DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	2	
3	2	
4	3	
5	1	
6	1	
Total	10	

Problem 1: (1 point) Let a be a positive rational number. Let $A=\left\{x \in \mathbb{Q} \mid x^{2}<a\right\}$. Show that A is bounded in \mathbb{Q}. Does it have a least upper bound?

Problem 2: (2 points) Let $\wp(X)$ be the power set of X. Define the binary relation on $\wp(X)$ as follows: $A, B \in \wp(X), A \sim B \Longleftrightarrow A \subseteq B$. Verify that $\wp(X)$ under this relation is a partially ordered set (poset).

Problem 3: (2 points) Prove that $\sqrt{2}$ is not a rational number.
Problem 4: (3 points) Prove that an ordered field has the least upper bound property if and only if it has the greatest lower bound property.

Problem 5: (1 point) Let $a, b \in \mathbb{N}$. We define a number $n \in \mathbb{N}$ to be even if $n=2 k$ for some $k \in \mathbb{N}$. Similarly, we define a number $n \in \mathbb{N}$ to be odd, if $n=2 k+1$ for some $k \in \mathbb{N}$.
(a) (0.5 points) Prove that if a and b are odd, then $a \cdot b$ is also odd.
(b) (0.5 points) Prove that $a \cdot b$ is even if and only if a is even, b is even, or both are even.

Problem 6: (1 point) Let r be a rational number such that $r \neq 0$ and s be an irrational number.
(a) (0.5 points) Prove that $r+s$ is irrational.
(b) (0.5 points) Prove that $r \cdot s$ is irrational.

