DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **DO NOT** staple your homework together. Use a paperclip only.
- Be sure to write your name on **every page** of your homework.
- **Paperclip** this page to the front of your homework.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Part I Questions	Points	Score
1	1	
2	1	
3	1	
4	1	
5	2	
6	1	
7	1	
8	1	
9	1	
Total	10	

Problem 1: (1 point) Let F be a field and F^n be a vector space. Prove that the set of canonical basis vectors, $S = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$, is a linearly independent set.

Proof: Suppose $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n = \mathbf{0}$. Then $(\alpha_1, 0, 0, \dots, 0) + (0, \alpha_2, 0, 0, \dots, 0) + \dots + (0, 0, \dots, 0, \alpha_n) = (0, 0, \dots, 0)$. Hence by definition of n-tuples in F^n , we must have $\alpha_j = 0$ for all $j = 1, \dots, n$.

Q.E.D.

Problem 2: (1 point) Consider the vector space $V = F^n$. Let $\mathbf{v} \in V \setminus \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$. Using only the definition of the canonical vectors, \mathbf{e}_j , and the definitions of linearly dependent and independent, prove that $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n, \mathbf{v}\}$ is a linearly dependent set.

Proof: Let $\mathbf{v} \in V \setminus {\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n}$. But we may write $\mathbf{v} = (v_1, v_2, ..., v_n)$. So $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \cdots + v_n \mathbf{e}_n$. Hence

$$1 \cdot \mathbf{v} - v_1 \mathbf{e}_1 - v_2 \mathbf{e}_2 + \dots - v_n \mathbf{e}_n = 0,$$

but not all the coefficients are zero (specifically, $1 \neq 0$ is the coefficient of **v**).

Q.E.D.

Problem 3: (1 point) Consider the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$. Suppose $\mathbf{v}_j = \mathbf{0}$ for some j such that $1 \le j \le m$. Prove that this is a linearly dependent set.

Proof: Consider $\alpha_i \mathbf{v}_i + (\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_{j-1} \mathbf{v}_{j-1} + \alpha_{j+1} \mathbf{v}_{j+1} + \cdots + \alpha_m \mathbf{v}_m)$.

Let $\alpha_i = 1$ and $\alpha_k = 0$ for all $k \neq j$.

Q.E.D.

Problem 4: (1 point) Let \mathbf{v}_1 and \mathbf{v}_2 be vectors in a vector space V. Show that the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly dependent set if and only if one of these vectors is a scalar multiple of the other.

Proof: Suppose that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly dependent set. Then there exist α_1 and α_2 not both zero such that $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = \mathbf{0}$. Without loss of generality, suppose $\alpha_1 \neq 0$. Then $\mathbf{v}_1 = \frac{\alpha_2}{\alpha_1} \mathbf{v}_2$.

Now suppose that $\mathbf{v}_1 = c\mathbf{v}_2$. Then $\mathbf{v}_1 - c\mathbf{v}_2 = \mathbf{0}$. Take $\alpha_1 = 1$ and $\alpha_2 = -c$. Then not all the coefficients are zero.

Q.E.D.

Problem 5: (2 points) Determine by inspection if the given set is linearly dependent. Justify your answers.

(a) (0.5 points) (1,0), (0,1), $(\sqrt{2},\pi)$.

Dependent by problem 5.

(b) (0.5 points) (1, 7, 6), (2, 0, 9), (3, 1, 5), (4, 1, 8).

Dependent by problem 5.

(c) (0.5 points) (2,3,5), (0,0,0), (1,1,8).

Dependent by problem 3.

(d) (0.5 points) (-2, 4, 6, 10), (3, -6, -9, -15).

Dependent by problem 4.

Problem 6: (1 point) Let V be a vector space over a field F. Show $\{0\}$ and V are subspaces of V.

Proof 1: Let $\mathbf{v}, \mathbf{w} \in \{\mathbf{0}\} \Longrightarrow \mathbf{v} = \mathbf{w} = \mathbf{0}$. Therefore, $\mathbf{v} + \mathbf{w} = \mathbf{0} \in \{\mathbf{0}\}$. Let $\alpha \in F$. Then $\alpha \cdot \mathbf{v} = \alpha \cdot \mathbf{0} = \mathbf{0} \in \{\mathbf{0}\}$. So $\{\mathbf{0}\}$ is a subspace of V.

Proof 2: Since V is a vector space, it is, by definition, closed under vector addition and scalar multiplication.

Q.E.D.

Problem 7: (1 point) Let $V = \mathbb{Q}[x]$, and let W be the collection of all polynomials in $\mathbb{Q}[x]$ whose degree is less than or equal to a fixed non-negative integer n.

(a) (0.5 points) Prove that W is a subspace of V.

Proof: Let $p, q \in W \subseteq \mathbb{Q}[x]$. Then $p = p_0 + p_1 x + p_2 x^2 + \cdots + p_n x^n$ and $q = q_0 + q_1 x + q_2 x^2 + \cdots + q_n x^n$, where $q_i, p_i \in \mathbb{Q}$. Then

 $p + q = (p_0 + q_0) + (p_1 + q_1)x + (p_2 + q_2)x^2 + \dots + (p_n + q_n)x^n$

where $p_i + q_i \in \mathbb{Q}$ since the sum of two rational numbers is a rational number and this is still a polynomial of degree less than or equal to n. Now let $\alpha \in \mathbb{Q}$ then

$$\alpha \cdot p = \alpha p_0 + \alpha p_1 x + \cdots \alpha p_n x^n$$

where $\alpha p_i \in \mathbb{Q}$ since the product of two rationals is rational and this too is still a polynomial of degree less than or equal to n.

Q.E.D.

(b) (0.5 points) Find the dimension of W and justify your answer.

The dimension of W is n + 1 since the set $\{1, x, x^2, ..., x^n\}$ forms a basis for W.

Problem 8: (1 point) Let F be a field and consider the vector space $V = F^n$ and for a fixed $m \le n$, let $W = \{\mathbf{v} \in V | \mathbf{v} \text{ is a linear combination of the basis vectors } \mathbf{e}_1, \mathbf{e}_1, ..., \mathbf{e}_m\}$.

(a) (0.5 points) Prove that W is a subspace of V.

Proof: Let $\mathbf{v}, \mathbf{w} \in W$. Then $\mathbf{v} = v_1 \mathbf{e}_1 + \cdots + v_m \mathbf{e}_m$ and $\mathbf{w} = w_1 \mathbf{e}_1 + \cdots + w_m \mathbf{e}_m$. So

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1)\mathbf{e}_1 + \cdots + (v_m + w_m)\mathbf{e}_m \in W.$$

Now let $\alpha \in F$. Then

$$\alpha \mathbf{v} = \alpha v_1 \mathbf{e}_1 + \cdots \alpha v_m \mathbf{e}_m \in W.$$

Q.E.D.

(b) (0.5 points) Find the dimension of W and justify your answer.

The dimension of W is m since $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_m\}$ is a basis for W.

Problem 9: (1 point) Let $V = \mathbb{R}$ be a vector field over $F = \mathbb{R}$. Let $a \in \mathbb{R}$. Consider $T_a : V \to V$ where $T_a(x) = ax$ for all $x \in \mathbb{R}$. Prove that T_a is a linear transformation.

Proof: Let $\mathbf{x}_1, \mathbf{x}_2 \in V = \mathbb{R}$ and $\alpha \in F$. Then

$$T(\mathbf{x}_1 + \mathbf{x}_2) = a(\mathbf{x}_1 + \mathbf{x}_2) = a\mathbf{x}_1 + a\mathbf{x}_2 = T(\mathbf{x}_1) + T(\mathbf{x}_2),$$

since we know that multiplication in $\mathbb R$ is distributive over addition. And

$$T(\alpha \cdot \mathbf{x}_1) = a(\alpha \cdot \mathbf{x}_1) = \alpha \cdot (a\mathbf{x}_1) = \alpha \cdot T(\mathbf{x})_1,$$

Since multiplication is commutative in \mathbb{R} .

Q.E.D.