DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	3	
3	1	
4	1	
5	1	
6	1	
7	1	
Total	10	

Problem 1: (2 points) Find the accumulation points of the following sets in \mathbb{R} .

- (a) (0.5 points) S = (0, 1).
- **(b)** (0.5 points) $S = \{(-1)^n + \frac{1}{n} | n \in \mathbb{N}\}.$
- (c) (0.5 points) $S = \mathbb{Q}$.
- (d) (0.5 points) $S = \mathbb{Z}$.

Problem 2: (3 points)

(a) (1 point) Find an infinite subset of \mathbb{R} that does not have an accumulation point in \mathbb{R} .

(b) (1 point) Find a bounded subset of \mathbb{R} that does not have an accumulation point in \mathbb{R} .

(c) (1 point) Find a bounded infinite subset of \mathbb{Q} that does not have an accumulation point in \mathbb{Q} .

Problem 3: (1 point) Let $S \subset \mathbb{R}$. Suppose every neighborhood of $x \in S$ contains infinitely many points of S. Prove that x is an accumulation point of S. (This is the second half of the proof from class.)

Problem 4: (1 point) Show that the arbitrary union of open sets in \mathbb{R} is open. That is suppose $\{U_i\}_{i \in \mathcal{I}}$ is a collection of open sets in \mathbb{R} . Prove that $\bigcup_{i \in \mathcal{I}} U_i$ is also open. Note: \mathcal{I} need not be a denumerable set of indices.

Problem 5: (1 point) Show, by example, that an infinite intersection of open sets in \mathbb{R} is not necessarily open (you will still need to prove that your example is not open).

Problem 6: (1 point) Show, by example, that an infinite union of closed sets in \mathbb{R} is not necessarily closed.

Problem 7: (1 point) Show that a finite union of closed sets in \mathbb{R} is a closed set in \mathbb{R} .