DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Questions	Points	Score
1	1.5	
2	1.5	
3	2	
Total	5	

Problem 1: (1.5 point) Let A_{i} be sets for $i=1,2,3, \ldots, n$. What is the definition of the n -fold Cartesian Product of sets $A_{1}, A_{2}, \ldots, A_{n}$?

The n-fold Cartesian product of sets A_{1}, \ldots, A_{n} is given by

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{j} \in A_{j} \text { for } j=1,2, \ldots, n\right\}
$$

Problem 2: (1.5 point) State the Well-Ordering Principle for \mathbb{Z}.
If A is a non-empty subset of the positive integers, then A has a least element. That is, there exists an element $a_{0} \in A$ such that for all $a \in A, a_{0}<a$.

Problem 3: (2 points) Consider the set of integers, \mathbb{Z}. Prove that the multiplicative identity is unique.
Proof: Suppose 1 and 1^{\prime} are both multiplicative identities. Therefore, for all $a \in \mathbb{Z}$
(1) $1 \cdot a=a \cdot 1=a$,
and

$$
\text { (2) } 1^{\prime} \cdot a=a \cdot 1^{\prime}=a
$$

In particular (1) holds for $a=1^{\prime}$ and (2) holds for $a=1$ hence

$$
1=1 \cdot 1^{\prime}=1^{\prime} \cdot 1=1^{\prime}
$$

Therefore the multiplicative identity must be unique.

