DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points if one or more of these instructions are not followed.

Questions	Points	Score
1	2	
2	2	
3	2	
4	2	
5	2	
Extra Credit 1	2	
Extra Credit 2	1	
Extra Credit 3	2	
Extra Credit 4	1	
Total	10	

Problem 1: (2 points) Show that the composition of bijections is a bijection.
Proof: let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Simply show that $h=g \circ f$ is also one to one and onto.
Problem 2: (2 points) If A is finite and $x \notin A$, then $A \cup\{x\}$ is finite and $\operatorname{Card}(A \cup\{x\})=\operatorname{Card}(A)+1$.
Proof: A is finite means that $A \approx \mathbb{N}_{k}$ and $\operatorname{Card}(A)=k$. Define a function $f: A \cup\{x\} \rightarrow \mathbb{N}_{k}$ such that

$$
f(j)=a_{j}, \quad j=1,2,3, \ldots, k
$$

and

$$
f(k+1)=x
$$

Clearly since $x \notin A$, this is a bijection to \mathbb{N}_{k+1} so $A \cup\{x\}$ is finite and $\operatorname{Card}(A \cup\{x\})=k+1$. Q.E.D.
Problem 3: (2 points) If B is a finite set and $A \subseteq B$ then A is finite and $\operatorname{Card}(A) \leq \operatorname{Card}(B)$. Hint: Use induction and problem 2.

Proof: B finite means that $B \approx \mathbb{N}_{k}$ for some $k \in \mathbb{N}$ and $\operatorname{Card}(B)=k$.
The minimal case: Consider a set $D=\{x\}$ with one element, so $\operatorname{Card}(D)=1$. The subsets of D are $C=\emptyset$ or $C=D$. Then clearly C is finite and $\operatorname{Card}(C)=0,1 \leq \operatorname{Card}(D)$.

The induction hypothesis: Suppose $C \subseteq D$ where $\operatorname{Card}(D)=k$ and $\operatorname{Card}(C) \leq k$.
Now let $\operatorname{Card}(B)=k+1$ and $A \subseteq B$. If $A=B$ then we are done. If $A \subset B$, then $\exists x \in B \backslash A$ such that $A \subseteq B \backslash\{x\}$ and $\operatorname{Card}(B \backslash\{x\})=k$ by problem (4). Then by our induction hypolthesis A is finite and $\operatorname{Card}(A) \leq k$.

Problem 4: (2 points) If A is a subset of a countable set B, then A is countable. Hint: Use problem 3.
Proof: If B is countable, then it is either finite or denumerable. If it is finite problem 5 implies that A is also finite and we are done. If B is denumerable, then by the proof from class (subsets of denumerable sets are countable), A is also countable. Q.E.D.

Problem 5: (2 points) So that if D is a denumerable set and $f: D \rightarrow A$ is onto, then there is a $g: A \rightarrow D$ such that g is 1-1.

Proof: Let D be denumerable then there exists an $h: \mathbb{N} \rightarrow D$ which is a bijection (i.e. $h(j) \in D, \forall j \in \mathbb{N}$. Define $g: A \rightarrow D$ by $g(a)=h(j)$ where j is the least integer such that $h(j) \in f^{-1}(\{a\})$. So $g(a) \in$ $f^{-1}(\{a\}) \Longrightarrow f(g(a))=a \forall a \in A$.

Clearly g is 1-1 since if $g(u)=g(v)$ the $u=f(g(u))=f(g(v))=v$. Q.E.D.

Extra Credit:

Extra Credit 1: (2 points) Let A and B be sets and let $f: A \rightarrow B$ be a function. Suppose that $\left\{A_{i}\right\}_{i \in I}$ is a collection of subsets of A and $\left\{B_{j}\right\}_{j \in J}$ is a collection of subsets of B.
(a) (1 point) Show that $f\left(\cup_{i \in I} A_{i}\right)=\cup_{i \in I} f\left(A_{i}\right)$.

Proof: Let $y \in f\left(\cup_{i \in I} A_{i}\right) \Longleftrightarrow \exists x \in U_{i \in I} A_{i}$ such that $f(x)=y$. By the definition of the union, this is true if and only if $x \in A_{i}$ for some $i \in I$. Hence $y=f(x) \in f\left(A_{i}\right) \Longleftrightarrow y \in \cup_{i \in I} f\left(A_{i}\right)$. Q.E.D.
(b) (1 point) Suppose f is a bijection. Show that $f^{-1}\left(\cap_{j \in J} B_{j}\right)=\cap_{j \in J} f^{-1}\left(B_{j}\right)$.

Proof: Let $y \in f^{-1}\left(\cap_{j \in J} B_{j}\right) \Longleftrightarrow f(x)=y \in \cap_{j \in J} B_{j}$. By the definition of the intersection of sets, this is true if and only if $y \in B_{j} \forall j \in J \Longleftrightarrow x=f^{-1}(y) \in f^{-1}\left(B_{j}\right)$ forallj $\in J \Longleftrightarrow x \in \cap_{j \in J} f^{-1}\left(B_{j}\right)$. Q.E.D.

Extra Credit 2: (1 points) For following functions, find $f(A)$ and $f^{-1}(B)$.
(a) (0.5 point) $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\sin x, A=\{-2,-1,0,1,2\}, B=\{0,1,2\}$.

$$
f(A)=\{0, \pm \sin (1), \pm \sin (2)\}, f^{-1}(B)=\{2 n \pi \mid n \in \mathbb{Z}\} \cup\left\{\left.\frac{\pi}{2}+2 n \pi \right\rvert\, n \in \mathbb{Z}\right\}
$$

(b) (0.5 point) $f: \mathbb{R} \rightarrow \mathbb{Z}$ is is the floor function defined by

$$
f(x)=\lfloor x\rfloor=n
$$

where $n \leq x<n+1$ for $n \in \mathbb{N}$ and $A=(0,5), B=\{0,1,2\}$.

$$
f(A)=\{0,1,2,3,4\}, f^{-1}(B)=[0,3)
$$

Extra Credit 3 (2 points) Let $f: A \rightarrow B$ and $B^{\prime} \subseteq B$.
(a) (1 point) Prove that $f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}$.

Proof: Let $y \in f\left(f^{-1}\left(B^{\prime}\right)\right) \Longrightarrow \exists x \in f^{-1}\left(B^{\prime}\right)$ such that $f(x)=y \in B$. But the definition of $x \in f^{-1}\left(B^{\prime}\right)$ is that there esists a $b \in B^{\prime}$ such that $f(x)=b \in B^{\prime}$. That is $y=b=f(x) \in B^{\prime}$. So we have shown $f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}$.
Q.E.D.
(b) (1 point) Prove that if f is onto, then $f\left(f^{-1}\left(B^{\prime}\right)\right)=B^{\prime}$.

Proof: Part (a) implies that $f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}$. Now let $y \in B^{\prime}$. Then there exists an $x \in A$ such that $f(x)=y$ since f is onto. So $x \in F^{-1}(B) \Longrightarrow y=f(x) \in f\left(f^{-1}(B)\right)$. Q.E.D.

Extra Credit 4: (1 point) Prove or find a counterexample to the following conjecture. Assume $f: X \rightarrow Y$ and $A, B \subset X$ If $f(A) \backslash f(B)=\emptyset$, then $f(A \backslash B)=\emptyset$.

Counter-examples: Let $X=\{a, b, c, d, \ldots, z\}, A=\{p, q, r\}, B=\{p\}$, and $Y=\{\pi\}$. Then let $f: X \rightarrow Y$ be denoted by $f(x)=\pi$ for all $x \in X$.

