DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	2	
4	0.5	
5	0.5	
6	1	
7	1	
8	1	
9	1	
10	10	
Extra Credit	1	
Total	1	
1		

Problem 1: (1 point) Let V and W be vector spaces over a field F and $T: V \rightarrow W$ a linear transformation.
(a) (0.5 points) Show that $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$, where $\mathbf{0}_{V}$ and $\mathbf{0}_{W}$ are the additive identities of V and W respectively. Hint: Use the definition of the additive identity.
(b) (0.5 points) Show that $T(-\mathbf{v})=-T(\mathbf{v})$, where $-\mathbf{v}$ is the additive inverse of \mathbf{v} in V and $-T(\mathbf{v})$ is the additive inverse of $T(\mathbf{v})$ in W. Note, you CANNOT simply say that $T(-\mathbf{v})=-T(\mathbf{v})$ by the definition of linear transformation because we do not know that '-1' is an element of our field F.

Problem 2: (1 point) Let V and W be vector spaces over a field F and $T: V \rightarrow W$ a linear transformation. Show that $T(V)$ is a subspace of W.

Problem 3: (2 points) Let V and W be linearly isomorphic, finite dimensional vector spaces over F. Prove
(a) (0.5 point) $T^{-1}: W \rightarrow V$ is a linear transformation.
(b) (0.5 point) $\operatorname{dim} V=\operatorname{dim} W$.
(c) (1 point) if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for W .

Problem 4: (0.5 points) Let V be a vector space over the field F. If $R, S, T \in \mathcal{L}(V)$, Prove that $R \circ(S+T)=$ $(R \circ S)+(R \circ T)$

Problem 5: (0.5 points) Let V be a vector space over the field F. Let $I \in \mathcal{L}(V)$ be defined by $I(\mathbf{v})=\mathbf{v}$ for all $\mathbf{v} \in V$. Show that $T \circ I=I \circ T=T$ for all $T \in \mathcal{L}(V)$.

Problem 6: (1 point) Let $\mathbb{R}[x]$ be the vector space of polynomial functions in one variable over \mathbb{R}. Define the multiplication of polynomials in the usual way. Show that $\mathbb{R}[x]$ is a commutative algebra with identity.

Problem 7: (1 point) Show that the number of elements in S_{n} is $n!$.
Problem 8: (1 point) Show that the composition of two elements of S_{n} is also an element of S_{n}.
Problem 9: (1 point) Calculate the sign of all elements of S_{3} using definition 2.4.4.
Problem 10: (1 point) Show that any $\sigma \in S_{n}$ can be decomposed into the composition of transpositions.
Extra Credit 1: (1 point) Show that $\sigma \in S_{n}$ is an odd permutation if and only if it is the composition of an odd number of transpositions. (You may assume without proof that a transposition is an odd permutation.)

