DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	2	
2	3	
3	1	
4	1	
5	1	
6	1	
7	1	
Total	10	

Problem 1: (2 points) Find the accumulation points of the following sets in \mathbb{R}.
(a) (0.5 points) $S=(0,1)$.
(b) (0.5 points) $S=\left\{\left.(-1)^{n}+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.

$$
-1,1
$$

(c) (0.5 points) $S=\mathbb{Q}$.
\mathbb{R}
(d) (0.5 points) $S=\mathbb{Z}$.
\emptyset

Problem 2: (3 points)
(a) (1 point) Find an infinite subset of \mathbb{R} that does not have an accumulation point in \mathbb{R}.
\mathbb{N}
(b) (1 point) Find a bounded subset of \mathbb{R} that does not have an accumulation point in \mathbb{R}.

$$
S=\{1,2,3\}
$$

(c) (1 point) Find a bounded infinite subset of \mathbb{Q} that does not have an accumulation point in \mathbb{Q}.

Use problem 1 on homework 6 to construct a sequence of rational numbers $\left(s_{k}\right)_{k \in \mathbb{N}}$ such that $s_{k} \rightarrow \sqrt{2}$. Then $\sqrt{2}$ is the only accumulation point of the set $S=\left\{s_{k} \mid k \in \mathbb{N}\right\}$ but $\sqrt{2} \notin \mathbb{Q}$.

Problem 3: (1 point) Let $S \subset \mathbb{R}$. Suppose every neighborhood of $x \in S$ contains infinitely many points of S. Prove that x is an accumulation point of S. (This is the second half of the proof from class.)

Proof: Suppose every neighborhood of $x \in S$ contains infinitely many points of S. Then $(x-\epsilon, x+\epsilon)$ contains infinitely many points of S. So

$$
((x-\epsilon, x+\epsilon) \backslash\{x\}) \cap S \neq \emptyset
$$

whether or not $x \in S$.
Q.E.D.

Problem 4: (1 point) Show that the arbitrary union of open sets in \mathbb{R} is open. That is suppose $\left\{U_{i}\right\}_{i \in \mathcal{I}}$ is a collection of open sets in \mathbb{R}. Prove that $\cup_{i \in \mathcal{I}} U_{i}$ is also open. Note: \mathcal{I} need not be a denumerable set of indices.

Proof: Let $\left\{U_{i}\right\}_{i \in \mathcal{I}}$ be a collection of open sets in \mathbb{R}. Let $x \in \cup_{i \in \mathcal{I}} U_{i}$. Then $x \in U_{i}$ for some $i \in \mathcal{I}$, which is open. Hence, there exists an $\epsilon>0$ such that

$$
(x-\epsilon, x+\epsilon) \subseteq U_{i} \Longrightarrow(x-\epsilon, x+\epsilon) \subseteq \cup_{i \in \mathcal{I}} U_{i}
$$

So the arbitrary union is open.
Q.E.D.

Problem 5: (1 point) Show, by example, that an infinite intersection of open sets in \mathbb{R} is not necessarily open (you will still need to prove that your example is not open).

Proof: Consider the sets $U_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. I claim that (i) $\cap_{n \in N} U_{n}=\{0\}$ and (ii) this set is not open.
(i) Clearly $0 \in U_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$ for all $n \in \mathbb{N}$, so $0 \in \cap_{n \in N} U_{n}$. No let $\epsilon \in \cap_{n \in N} U_{n} \Longrightarrow \epsilon \in\left(-\frac{1}{n}, \frac{1}{n}\right)$ for all $n \in \mathbb{N}$. But by the ϵ-property, I can always find an $N \in \mathbb{N}$ for all $\epsilon \neq 0$ such that $\epsilon \notin\left(-\frac{1}{n}, \frac{1}{n}\right)$ so ϵ must be zero or we would get a contradiction. Hence $\cap_{n \in N} U_{n}=\{0\}$.
(ii) $\left(\cap_{n \in N} U_{n}\right)^{c}=\mathbb{R} \backslash\{0\}$ is open since if we let $x \in \mathbb{R} \backslash\{0\}$ by the ϵ-property there exists an $n \in \mathbb{N}$ such that $|x|>\frac{1}{n} \Longrightarrow x \in\left(x-\frac{1}{n}, x+\frac{1}{n}\right) \subset \mathbb{R} \backslash\{0\}$.

So $\left(\cap_{n \in N} U_{n}\right)^{c}$ which implies $\cap_{n \in N} U_{n}$ is closed. However, since \mathbb{R} and \emptyset are the only sets which may be both open and closed, then $\cap_{n \in N} U_{n} \neq \mathbb{R}, \emptyset$ cannot be open.

Hence, the infinite intersection of open sets need not be open.
Q.E.D.

Problem 6: (1 point) Show, by example, that an infinite union of closed sets in \mathbb{R} is not necessarily closed.
Proof: Consider $U_{n}=\left[-1,0-\frac{1}{n}\right]$. Each of these is clearly closed but $A=\cup_{n \in \mathbb{N}} U_{n}$ is not closed since its complement, A^{c} will contain 1 (obvious since $1 \notin U_{n}$ for any n), but no neighborhood of 1 will be contained in A^{c} by application of the ϵ-property.
Q. E. D.

Problem 7: (1 point) Show that a finite union of closed sets in \mathbb{R} is a closed set in \mathbb{R}.
Proof: Let the sets A_{n} be closed subsets of \mathbb{R}. We want to show that $\cup_{n=1}^{k} A_{n}$ is closed so we will show $\left(\cap_{n=1}^{k} A_{n}\right)^{c}$ is open.

$$
\left(\cap_{n=1}^{k} A_{n}\right)^{c}=\cap_{n=1}^{k} A_{n}^{c}
$$

by DeMorgans Law, where A_{n}^{c} are each open. Then let $x \in\left(\cap_{n=1}^{k} A_{n}\right)^{c}$ so $x \in A_{n}^{c}$ for all $n=1, \ldots, k$. That means there exists $\epsilon_{n}>0$ such that $B_{\epsilon_{n}} \subseteq A_{n}$ for each n. Choose $\epsilon=\min \left\{\epsilon_{n}\right\}$. Then $B_{\epsilon} \subseteq A_{n}$ for each n. Hence $B_{\epsilon} \subseteq \cap_{n=1}^{k} A_{n}^{c}$ so $\left(\cap_{n=1}^{k} A_{n}\right)^{c}$ is open.
Q. E. D.

