	
3	2	
4	2	
5	2	
Extra Credit 1	2	
Extra Credit 2	1	
Extra Credit 3	2	
Extra Credit 4	1	
Total	10	

Problem 1: (2 points) Show that the composition of bijections is a bijection.

Problem 2: (2 points) If A is finite and $x \notin A$, then $A \cup \{x\}$ is finite and $Card(A \cup \{x\}) = Card(A) + 1$.

Problem 3: (2 points) If B is a finite set and $A \subseteq B$ then A is finite and $Card(A) \leq Card(B)$. *Hint: Use induction and problem 2.*

Problem 4: (2 points) If A is a subset of a countable set B, then A is countable. *Hint: Use problem 5.*

Problem 5: (2 points) So that if D is a denumerable set and $f: D \to A$ is onto, then there is a $g: A \to D$ such that g is 1-1.

Extra Credit 1: (2 points) Let A and B be sets and let $f : A \to B$ be a function. Suppose that $\{A_i\}_{i \in I}$ is a collection of subsets of A and $\{B_j\}_{j \in J}$ is a collection of subsets of B.

(a) (1 point) Show that $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$.

(b) (1 point) Suppose f is a bijection. Show that $f^{-1}(\bigcap_{i\in J} B_j) = \bigcap_{j\in J} f^{-1}(B_j)$.

Extra Credit 2: (1 points) For following functions, find f(A) and $f^{-1}(B)$.

(a) (0.5 point) $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \sin x$, $A = \{-2, -1, 0, 1, 2\}, B = \{0, 1, 2\}.$

(b) (0.5 point) $f : \mathbb{R} \to \mathbb{Z}$ is is the floor function defined by

$$f(x) = \lfloor x \rfloor = n$$

where $n \le x < n+1$ for $n \in \mathbb{N}$ and $A = (0,5), B = \{0,1,2\}.$

Extra Credit 3: (2 points) Let $f : A \to B$ and $B' \subseteq B$.

(a) (1 point) Prove that $f(f^{-1}(B')) \subseteq B'$.

(b) (1 point) Prove that if f is onto, then $f(f^{-1}(B')) = B'$.

Extra Credit 4: (1 point) Prove or find a counterexample to the following conjecture. Assume $f: X \to Y$ and $A, B \subset X$ If $f(A) \setminus f(B) = \emptyset$, then $f(A \setminus B) = \emptyset$.