DIRECTIONS:

- Turn in your homework as **SINGLE-SIDED** typed or handwritten pages.
- **STAPLE** your homework together. Do not use paper clips, folds, etc.
- **STAPLE** this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, **clearly and in order**.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	2	
4	0.5	
5	0.5	
6	1	
7	1	
8	1	
9	1	
10	1	
Extra Credit	1	
Total	10	

Problem 1: (1 point) Let V and W be vector spaces over a field F and $T: V \to W$ a linear transformation.

(a) (0.5 points) Show that $T(\mathbf{0}_V) = \mathbf{0}_W$, where $\mathbf{0}_V$ and $\mathbf{0}_W$ are the additive identities of V and W respectively. *Hint: Use the definition of the additive identity.*

(b) (0.5 points) Show that $T(-\mathbf{v}) = -T(\mathbf{v})$, where $-\mathbf{v}$ is the additive inverse of \mathbf{v} in V and $-T(\mathbf{v})$ is the additive inverse of $T(\mathbf{v})$ in W. Note, you CANNOT simply say that $T(-\mathbf{v}) = -T(\mathbf{v})$ by the definition of linear transformation because we do not know that '-1' is an element of our field F.

Problem 2: (1 point) Let V and W be vector spaces over a field F and $T: V \to W$ a linear transformation. Show that T(V) is a subspace of W.

Problem 3: (2 points) Let V and W be linearly isomorphic, finite dimensional vector spaces over F. Prove

(a) (0.5 point) $T^{-1}: W \to V$ is a linear transformation.

(b) (0.5 point) $\dim V = \dim W$.

(c) (1 point) if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for V, then $\{T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n)\}$ is a basis for W.

Problem 4: (0.5 points) Let V be a vector space over the field F. If $R, S, T \in \mathcal{L}(V)$, Prove that $R \circ (S+T) = (R \circ S) + (R \circ T)$

Problem 5: (0.5 points) Let V be a vector space over the field F. Let $I \in \mathcal{L}(V)$ be defined by $I(\mathbf{v}) = \mathbf{v}$ for all $\mathbf{v} \in V$. Show that $T \circ I = I \circ T = T$ for all $T \in \mathcal{L}(V)$.

Problem 6: (1 point) Let $\mathbb{R}[x]$ be the vector space of polynomial functions in one variable over \mathbb{R} . Define the multiplication of polynomials in the usual way. Show that $\mathbb{R}[x]$ is a commutative algebra with identity.

Problem 7: (1 point) Show that the number of elements in S_n is n!.

Problem 8: (1 point) Show that the composition of two elements of S_n is also an element of S_n .

Problem 9: (1 point) Calculate the sign of all elements of S_3 using definition 2.4.4.

Problem 10: (1 point) Show that any $\sigma \in S_n$ can be decomposed into the composition of transpositions.

Extra Credit 1: (1 point) Show that $\sigma \in S_n$ is an odd permutation if and only if it is the composition of an odd number of transpositions. (You may assume without proof that a transposition is an odd permutation.)