DIRECTIONS:

- Turn in your homework as SINGLE-SIDED typed or handwritten pages.
- STAPLE your homework together. Do not use paper clips, folds, etc.
- STAPLE this page to the front of your homework.
- Be sure to write your name on your homework.
- Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions	Points	Score
1	1	
2	1	
3	2	
4	0.5	
5	0.5	
6	1	
7	1	
8	1	
9	1	
10	10	
Extra Credit	1	
Total	1	
1		

Problem 1: (1 point) Let V and W be vector spaces over a field F and $T: V \rightarrow W$ a linear transformation.
(a) (0.5 points) Show that $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$, where $\mathbf{0}_{V}$ and $\mathbf{0}_{W}$ are the additive identities of V and W respectively. Hint: Use the definition of the additive identity.

Proof: If $\mathbf{0}_{V}$ is the additive identity of V, then by definition it must satisfy $\mathbf{0}_{V}+\mathbf{v}=\mathbf{v}+\mathbf{0}_{V}=\mathbf{v}$. So $T\left(\mathbf{0}_{V}\right)+T(\mathbf{v})=T(\mathbf{v})+T\left(\mathbf{0}_{V}\right)=T(\mathbf{v})$ since T is a linear transformation. Hence $T\left(\mathbf{0}_{V}\right)$ satisfies the definition of the additive identity for $\mathbf{w}=T(\mathbf{v}) \in W$.
Q.E.D.
(b) (0.5 points) Show that $T(-\mathbf{v})=-T(\mathbf{v})$, where $-\mathbf{v}$ is the additive inverse of \mathbf{v} in V and $-T(\mathbf{v})$ is the additive inverse of $T(\mathbf{v})$ in W. Note, you CANNOT simply say that $T(-\mathbf{v})=-T(\mathbf{v})$ by the definition of linear transformation because we do not know that '-1' is an element of our field F.

Proof: If $-\mathbf{v}$ is the additive inverse of \mathbf{v} then we know $-\mathbf{v}+\mathbf{v}=\mathbf{0}=\mathbf{v}-\mathbf{v}$. Hence $T(-\mathbf{v})+T(\mathbf{v})=T(\mathbf{0})=$ $T(\mathbf{v})+T(-\mathbf{v})$ since T is a linear transformation. By part (a), we have

$$
T(-\mathbf{v})+T(\mathbf{v})=\mathbf{0}=T(\mathbf{v})+T(-\mathbf{v})
$$

so $T(-\mathbf{v})$ must be the additive inverse of $T(\mathbf{v})$.
Q.E.D.

Problem 2: (1 point) Let V and W be vector spaces over a field F and $T: V \rightarrow W$ a linear transformation. Show that $T(V)$ is a subspace of W.

Proof: Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in T(V)$, then there exist $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ such that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$. Then $\mathbf{w}_{1}+\mathbf{w}_{2}=T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \in T(V)$ since T is a linear transformation.

Now let $\alpha \in F$. Then $\alpha \mathbf{w}_{1}=\alpha T\left(\mathbf{v}_{1}\right)=T\left(\alpha \mathbf{v}_{1}\right) \in T(V)$ since T is a linear transformation.
Q.E.D.

Problem 3: (1.5 points) Let V and W be linearly isomorphic, finite dimensional vector spaces over F. Prove
(a) (0.5 point) $T^{-1}: W \rightarrow V$ is a linear transformation.

Proof: Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$. Then since T and T^{-1} are bijections, there exist $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ such that $T^{-1}\left(\mathbf{w}_{i}\right)=$ \mathbf{v}_{i}. Then

$$
T^{-1}\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=T^{-1}\left(T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)\right)=T^{-1}\left(T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=\mathbf{v}_{1}+\mathbf{v}_{2}=T^{-1}\left(\mathbf{w}_{1}\right)+T^{-1}\left(\mathbf{w}_{2}\right)
$$

Now let $\alpha \in F$.

$$
T^{-1}\left(\alpha \mathbf{w}_{1}\right)=T^{-1}\left(\alpha T\left(\mathbf{v}_{1}\right)\right)=T^{-1}\left(T\left(\alpha \mathbf{v}_{1}\right)\right)=\alpha \mathbf{v}_{1}=\alpha T^{-1}\left(\mathbf{w}_{1}\right)
$$

Q.E.D.
(b) (0.5 point) $\operatorname{dim} V=\operatorname{dim} W$.

Proof: By part (a) and the theorem from class, we must have $\operatorname{dim} V \leq \operatorname{dim} W$ and $\operatorname{dim} W \leq \operatorname{dim} V$, so $\operatorname{dim} V=\operatorname{dim} W$.
Q.E.D.
(c) (0.5 points) if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for W .

Proof: Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of V. Then it will be independent as well so

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}=\mathbf{0} \Longleftrightarrow \alpha_{i}=0
$$

for all i. Therefore

$$
\alpha_{1} T\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{n} T\left(\mathbf{v}_{n}\right)=T(\mathbf{0})=\mathbf{0} \Longleftrightarrow \alpha_{i}=0
$$

Therefore $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is also linearly independent. Similarly $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ spans V, so for all $\mathbf{v} \in V$ there exist $\alpha_{i} \in F$ such that

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots \alpha_{n} \mathbf{v}_{n} .
$$

So since T and T^{-1} are both bijections, for all $\mathbf{w} \in W$, there exist a $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{w}$

$$
\mathbf{w}=T(\mathbf{v})=\alpha_{1} T\left(\mathbf{v}_{1}\right)+\cdots \alpha_{n} T\left(\mathbf{v}_{n}\right)
$$

So any $\mathbf{w} \in W$ may be represented as a linear combination of $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$. Hence, this is a spanning set as well.

So $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for W.
Q.E.D.

Problem 4: (0.5 points) Let V be a vector space over the field F. If $R, S, T \in \mathcal{L}(V)$, Prove that $R \circ(S+T)=$ $(R \circ S)+(R \circ T)$

Proof: Let $\mathbf{v} \in V$. Then

$$
[R \circ(S+T)](\mathbf{v})=R(S(\mathbf{v})+T(b f v))=R(S(\mathbf{v}))+R(T(\mathbf{v}))=(R \circ S)(\mathbf{v})+(R \circ T)(\mathbf{v})
$$

Q.E.D.

Problem 5: (0.5 points) Let V be a vector space over the field F. Let $I \in \mathcal{L}(V)$ be defined by $I(\mathbf{v})=\mathbf{v}$ for all $\mathbf{v} \in V$. Show that $T \circ I=I \circ T=T$ for all $T \in \mathcal{L}(V)$.

Proof: Let $\mathbf{v} \in V$. Then

$$
(T \circ I)(\mathbf{v})=T(I(\mathbf{v}))=T(\mathbf{v})=I(T(\mathbf{v}))=(I \circ T)(\mathbf{v})
$$

Q.E.D.

Problem 6: (1 point) Let $\mathbb{R}[x]$ be the vector space of polynomial functions in one variable over \mathbb{R}. Define the multiplication of polynomials in the usual way. Show that $\mathbb{R}[x]$ is a commutative algebra with identity.

Proof: We already know that $\mathbb{R}[x]$ is a vector space under the usual scalar multiplication and vector addition. We inherit associativity and distributivity (left and right being equal giving commutativity) of scalar multiplication over addition from the field \mathbb{R}. Let 1 be the monomial with $1 \in \mathbb{R}$ of degree zero. Then this is clearly the unit. Hence this is a commutative algebra with unit.
Q.E.D.

Problem 7: (1 point) Show that the number of elements in S_{n} is $n!$.
Proof: Let $\sigma \in S_{n}$. We can send 1 to any of n possible elements. However, once we have used one of these elements, we can send 2 to only $n-1$ possible elements. Continue this process and we sent i to one of $n-(i-1)$ possible elements. So the total number of possible permutations is

$$
n \cdot(n-1) \cdot(n-2) \cdots(n-(i-1)) \cdots 2 \cdot 1=n!
$$

Q.E.D.

Problem 8: (1 point) Show that the composition of two elements of S_{n} is also an element of S_{n}.
Proof: Let $\sigma_{1}, \sigma_{2} \in S_{n}$. Both are bijections from $\{1,2, \ldots, n$ to itself. We proved in chapter 1 that the composition of two bijections is a bijection so $\sigma_{1} \circ \sigma_{2} \in S_{n}$.
Q.E.D.

Problem 9: (1 point) Calculate the sign of all elements of S_{3} using definition 2.4.4.
Using definition 2.4.4, we find $\operatorname{sgn}(I)=\operatorname{sgn}(r)=\operatorname{sgn}\left(r^{2}\right)=1$ and $\operatorname{sgn}\left(f_{1}\right)=\operatorname{sgn}\left(f_{2}\right)=\operatorname{sgn}\left(f_{3}\right)=-1$.
Problem 10: (1 point) Show that any $\sigma \in S_{n}$ can be decomposed into the composition of transpositions.
Proof: Consider $\sigma \in S_{n}$ such that

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
k_{1} & k_{2} & \ldots & k_{n}
\end{array}\right)
$$

Then since σ is a bijection, there exists an $i_{1} \in\{1,2, \ldots, n\}$ such that $k_{i_{1}}=1$. Compose σ with the transposition ($1 i_{1}$), then

$$
\sigma \circ\left(1 i_{1}\right)=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
1 & k_{1} & \ldots & k_{n-1}
\end{array}\right)
$$

by relabeling. Now, since σ is a bijection, there exists an $i_{2} \in\{1,2, \ldots, n-1\}$ such that $k_{i_{2}}=2$. Compose σ with the transposition $\left(2 i_{2}\right)$, then

$$
\sigma \circ\left(1 i_{1}\right) \circ\left(2 i_{2}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
1 & 2 & k_{1} & \ldots & k_{n-2}
\end{array}\right),
$$

by relabeling. Continue this process $n-1$ times to find

$$
I=\sigma \circ\left(1 i_{1}\right) \circ\left(2 i_{2}\right) \circ \cdots \circ\left(n i_{n}\right)
$$

where each of these transpositions is either a true transposition or the identity. So

$$
\sigma=\left(i_{n} n\right) \circ \cdots \circ\left(1 i_{1}\right)
$$

and is the product of transpositions by ignoring the identities.
Q.E.D.

Extra Credit 1: (1 point) Show that $\sigma \in S_{n}$ is an odd permutation if and only if it is the composition of an odd number of transpositions. (You may assume without proof that a transposition is an odd permutation.)

Proof: First suppose that σ is the product of an odd number of transpositions, $h_{1}, h_{2}, \ldots, h_{2 n-1}$ for $n \in \mathbb{N}$. Then

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(h_{1}\right) \cdot \operatorname{sgn}\left(h_{2}\right) \cdots \operatorname{sgn}\left(h_{2 n-1}\right)=(-1)^{2 n-1}=-1
$$

by the proof from class and the assumption above.
From problem 8, we know that every permutation can be written as the composition of a finite number of transpositions, we either have an even number, or an odd number, of such transpositions. Now suppose σ is odd, then $\operatorname{sgn}(\sigma)=-1$. Suppose it was the product of an even number of permutations $h_{1}, h_{2}, \ldots, h_{2 n}$ for $n \in \mathbb{N}$. Then clearly

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(h_{1}\right) \cdot \operatorname{sgn}\left(h_{2}\right) \cdots \operatorname{sgn}\left(h_{2 n}\right)=(-1)^{2 n}=1
$$

by the proof from class and the assumption above which is a contradiction.
Q.E.D.

