
HOMEWORK 9 DUE: Wed., May 30 NAME:

DIRECTIONS:

• Turn in your homework as SINGLE-SIDED typed or handwritten pages.

• STAPLE your homework together. Do not use paper clips, folds, etc.

• STAPLE this page to the front of your homework.

• Be sure to write your name on your homework.

• Show all work, clearly and in order.

You will lose point 0.5 points for each instruction not followed.

Questions Points Score

1 1

2 1

3 2

4 0.5

5 0.5

6 1

7 1

8 1

9 1

10 1

Extra Credit 1

Total 10
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Problem 1: (1 point) Let V and W be vector spaces over a field F and T : V → W a linear transformation.

(a) (0.5 points) Show that T (0V ) = 0W , where 0V and 0W are the additive identities of V and W respec-
tively. Hint: Use the definition of the additive identity.

Proof: If 0V is the additive identity of V , then by definition it must satisfy 0V + v = v + 0V = v. So
T (0V )+T (v) = T (v)+T (0V ) = T (v) since T is a linear transformation. Hence T (0V ) satisfies the definition
of the additive identity for w = T (v) ∈ W .

Q.E.D.

(b) (0.5 points) Show that T (−v) = −T (v), where −v is the additive inverse of v in V and −T (v) is the
additive inverse of T (v) in W . Note, you CANNOT simply say that T (−v) = −T (v) by the definition of
linear transformation because we do not know that ‘-1’ is an element of our field F .

Proof: If −v is the additive inverse of v then we know −v+v = 0 = v−v. Hence T (−v)+T (v) = T (0) =
T (v) + T (−v) since T is a linear transformation. By part (a), we have

T (−v) + T (v) = 0 = T (v) + T (−v),

so T (−v) must be the additive inverse of T (v).

Q.E.D.

Problem 2: (1 point) Let V and W be vector spaces over a field F and T : V → W a linear transformation.
Show that T (V ) is a subspace of W .

Proof: Let w1,w2 ∈ T (V ), then there exist v1,v2 ∈ V such that T (v1) = w1 and T (v2) = w2. Then
w1 +w2 = T (v1) + T (v2) = T (v1 + v2) ∈ T (V ) since T is a linear transformation.

Now let α ∈ F . Then αw1 = αT (v1) = T (αv1) ∈ T (V ) since T is a linear transformation.

Q.E.D.

Problem 3: (1.5 points) Let V and W be linearly isomorphic, finite dimensional vector spaces over F .
Prove

(a) (0.5 point) T−1 : W → V is a linear transformation.

Proof: Let w1,w2 ∈ W . Then since T and T−1 are bijections, there exist v1,v2 ∈ V such that T−1(wi) =
vi. Then

T−1(w1 +w2) = T−1 (T (v1) + T (v2)) = T−1 (T (v1 + v2)) = v1 + v2 = T−1(w1) + T−1(w2).

Now let α ∈ F .
T−1(αw1) = T−1 (αT (v1)) = T−1 (T (αv1)) = αv1 = αT−1(w1).

Q.E.D.

(b) (0.5 point) dimV = dimW .

Proof: By part (a) and the theorem from class, we must have dimV ≤ dimW and dimW ≤ dimV , so
dimV = dimW .
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Q.E.D.

(c) (0.5 points) if {v1,v2, ...,vn} is a basis for V , then {T (v1), T (v2), ..., T (vn)} is a basis for W.

Proof: Let {v1,v2, ...,vn} be a basis of V . Then it will be independent as well so

α1v1 + · · ·+ αnvn = 0 ⇐⇒ αi = 0,

for all i. Therefore
α1T (v1) + · · ·+ αnT (vn) = T (0) = 0 ⇐⇒ αi = 0,

Therefore {T (v1), T (v2), ..., T (vn)} is also linearly independent. Similarly {v1,v2, ...,vn} spans V , so for all
v ∈ V there exist αi ∈ F such that

v = α1v1 + · · ·αnvn.

So since T and T−1 are both bijections, for all w ∈ W , there exist a v ∈ V such that T (v) = w

w = T (v) = α1T (v1) + · · ·αnT (vn).

So any w ∈ W may be represented as a linear combination of {T (v1), T (v2), ..., T (vn)}. Hence, this is a
spanning set as well.

So {T (v1), T (v2), ..., T (vn)} is a basis for W .

Q.E.D.

Problem 4: (0.5 points) Let V be a vector space over the field F . If R,S, T ∈ L(V ), Prove that R◦(S+T ) =
(R ◦ S) + (R ◦ T )

Proof: Let v ∈ V . Then

[R ◦ (S + T )](v) = R (S(v) + T (bfv)) = R (S(v)) +R (T (v)) = (R ◦ S)(v) + (R ◦ T )(v).

Q.E.D.

Problem 5: (0.5 points) Let V be a vector space over the field F . Let I ∈ L(V ) be defined by I(v) = v for
all v ∈ V . Show that T ◦ I = I ◦ T = T for all T ∈ L(V ).

Proof: Let v ∈ V . Then

(T ◦ I)(v) = T (I(v)) = T (v) = I (T (v)) = (I ◦ T )(v).

Q.E.D.

Problem 6: (1 point) Let R[x] be the vector space of polynomial functions in one variable over R. Define
the multiplication of polynomials in the usual way. Show that R[x] is a commutative algebra with identity.

Proof: We already know that R[x] is a vector space under the usual scalar multiplication and vector
addition. We inherit associativity and distributivity (left and right being equal giving commutativity) of
scalar multiplication over addition from the field R. Let 1 be the monomial with 1 ∈ R of degree zero. Then
this is clearly the unit. Hence this is a commutative algebra with unit.

Q.E.D.
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Problem 7: (1 point) Show that the number of elements in Sn is n!.

Proof: Let σ ∈ Sn. We can send 1 to any of n possible elements. However, once we have used one of
these elements, we can send 2 to only n− 1 possible elements. Continue this process and we sent i to one of
n− (i − 1) possible elements. So the total number of possible permutations is

n · (n− 1) · (n− 2) · · · (n− (i− 1)) · · · 2 · 1 = n!

Q.E.D.

Problem 8: (1 point) Show that the composition of two elements of Sn is also an element of Sn.

Proof: Let σ1, σ2 ∈ Sn. Both are bijections from {1, 2, ..., n to itself. We proved in chapter 1 that the
composition of two bijections is a bijection so σ1 ◦ σ2 ∈ Sn.

Q.E.D.

Problem 9: (1 point) Calculate the sign of all elements of S3 using definition 2.4.4.

Using definition 2.4.4, we find sgn(I) = sgn(r) = sgn(r2) = 1 and sgn(f1) = sgn(f2) = sgn(f3) = −1.

Problem 10: (1 point) Show that any σ ∈ Sn can be decomposed into the composition of transpositions.

Proof: Consider σ ∈ Sn such that

σ =

(

1 2 ... n

k1 k2 ... kn

)

.

Then since σ is a bijection, there exists an i1 ∈ {1, 2, ..., n} such that ki1 = 1. Compose σ with the
transposition (1 i1), then

σ ◦ (1 i1) =

(

1 2 ... n

1 k1 ... kn−1

)

,

by relabeling. Now, since σ is a bijection, there exists an i2 ∈ {1, 2, ..., n− 1} such that ki2 = 2. Compose σ

with the transposition (2 i2), then

σ ◦ (1 i1) ◦ (2 i2) =

(

1 2 3 ... n

1 2 k1 ... kn−2

)

,

by relabeling. Continue this process n− 1 times to find

I = σ ◦ (1 i1) ◦ (2 i2) ◦ · · · ◦ (n in),

where each of these transpositions is either a true transposition or the identity. So

σ = (in n) ◦ · · · ◦ (1 i1),

and is the product of transpositions by ignoring the identities.

Q.E.D.

Extra Credit 1: (1 point) Show that σ ∈ Sn is an odd permutation if and only if it is the composition of an
odd number of transpositions. (You may assume without proof that a transposition is an odd permutation.)

Proof: First suppose that σ is the product of an odd number of transpositions, h1, h2, ..., h2n−1 for n ∈ N.
Then

sgn(σ) = sgn(h1) · sgn(h2) · · · sgn(h2n−1) = (−1)2n−1 = −1
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by the proof from class and the assumption above.

From problem 8, we know that every permutation can be written as the composition of a finite number of
transpositions, we either have an even number, or an odd number, of such transpositions. Now suppose σ

is odd, then sgn(σ) = −1. Suppose it was the product of an even number of permutations h1, h2, ..., h2n for
n ∈ N. Then clearly

sgn(σ) = sgn(h1) · sgn(h2) · · · sgn(h2n) = (−1)2n = 1

by the proof from class and the assumption above which is a contradiction.

Q.E.D.
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