DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	2	
3	1	
4	2	
5	2	
6	1	
Total	10	

Problem 1: (2 point) Let $x \in \mathbb{R}$, Show that there exists a sequence s such that $s_{k} \in \mathbb{Q}$ for all $k \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} s_{k}=x$.

Proof: Let $k \in \mathbb{N}$. Then the interval $\left(x-\frac{1}{k}, x+\frac{1}{k}\right)$ contains a rational number we will call s_{k}. We choose s_{k} using the Axiom of Choice.

Let $\epsilon>0$ be given. Then by the ϵ-property, there exists an $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$. So

$$
s_{n} \in\left(x-\frac{1}{n}, x+\frac{1}{n}\right) \Longrightarrow x-\frac{1}{n}<s_{n}<x+\frac{1}{n}
$$

hence

$$
-\frac{1}{n}<s_{n}-x<\frac{1}{n} \Longrightarrow\left|s_{n}-x\right|<\frac{1}{n}<\epsilon
$$

Q.E.D.

Problem 2: (2 point) Show that for any $a, b \in \mathbb{Q}$, we have $||a|-|b|| \leq|a-b|$.
Proof: We will assume that the triangle inequality for the rational numbers holds. That is, for all $x, y \in \mathbb{Q}$

$$
|x+y| \leq|x|+|y|
$$

First let $x=a-b$ and $y=b$. Then the triangle inequality yields

$$
|a-b+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|
$$

Now let $x=a$ and $y=b-a$. Then the triangle inequality yields

$$
|a+b-a| \leq|a|+|b-a| \Longrightarrow-(|a|-|b|) \leq|a-b|
$$

Hence

$$
||a|-|b|| \leq|a-b|
$$

Q.E.D.

Problem 3: (2 points) Show that the sum of two Cauchy sequence in \mathbb{Q} is a Cauchy sequence in \mathbb{Q}.
Proof: Let $\left(a_{k}\right)_{k \in \mathbb{N}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}}$ be Cauchy sequences. We want to show that given $r \in \mathbb{Q}^{+}$, there exists an N such that for all $n>N$

$$
\left|a_{n}+b_{n}-\left(a_{m}+b_{m}\right)\right|<r
$$

Let $r \in \mathbb{Q}^{+}$be given. We know that since $\left(a_{k}\right)_{k \in \mathbb{N}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}}$ are Cauchy sequences, there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n, m>N_{1}$

$$
\left|a_{n}-a_{m}\right|<\frac{r}{2}
$$

and for all $k, l>N_{2}$

$$
\left|b_{k}-b_{l}\right|<\frac{r}{2}
$$

So choose $N=\max \left\{N_{1}, N_{2}\right\}$ so for all $n, m>N$ we have

$$
\left|a_{n}+b_{n}-\left(a_{m}+b_{m}\right)\right|=\left|a_{n}-a_{m}+b_{n}-b_{m}\right| \leq\left|a_{n}-a_{m}\right|+\left|b_{n}-b_{m}\right|<\frac{r}{2}+\frac{r}{2}=r
$$

Q.E.D.

Problem 4: (2 points) Show that addition is well defined in \mathbb{R}.
Proof: Let $\left(a_{k}\right)_{k \in \mathbb{N}},\left(a_{k}^{\prime}\right)_{k \in \mathbb{N}},\left(b_{k}\right)_{k \in \mathbb{N}}$, and $\left(b_{k}^{\prime}\right)_{k \in \mathbb{N}}$ be Cauchy sequences such that $\left(a_{k}\right)_{k \in \mathbb{N}} \sim\left(a_{k}^{\prime}\right)_{k \in \mathbb{N}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}} \sim\left(b_{k}^{\prime}\right)_{k \in \mathbb{N}}$.

We want to show that given $\left(a_{k}+b_{k}\right)_{k \in \mathbb{N}} \sim\left(a_{k}^{\prime}+b_{k}^{\prime}\right)_{k \in \mathbb{N}}$. That is given $r \in \mathbb{Q}^{+}$, there exists an $N \in \mathbb{N}$ such that for all $n>N$ we have

$$
\left|a_{n}+b_{n}-\left(a_{n}^{\prime}+b_{n}^{\prime}\right)\right|<r .
$$

Let $r \in \mathbb{Q}^{+}$be given. Then we know that there exist N_{1} and N_{2} such that if we choose $N=\max \left\{N_{1}, N_{2}\right\}$ then for all $n>N$ we have

$$
\left|a_{n}-a_{n}^{\prime}\right|<\frac{r}{2}
$$

and

$$
\left|b_{n}-b_{n}^{\prime}\right|<\frac{r}{2}
$$

Hence

$$
\left|a_{n}+b_{n}-\left(a_{n}^{\prime}+b_{n}^{\prime}\right)\right| \leq\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|<\frac{r}{2}+\frac{r}{2}=r
$$

Q.E.D.

Problem 5: (2 points) Let $\left(a_{k}\right)_{k \in \mathbb{N}}$ be a Cauchy sequence of rational numbers such that $\left(a_{k}\right)_{k \in \mathbb{N}} \notin \mathcal{I}$. Define the inverse sequence, $\left(b_{k}\right)_{k \in \mathbb{N}}$, by

$$
b_{k}= \begin{cases}1, & \text { for } k \leq N \\ 1 / a_{k}, & \text { for } k>N\end{cases}
$$

where for $n>N$ we know there exists an $r \in \mathbb{Q}^{+}$such that $\left|a_{k}\right|>r$. Prove that $\left(b_{k}\right)_{k \in \mathbb{N}}$ is Cauchy.
Proof: From class we know there exists an $N_{1} \in \mathbb{N}$ and $r \in \mathbb{R}$ such that for all $n>N_{n}$ we have

$$
\left|a_{n}\right|>r
$$

So for $n, m>N_{1}$ we know

$$
\left|b_{n}-b_{m}\right|=\left|1 / a_{n}-1 / a_{m}\right|=\left|\frac{a_{m}-a_{n}}{a_{n} a_{m}}\right|<\frac{1}{r^{2}}\left|a_{n}-a_{m}\right|
$$

But $\left(a_{m}\right)_{m \in \mathbb{N}}$ is Cauchy so there exists an $N_{2} \in \mathbb{N}$ such that for $m, n>N_{2}$ we know

$$
\left|a_{n}-a_{m}\right|<r^{3}
$$

So take $m, n>N=\max \left\{N_{1}, N_{2}\right\}$ so

$$
\left|b_{n}-b_{m}\right|<\frac{r^{3}}{r^{2}}=r
$$

Q. E. D.

Problem 6: (1 point) Prove that every bounded sequence in \mathbb{R} has a convergent subsequence.
Proof: Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in \mathbb{R}. The we know it has a monotonic subsequence. Suppose that subsequence is monotonic increasing. That is there exists a subsequence $\left(b_{k_{n}}\right)_{n \in \mathbb{N}}$ such that $b_{k_{n}} \leq b_{k_{m}}$ for $m>n$. Define

$$
A=\left\{b_{k_{n}} \mid n \in \mathbb{N}\right\} \subseteq \mathbb{R},
$$

which is bounded above which implies that it has a least upper bound in \mathbb{R}, which we will call $u=\operatorname{lub}(A)$. Let $\epsilon>0$ be given. Then $u-\epsilon<u$ is not an upper bound, so for some n

$$
u-\epsilon<b_{k_{n}} \leq b_{k_{m}}<u
$$

for all $m>n$ since this is a monotonic increasing subsequence. So

$$
\left|b_{k_{m}}-u\right|=b_{k_{m}}-u<\epsilon
$$

for all $m>n$. Hence, $\left(b_{k_{n}}\right)_{n \in \mathbb{N}}$ converges to u.
Now suppose $\left(b_{k_{n}}\right)_{n \in \mathbb{N}}$ is a monotonic decreasing subsequence. The consider instead $\left(-b_{k_{n}}\right)_{n \in \mathbb{N}}$ and use the same approach as above.
Q.E.D.

