DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- DO NOT staple your homework together. Use a paperclip only.
- Be sure to write your name on every page of your homework.
- Paperclip this page to the front of your homework.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Part I Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	2	
6	1	
7	1	
8	1	
9	10	
Total	1	

Problem 1: (1 point) Let F be a field and F^{n} be a vector space. Prove that the set of canonical basis vectors, $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$, is a linearly independent set.

Proof: Suppose $\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\cdots+\alpha_{n} \mathbf{e}_{n}=\mathbf{0}$. Then $\left(\alpha_{1}, 0,0, \ldots, 0\right)+\left(0, \alpha_{2}, 0,0 \ldots, 0\right)+\cdots+\left(0,0, \ldots, 0, \alpha_{n}\right)=$ $(0,0, \ldots, 0)$. Hence by definition of n-tuples in F^{n}, we must have $\alpha_{j}=0$ for all $j=1, \ldots, n$.
Q.E.D.

Problem 2: (1 point) Consider the vector space $V=F^{n}$. Let $\mathbf{v} \in V \backslash\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. Using only the definition of the canonical vectors, \mathbf{e}_{j}, and the definitions of linearly dependent and independent, prove that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}, \mathbf{v}\right\}$ is a linearly dependent set.

Proof: Let $\mathbf{v} \in V \backslash\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. But we may write $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. So $\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\cdots+v_{n} \mathbf{e}_{n}$. Hence

$$
1 \cdot \mathbf{v}-v_{1} \mathbf{e}_{1}-v_{2} \mathbf{e}_{2}+\cdots-v_{n} \mathbf{e}_{n}=0
$$

but not all the coefficients are zero (specifically, $1 \neq 0$ is the coefficient of \mathbf{v}).
Q.E.D.

Problem 3: (1 point) Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$. Suppose $\mathbf{v}_{j}=\mathbf{0}$ for some j such that $1 \leq j \leq m$. Prove that this is a linearly dependent set.

Proof: Consider $\alpha_{j} \mathbf{v}_{j}+\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots \alpha_{j-1} \mathbf{v}_{j-1}+\alpha_{j+1} \mathbf{v}_{j+1}+\cdots+\alpha_{m} \mathbf{v}_{m}\right)$.
Let $\alpha_{j}=1$ and $\alpha_{k}=0$ for all $k \neq j$.
Q.E.D.

Problem 4: (1 point) Let \mathbf{v}_{1} and \mathbf{v}_{2} be vectors in a vector space V. Show that the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set if and only if one of these vectors is a scalar multiple of the other.

Proof: Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set. Then there exist α_{1} and α_{2} not both zero such that $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}=\mathbf{0}$. Without loss of generality, suppose $\alpha_{1} \neq 0$. Then $\mathbf{v}_{1}=\frac{\alpha_{2}}{\alpha_{1}} \mathbf{v}_{2}$.

Now suppose that $\mathbf{v}_{1}=c \mathbf{v}_{2}$. Then $\mathbf{v}_{1}-c \mathbf{v}_{2}=\mathbf{0}$. Take $\alpha_{1}=1$ and $\alpha_{2}=-c$. Then not all the coefficients are zero.
Q.E.D.

Problem 5: (2 points) Determine by inspection if the given set is linearly dependent. Justify your answers.
(a) (0.5 points) $(1,0),(0,1),(\sqrt{2}, \pi)$.

Dependent by problem 5 .
(b) (0.5 points) $(1,7,6),(2,0,9),(3,1,5),(4,1,8)$.

Dependent by problem 5 .
(c) $(0.5$ points $)(2,3,5),(0,0,0),(1,1,8)$.

Dependent by problem 3 .
(d) (0.5 points) $(-2,4,6,10),(3,-6,-9,-15)$.

Dependent by problem 4.
Problem 6: (1 point) Let V be a vector space over a field F. Show $\{0\}$ and V are subspaces of V.
Proof 1: Let $\mathbf{v}, \mathbf{w} \in\{\mathbf{0}\} \Longrightarrow \mathbf{v}=\mathbf{w}=\mathbf{0}$. Therefore, $\mathbf{v}+\mathbf{w}=\mathbf{0} \in\{\mathbf{0}\}$. Let $\alpha \in F$. Then $\alpha \cdot \mathbf{v}=\alpha \cdot \mathbf{0}=\mathbf{0} \in$ $\{\mathbf{0}\}$. So $\{\mathbf{0}\}$ is a subspace of V.

Proof 2: Since V is a vector space, it is, by definition, closed under vector addition and scalar multiplication. Q.E.D.

Problem 7: (1 point) Let $V=\mathbb{Q}[x]$, and let W be the collection of all polynomials in $\mathbb{Q}[x]$ whose degree is less than or equal to a fixed non-negative integer n.
(a) (0.5 points) Prove that W is a subspace of V.

Proof: Let $p, q \in W \subseteq \mathbb{Q}[x]$. Then $p=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n}$ and $q=q_{0}+q_{1} x+q_{2} x^{2}+\cdots+q_{n} x^{n}$, where $q_{i}, p_{i} \in \mathbb{Q}$. Then

$$
p+q=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) x+\left(p_{2}+q_{2}\right) x^{2}+\cdots+\left(p_{n}+q_{n}\right) x^{n}
$$

where $p_{i}+q_{i} \in \mathbb{Q}$ since the sum of two rational numbers is a rational number and this is still a polynomial of degree less than or equal to n. Now let $\alpha \in \mathbb{Q}$ then

$$
\alpha \cdot p=\alpha p_{0}+\alpha p_{1} x+\cdots \alpha p_{n} x^{n}
$$

where $\alpha p_{i} \in \mathbb{Q}$ since the product of two rationals is rational and this too is still a polynomial of degree less than or equal to n.
Q.E.D.
(b) (0.5 points) Find the dimension of W and justify your answer.

The dimension of W is $n+1$ since the set $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ forms a basis for W.
Problem 8: (1 point) Let F be a field and consider the vector space $V=F^{n}$ and for a fixed $m \leq n$, let $W=\left\{\mathbf{v} \in V \mid \mathbf{v}\right.$ is a linear combination of the basis vectors $\left.\mathbf{e}_{1}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$.
(a) (0.5 points) Prove that W is a subspace of V.

Proof: Let $\mathbf{v}, \mathbf{w} \in W$. Then $\mathbf{v}=v_{1} \mathbf{e}_{1}+\cdots v_{m} \mathbf{e}_{m}$ and $\mathbf{w}=w_{1} \mathbf{e}_{1}+\cdots w_{m} \mathbf{e}_{m}$. So

$$
\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}\right) \mathbf{e}_{1}+\cdots\left(v_{m}+w_{m}\right) \mathbf{e}_{m} \in W
$$

Now let $\alpha \in F$. Then

$$
\alpha \mathbf{v}=\alpha v_{1} \mathbf{e}_{1}+\cdots \alpha v_{m} \mathbf{e}_{m} \in W
$$

Q.E.D.
(b) (0.5 points) Find the dimension of W and justify your answer.

The dimension of W is m since $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$ is a basis for W.
Problem 9: (1 point) Let $V=\mathbb{R}$ be a vector field over $F=\mathbb{R}$. Let $a \in \mathbb{R}$. Consider $T_{a}: V \rightarrow V$ where $T_{a}(x)=a x$ for all $x \in \mathbb{R}$. Prove that T_{a} is a linear transformation.

Proof: Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in V=\mathbb{R}$ and $\alpha \in F$. Then

$$
T\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=a\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=a \mathbf{x}_{1}+a \mathbf{x}_{2}=T\left(\mathbf{x}_{1}\right)+T\left(\mathbf{x}_{2}\right)
$$

since we know that multiplication in \mathbb{R} is distributive over addition. And

$$
T\left(\alpha \cdot \mathbf{x}_{1}\right)=a\left(\alpha \cdot \mathbf{x}_{1}\right)=\alpha \cdot\left(a \mathbf{x}_{1}\right)=\alpha \cdot T(\mathbf{x})_{1}
$$

Since multiplication is commutative in \mathbb{R}.
Q.E.D.

