DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	2	
3	1	
4	2	
5	2	
6	1	
Total	10	

Problem 1: (2 points) Let $x \in \mathbb{R}$, Show that there exists a sequence s such that $s_k \in \mathbb{Q}$ for all $k \in \mathbb{N}$ and $\lim_{n\to\infty} s_k = x$.

Problem 2: (2 points) Show that for any $a, b \in \mathbb{Q}$, we have $||a| - |b|| \le |a - b|$.

Problem 3: (1 point) Show that the sum of two Cauchy sequence in \mathbb{Q} is a Cauchy sequence in \mathbb{Q} .

Problem 4: (2 points) Show that addition is well defined in \mathbb{R} .

Problem 5: (2 points) Let $(a_k)_{k \in \mathbb{N}}$ be a Cauchy sequence of rational numbers such that $(a_k)_{k \in \mathbb{N}} \notin \mathcal{I}$. Define the inverse sequence, $(b_k)_{k \in \mathbb{N}}$, by

$$b_k = \begin{cases} 1, & \text{for } k \le N, \\ 1/a_k, & \text{for } k > N, \end{cases}$$

where for n > N we know there exists an $r \in \mathbb{Q}^+$ such that $|a_k| > r$. Prove that $(b_k)_{k \in \mathbb{N}}$ is Cauchy.

Problem 6: (1 point) Prove that every bounded sequence in \mathbb{R} has a convergent subsequence.