DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	2	
6	1	
7	1	
8	1	
9	1	
Total	10	

Problem 1: (1 point) Let F be a field and F^{n} be a vector space. Prove that the set of canonical basis vectors, $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$, is a linearly independent set.

Problem 2: (1 point) Consider the vector space $V=F^{n}$. Let $\mathbf{v} \in V \backslash\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. Using only the definition of the canonical vectors, \mathbf{e}_{j}, and the definitions of linearly dependent and independent, prove that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}, \mathbf{v}\right\}$ is a linearly dependent set.

Problem 3: (1 point) Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$. Suppose $\mathbf{v}_{j}=\mathbf{0}$ for some j such that $1 \leq j \leq m$. Prove that this is a linearly dependent set.

Problem 4: (1 point) Let \mathbf{v}_{1} and \mathbf{v}_{2} be vectors in a vector space V. Show that the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set if and only if one of these vectors is a scalar multiple of the other.

Problem 5: (2 points) Determine by inspection if the given set is linearly dependent. You do not need to prove your answer.
(a) (0.5 points) $(1,0),(0,1),(\sqrt{2}, \pi)$.
(b) $(0.5$ points $)(1,7,6),(2,0,9),(3,1,5),(4,1,8)$.
(c) $(0.5$ points $)(2,3,5),(0,0,0),(1,1,8)$.
(d) (0.5 points) $(-2,4,6,10),(3,-6,-9,-15)$.

Problem 6: (1 point) Let V be a vector space over a field F. Show $\{0\}$ and V are subspaces of V.
Problem 7: (1 point) Let $V=\mathbb{Q}[x]$, and let W be the collection of all polynomials in $\mathbb{Q}[x]$ whose degree is less than or equal to a fixed non-negative integer n.
(a) (0.5 points) Prove that W is a subspace of V.
(b) (0.5 points) Find the dimension of W and justify your answer.

Problem 8: (1 point) Let F be a field and consider the vector space $V=F^{n}$ and for a fixed $m \leq n$, let $W=\left\{\mathbf{v} \in V \mid \mathrm{v}\right.$ is a linear combination of the basis vectors $\left.\mathbf{e}_{1}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$.
(a) (0.5 points) Prove that W is a subspace of V.
(b) (0.5 points) Find the dimension of W and justify your answer.

Problem 9: (1 point) Let $V=\mathbb{R}$ be a vector field over $F=\mathbb{R}$. Let $a \in \mathbb{R}$. Consider $T_{a}: V \rightarrow V$ where $T_{a}(x)=a x$ for all $x \in \mathbb{R}$. Prove that T_{a} is a linear transformation.

