DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	3	
3	1	
4	1	
5	1	
6	1	
7	1	
Total	10	

Problem 1: (2 points) Find the accumulation points of the following sets in \mathbb{R}.
(a) (0.5 points) $S=(0,1)$.
(b) (0.5 points) $S=\left\{\left.(-1)^{n}+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
(c) (0.5 points) $S=\mathbb{Q}$.
(d) (0.5 points) $S=\mathbb{Z}$.

Problem 2: (3 points)
(a) (1 point) Find an infinite subset of \mathbb{R} that does not have an accumulation point in \mathbb{R}.
(b) (1 point) Find a bounded subset of \mathbb{R} that does not have an accumulation point in \mathbb{R}.
(c) (1 point) Find a bounded infinite subset of \mathbb{Q} that does not have an accumulation point in \mathbb{Q}.

Problem 3: (1 point) Let $S \subset \mathbb{R}$. Suppose every neighborhood of $x \in S$ contains infinitely many points of S. Prove that x is an accumulation point of S. (This is the second half of the proof from class.)

Problem 4: (1 point) Show that the arbitrary union of open sets in \mathbb{R} is open. That is suppose $\left\{U_{i}\right\}_{i \in \mathcal{I}}$ is a collection of open sets in \mathbb{R}. Prove that $\cup_{i \in \mathcal{I}} U_{i}$ is also open. Note: \mathcal{I} need not be a denumerable set of indices.

Problem 5: (1 point) Show, by example, that an infinite intersection of open sets in \mathbb{R} is not necessarily open (you will still need to prove that your example is not open).

Problem 6: (1 point) Show, by example, that an infinite union of closed sets in \mathbb{R} is not necessarily closed.
Problem 7: (1 point) Show that a finite union of closed sets in \mathbb{R} is a closed set in \mathbb{R}.

