DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	2	
3	2	
4	3	
5	1	
6	1	
Total	10	

Problem 1: (1 point) Let a be a positive rational number. Let $A=\left\{x \in \mathbb{Q} \mid x^{2}<a\right\}$. Show that A is bounded in \mathbb{Q}. Does it have a least upper bound?

Proof: We must show three things: (1) $A \neq \emptyset$, (2) A has an upper bound, and (3) A has a lower bound.
(1) We know $a>0$ so we know that either $a>1$ or $a \leq 1$.

- Suppose $a>1$. Then $1^{2}=1<a \Longrightarrow 1 \in A$ so $A \neq \emptyset$.
- Suppose $a \leq 1$. Then since $a>0 \Longrightarrow a^{2} \leq a \Longrightarrow a \in A$ so $A \neq \emptyset$.
(2) Consider only $x \in A$ such that $x \geq 0$. Clearly 0 is an upper bound for the negative numbers so we need only find an upper bound for the positive numbers. Now we want to show that there exists an $M \in \mathbb{Q}$ such that $x \leq M$ for all $x \in A$. Now, we either have $a \in A$ or $a \notin A$.
- Suppose $a \in A \Longrightarrow a^{2}<a \Longrightarrow a<1$ and so for all $x \in A, x^{2}<a<1 \Longrightarrow x<1$. So $M=1$ is an upper bound.
- Suppose $a \notin A$. Then $a^{2} \geq a$, then we have either (i) $a=1 \Longrightarrow x^{2}<1 \Longleftrightarrow x<1$ so $M=1$ is an upper bound or (ii) $a>1 \Longrightarrow x^{2}<a<a^{2} \in \mathbb{Q}$. Hence $x^{2}<a^{2} \Longleftrightarrow x<a$ so choose $M=a$ as an upper bound.

Problem 2: (2 points) Let $\wp(X)$ be the power set of X. Define the binary relation on $\wp(X)$ as follows: $A, B \in \wp(X), A \sim B \Longleftrightarrow A \subseteq B$. Verify that $\wp(X)$ under this relation is a partially ordered set (poset).

Proof: Let $A, B, C \in \wp(X)$. Then clearly
(i) $A \subseteq A \Longrightarrow A \sim A$.
(ii) $A \sim B$ and $B \sim A \Longrightarrow A \subseteq B$ and $B \subseteq A \Longrightarrow A=B$.
(iii) $A \sim B$ and $B \sim C \Longrightarrow A \subseteq B \subseteq C \Longrightarrow A \subseteq C$.
Q.E.D.

Problem 3: (2 points) Prove that $\sqrt{2}$ is not a rational number.
Proof: Suppose $\sqrt{2}$ is a rational number. Then $\sqrt{2}=\frac{a}{b}$ for $a, b \in \mathbb{Z}$ such that $b \neq 0$. Let us suppose that this is in its most reduced form. That is, a and b have no common factors. Then

$$
2=\frac{a^{2}}{b^{2}} \Longleftrightarrow 2 b^{2}=a^{2}
$$

which means that a is even (since its square is even). So $a=2 k$ for some $k \in \mathbb{Z}$. Then

$$
b^{2}=2 k^{2}
$$

which implies that b too is even. But this is a contradiction because we assumed that a and b had no common factors.

Problem 4: (3 points) Prove that an ordered field has the least upper bound property if and only if it has the greatest lower bound property.

Proof:

Part 1: Let us assume that our ordered field has the least upper bound property. We want to show that any subset $B \neq \emptyset$ which is bounded below has a greatest lower bound.

$$
\text { Let } L=\{m \mid m \text { is a lower bound on } B\} .
$$

B is bounded below so $L \neq \emptyset$. That is, $\forall m \in L$, we have $m \leq b \forall b \in B$. So each $b \in B$ is an upper bound on L. Hence, L is bounded above and by the least upper bound property there exists an $\alpha=l u b(L)$. Claim: $\alpha=g l b(B)$.

First we show that α is a lower bound of B. If not, there exists a $\gamma \in B$ such that $\gamma<\alpha$. But all elements of B are upper bounds of L and $\gamma \in B$ so γ is an upper bound on L smaller than α, which is a contradiction. Therefore, no such γ exists. So α is, in fact, a lower bound on B.

Now consider β such that $\alpha<\beta$ such that β is also a lower bound (i.e. that α is not the greatest lower bound). But if $\beta>\alpha$ this implies that $\beta \notin B$ which means that β cannot be a lower bound. So $\alpha=g l b(B)$.

Part 2: Let us assume that our ordered field has the greatest lower bound property. We want to show that any subset $B \neq \emptyset$ which is bounded above has a least upper bound.

$$
\text { Let } U=\{M \mid M \text { is an upper bound on } B\}
$$

The procedure is the same as for part 1.
Q.E.D.

Problem 5: (1 point) Let $a, b \in \mathbb{N}$. We define a number $n \in \mathbb{N}$ to be even if $n=2 k$ for some $k \in \mathbb{N}$. Similarly, we define a number $n \in \mathbb{N}$ to be odd, if $n=2 k+1$ for some $k \in \mathbb{N}$.
(a) (0.5 points) Prove that if a and b are odd, then $a \cdot b$ is also odd.

Proof: a and b odd means that $a=2 k+1$ and $b=2 l+1$ for some $k, l \in \mathbb{N}$. Hence $a \cdot b=4 k l+2(k+l)+1=$ $2(2 k l+k+l)+1=2 m+1$ where $m=2 k l+k+l \in \mathbb{N}$.
Q.E.D.
(b) (0.5 points) Prove that $a \cdot b$ is even if and only if a is even, b is even, or both are even.

Part I: First suppose $a \cdot b$ is even and suppose neither a nor b are even. Then by (a), we have a contradiction.
Problem 6: (1 point) Let r be a rational number such that $r \neq 0$ and s be an irrational number.
(a) (0.5 points) Prove that $r+s$ is irrational.

Proof: Suppose $r+s$ is rational. Then $r+s=\frac{a}{b}$ for $a, b \in \mathbb{Z}$ where $b \neq 0$ and $r=\frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $p \neq 0 \neq q$. Then

$$
s=\frac{a}{b}+\frac{p}{q}=\frac{a q+p b}{b q} \in \mathbb{Q},
$$

which implies $s \in \mathbb{Q}$, which is a contradiction. Hence $r+s$ must be irrational.
Q.E.D.
(b) (0.5 points) Prove that $r \cdot s$ is irrational.

Proof: Suppose $r \cdot s$ is rational. That is $r \cdot s=\frac{a}{b}$. Then

$$
\frac{p}{q} \cdot s=\frac{a}{b} \Longrightarrow s=\frac{a q}{b p}
$$

since $p \neq 0 \neq q$. This implies $s \in \mathbb{Q}$ which is a contradiction. Hence $r \cdot s$ must be irrational. Q.E.D.

