DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	2	
3	1	
4	2	
5	2	
6	1	
Total	10	

Problem 1: (2 points) Let $x \in \mathbb{R}$, Show that there exists a sequence s such that $s_{k} \in \mathbb{Q}$ for all $k \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} s_{k}=x$.

Problem 2: (2 points) Show that for any $a, b \in \mathbb{Q}$, we have $\| a|-|b|| \leq|a-b|$.
Problem 3: (1 point) Show that the sum of two Cauchy sequence in \mathbb{Q} is a Cauchy sequence in \mathbb{Q}.
Problem 4: (2 points) Show that addition is well defined in \mathbb{R}.
Problem 5: (2 points) Let $\left(a_{k}\right)_{k \in \mathbb{N}}$ be a Cauchy sequence of rational numbers such that $\left(a_{k}\right)_{k \in \mathbb{N}} \notin \mathcal{I}$. Define the inverse sequence, $\left(b_{k}\right)_{k \in \mathbb{N}}$, by

$$
b_{k}= \begin{cases}1, & \text { for } k \leq N \\ 1 / a_{k}, & \text { for } k>N\end{cases}
$$

where for $n>N$ we know there exists an $r \in \mathbb{Q}^{+}$such that $\left|a_{k}\right|>r$. Prove that $\left(b_{k}\right)_{k \in \mathbb{N}}$ is Cauchy.
Problem 6: (1 point) Prove that every bounded sequence in \mathbb{R} has a convergent subsequence.

